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Abstract 

Background  This study aimed to delineate the cell heterogeneity in the bone-implant interface and investigate the 
fibroblast responses to implant-associated S. aureus infection.

Methods  Single-cell RNA sequencing of human periprosthetic tissues from patients with periprosthetic joint infec-
tion (PJI, n = 3) and patients with aseptic loosening (AL, n = 2) was performed. Cell type identities and gene expres-
sion profiles were analyzed to depict the single-cell landscape in the periprosthetic environment. In addition, 11 
publicly available human scRNA-seq datasets were downloaded from GSE datasets and integrated with the in-house 
sequencing data to identify disease-specific fibroblast subtypes. Furthermore, fibroblast pseudotime trajectory analy-
sis and Single-cell regulatory network inference and clustering (SCENIC) analysis were combined to identify transcrip-
tion regulators responsible for fibroblast differentiation. Immunofluorescence was performed on the sequenced 
samples to validate the protein expression of the differentially expressed transcription regulators.

Results  Eight major cell types were identified in the human bone-implant interface by analyzing 36,466 cells. Meta-
analysis of fibroblasts scRNA-seq data found fibroblasts in the bone-implant interface express a high level of CTHRC1. 
We also found fibroblasts could differentiate into pro-inflammatory and matrix-producing phenotypes, each primarily 
presented in the PJI and AL groups, respectively. Furthermore, NPAS2 and TFEC which are activated in PJI samples were 
suggested to induce pro-inflammatory polarization in fibroblasts, whereas HMX1, SOX5, SOX9, ZIC1, ETS2, and FOXO1 
are matrix-producing regulators. Meanwhile, we conducted a CMap analysis and identified forskolin as a potential 
regulator for fibroblast differentiation toward matrix-producing phenotypes.

Conclusions  In this study, we discovered the existence of CTHRC1+ fibroblast in the bone-implant interface. Moreo-
ver, we revealed a bipolar mode of fibroblast differentiation and put forward the hypothesis that infection could 
modulate fibroblast toward a pro-inflammatory phenotype through NPAS2 and TFEC.
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Background
Orthopedic implants are routinely used for fixation of 
fractures, correction of deformities and joint replace-
ments. The most commonly used orthopedic implants 
include titanium alloy, chromium-cobalt-molybd, PMMA, 
etc. (Filipović et  al. 2020). Orthopedic implant-associated 
infection (IAI) is a devastating complication after orthope-
dic surgery. The treatment usually involves debridement, 
implant removal, and long-term antibiotic therapy. None-
theless, the prognosis of orthopedic IAI is often unsat-
isfactory because of its propensity to cause chronic and 
relapsing infections, and even worse, amputations (Masters 
et al. 2022; Amin Yavari et al. 2020; Depypere et al. 2020; 
Abram et al. 1469).

Host responses to implant can be generally classified into 
four types (Long 2008), three of which are highly depend-
ent on implant materials. The remaining one, which occurs 
in a wide range of biomaterials, involves the formation of 
a fibrous capsule at the implant-bone interface (Filipović 
et  al. 2020; Pagán and Ramakrishnan 2018; Chung et  al. 
2020). It was this fibrous encapsulation (also known as 
pseudomembrane/pseudocapsule) that provides a micro-
environment of depressed immunity for bacterial coloniza-
tion and biofilm formation (Alhasan et al. 2022). Anderson 
et  al. (2008) suggested that the fibrous capsule forms fol-
lowing a sequential host response: injury, blood–material 
interactions, provisional matrix formation, acute inflam-
mation, chronic inflammation, granulation tissue develop-
ment, foreign body reaction, and finally developed a fibrous 
capsule. Despite all of the above-mentioned findings, our 
current understanding of detailed tissue-implant responses 
remains largely inadequate. The scRNA-seq technique is 
thus an appropriate method to study the tissue-implant 
interface in depth (Arciola et  al. 2018). A recent review 
by Feng et  al. (2023) summarized the current single-cell 
omics used in musculoskeletal disorders and we found no 
research on bone-implant interface.

According to epidemiology studies of our groups and 
others, the most frequently isolated pathogen in IAI is 
methicillin-resistant Staphylococcus aureus (MRSA) 
and methicillin-sensitive Staphylococcus aureus (MSSA) 
(Depypere et  al. 2020; Guo et  al. 2017; Patel 2023). Over 
the last decades, there has been intensive research regard-
ing S. aureus implant infections which mainly focused on 
pathogen virulences and their interactions with immune 
cells (Matsumoto et al. 2021; He et al. 2022, 2019; Yamada 
et al. 2020; Heim et al. 2020). Nevertheless, few studies on 

fibroblast response to S. aureus infection were undertaken. 
It is reported that stromal cells such as fibroblasts play 
equally important roles in infectious diseases (Davidson 
et al. 2021; John et al. 2021; Iwanaga et al. 2021). Therefore, 
detailed and comprehensive studies on fibroblast biological 
responses toward S. aureus infection are required for a bet-
ter understanding of IAI pathogenesis.

In the present study, we collected and sequenced 
periprosthetic samples from patients with S. aureus 
periprosthetic joint infections (PJI, n = 3) and patients with 
periprosthetic aseptic loosening (AL, n = 2). We for the first 
time depicted the complex cell populations in the bone-
implant interface. Single-cell trajectory analysis highlights 
transcription regulators critical for fibroblast functional 
differentiation. Taken together, our findings, with a focus 
on fibroblast, enrich our understanding of the cellular and 
molecular response in IAI occurrence and could provide 
novel insights into the pathogenesis of IAI.

Results
Human bone‑implant interface consists of eight major cell 
types
Five fresh peri-implant tissues were collected from three 
patients with PJI and two patients with AL for scRNA-seq 
as illustrated in Fig. 1a, clinical characteristics and implant 
characteristics were presented in Additional file 1: Table S1. 
It is noteworthy that PJI11 was collected from patient 
with acute infection while PJI03, PJI04 were derived from 
chronic infection patients. After a series of quality control 
procedures (Additional file 2: Fig. S1a, b), a total of 36,466 
cells were qualified for subsequent analysis with 21,982 and 
14,484 cells from PJI and AL, respectively. Eight major cell 
types were manually annotated according to canonical cell 
marker genes and eleven cell clusters were confirmed with 
dimension reduction and unsupervised clustering (Fig. 1b, 
Additional file  3: Fig S2a). Specifically, the following cells 
were identified by their distinct marker genes: fibroblasts 
(PDGFRA, COL3A1), endothelial cells (SELE, VWF), 
smooth muscle cells (ACTA2, TAGLN), B cells (CD79A, 
MS4A1), T1-4 cells (CD3D, CD4), plasma cells (MZB1, 
SDC1), mast cells (CST3, KIT), myeloid cells (LYZ, CD14) 
(Fig.  1c, d). Gene ontology enrichment analysis revealed 
their corresponding functions in immune modulation and 
tissue construction (Additional file 2: Fig. S1d).

Compared with the PJI group, the AL group exhibited 
a higher proportion of stromal cells including fibroblasts 
(43.45 vs. 7.53%), endothelial cells (20.27 vs. 5.54%), and 

(See figure on next page.)
Fig. 1  Single-cell RNA sequencing reveals cell heterogeneity in the periprosthetic environment. a Schematic overview showing study workflow 
from sampling to single-cell sequencing and data analysis. b UMAP visualization of total cells from the periprosthetic tissue of patients with AL 
and PJI, single cells are colored by cluster annotation. c Colored UMAP plot showing marker genes for each type of cell. d Violin plots showing 
the selected canonical marker genes across the annotated cell clusters. Expression levels are normalized and log transformed. e Stacked bar plot 
showing proportions of annotated cell clusters in each sample
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Fig. 1  (See legend on previous page.)



Page 4 of 16Yu et al. Molecular Medicine           (2023) 29:35 

smooth muscle cells (7.92 vs. 4.33%), whereas the PJI 
group consists of a higher percentage of immune cells 
such as T cells (43.26 vs. 12.5%) and myeloid cells (20.68% 
vs 8.06%). It is noteworthy that plasma cells are specifi-
cally presented in the PJI group and rarely detected in the 
AL group (7.87% vs. 0.19%) (Fig. 1e, Additional file 2: Fig. 
S1c).

Fibroblasts, T_1 cells and myeloid cells are the major 
modulators in the bone‑implant interface
A comparison of cell–cell interactions between PJI and 
AL groups showed stronger crosstalks among immune 
cells, but significantly downregulated fibroblasts–fibro-
blasts communication in the PJI group (Fig. 2a, b, Addi-
tional file  4: Fig. S3a–f). By computing the strengths of 
incoming and outgoing signals, we found that fibroblasts 
play a major cell–cell communication role in an asep-
tic environment (Fig.  2c, Additional file  4: Fig. S3j, k). 
In contrast, immune cells such as myeloid and T_1 cells 
contributed more frequently to cell communications in 
an infected environment (Fig.  2d, Additional file  4: Fig. 
S3g–i). Moreover, receptor-ligand enrichment indicated 
that downregulated communications in PJI mainly con-
centrated in the collagen pathway and PTN pathway 
which are strongly associated with fibroblast functions 
(Fig. 2e, f, i). By analyzing immune cell-dependent inter-
cellular communications, much higher communication 
strength relating to myeloid was observed in the acute PJI 
group (Fig. 2g, j). The upregulated pathways are predomi-
nantly responsible for chemokines (IL10, IL16) and anti-
gen processing (MHC-I, MHC-II). On the contrary, the 
chronic PJI group mainly dependent on T_1 cell interac-
tion (Fig. 2h, k).

Because fibroblast, myeloid cells and T_1 cells were 
identified as the major regulators, we decided to further 
compare their differences between AL and PJI groups. 
Fibroblasts/myeloid cells were classified into 6 subtypes 
and T_1 cells were classified into 5 subtypes according to 
their transcriptome heterogeneity (Fig. 3a, c, e Additional 
file  3: Fig. S2b–d), Fibro_0,1,2, Myeloid_2,5,4 and T_1 
subtype 2 were mainly presented in the AL group while 
Fibro_3,4, Myeloid_0,1,3,4 and T_1 subtype 0,1,3,4 pre-
dominantly existed in the PJI groups. The representative 
marker for each cell subtype were provided in Fig. 3b, d, 
f. The upregulated genes of fibroblasts in the PJI group 
were mainly enriched in inflammatory pathways and 
the downregulated genes were responsible for extracel-
lular matrix production and copper ion detoxification 
(Fig.  3h, Additional file  5: Fig. S4a, b). Myeloid cells in 
the PJI group were upregulated in immune-modulat-
ing pathways (Fig. 3g, Additional file 5: Fig. S4c, d). T_1 
cells in the PJI groups were upregulated in lymphocyte/
leukocyte activation (Additional file 5: Fig. S4e, f ). H&E 

staining results revealed that the PJI samples have more 
immune cell infiltration. Masson staining showed that 
samples from the AL group exhibited a higher level of 
collagen deposition (Fig. 3i).

Fibroblasts in the bone‑implant interface are mainly 
CTHRC1+ 
By integrating the publicly available datasets with our 
in-house generated fibroblast expression profiles as illus-
trated in Fig.  4a, we divided all of the analyzed fibro-
blasts into seven meta-clusters (Fig.  4b). Among the 
seven meta-clusters, we noticed fibroblast meta-cluster2 
overexpresses collagen-related genes (COL1A, COL1A2, 
COL3A1, CTHRC1) (Fig. 4c, Additional file 6: Fig. S5a–e). 
This CTHRC1+ fibroblast was observed in AL, PJI, peri-
odontitis, and synovium of osteoarthritis and rheuma-
toid arthritis(Fig.  4d). Gene ontology (GO) analysis and 
GSEA enrichment both showed that the overexpressed 
genes in CTHRC1+ fibroblasts were enriched in ossifica-
tion and collagen organization (Fig. 4e-f ). Comparing the 
expression pattern of CTHRC1 in PJI and AL samples, 
we found both groups were composed of a large portion 
of CTHRC1 + fibroblasts (81.5% in AL vs 86.7% in PJI). 
Hence, we believe that CTHRC1 + fibroblast is the major 
type of fibroblast in the human bone-implant interface. 
(Fig. 5a).

Bipolar differentiation of fibroblast in the bone‑implant 
interface
To further investigate fibroblast responses to infection 
in the bone-implant interface, we carried out a single-cell 
pseudotime trajectory analysis for fibroblasts in the AL 
and PJI groups, the result showed that fibroblasts could 
be classified into two continuous cell lineages: cell fate1/2 
(Fig. 5b, c). The PJI group comprised many more cells that 
underwent fate1 than the AL group (77.48% vs. 12.82%), 
whereas the AL group mainly comprised cells in fate2 and 
pre-branched cells (Fig.  5d). Fibroblast subcluster1, 2, 4 
were at pre-branched state, cell fate2, and cell fate1 respec-
tively. Other subclusters were at intermediate state (Fig. 5e, 
f ). We further classified pseudotime-dependent genes into 
3 gene sets (geneset1–geneset3) according to their mode of 
expression (Fig.  5g, Additional file  7: Table  S2). Geneset1 
is composed of 317 genes and is responsible for cell fate2 
regulation, GO term enrichment results showed its relation 
to extracellular matrix organization and stress response to 
copper ions (Fig. 5h). Geneset2 consists of 422 genes that 
contributed to fate1 differentiation. Its KEGG enrichment 
results were enriched in Staphylococcus infection and the 
phagosome pathway, GO term enrichment suggested its 
immune modulation functions such as positive regula-
tion of leukocyte activation. Genset3 comprised 609 genes 
involved in extracellular structure organization, regulation 
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Fig. 2  Cell–cell interaction analysis reveals differences in the major mediators between AL and PJI. a, b Heatmap and circos plot shows differential 
interaction strength relative to PJI, red indicates increased interaction strength and blue indicates decreased strength in PJI. c, d Scatter plot shows 
incoming interaction strength (y-axis) and outcoming interaction strength (x-axis) for each cell cluster in AL (c) and PJI (d) samples. e The dotted 
heatmap shows major differentially expressed ligand-receptor pairs in AL and PJI groups. f–k Bar plots list the relative strength of pathways from 
and target to Fibroblasts (f, i)/Myeloid cells (g, j)/T_1 cells (h, k)
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of vascular development, epithelial cell proliferation, and 
ossification. Given the above findings, we termed cell fate1, 
cell fate2, and pre-branched cells as inflammatory, matrix-
producing, and pre-branched fibroblasts, respectively.

Identification of key driver transcription factors 
determining fibroblast differentiation
To identify crucial regulators responsible for infection-
induced fibroblast differentiation, we performed regulatory 
network analysis (SCENIC) for a total number of 388 regu-
lons. The resultant 337 regulons with significant differences 
between PJI and AL groups were selected and intersected 
with genes critical for fibroblast differentiation (1348 genes 
identified during pseudotime analysis), thus resulting in 45 
transcription factors. To exclude the effects of over-repre-
sentation of a dataset due to high cell number contribution, 
we removed 34 transcription regulators whose expression 
levels were not consistent among individuals with the same 
diagnosis (Fig.  6a). The AUCell scores for each of the 11 
regulons were shown in Fig. 6b, a distinct difference could 
be observed between PJI and AL. Furthermore, We found 
that inflammatory fibroblasts are strongly correlated with 
TFEC and NPAS2, whereas matrix-producing fibroblasts 
are mainly modulated by HMX1, SOX5, SOX9, ZIC1, ETS2, 
and FOXO1. The remaining TFs (NFATC2, KLF4, and 
EGR2) are responsible for cell differentiation in the pre-
branched state (Fig.  6c). By selecting three representative 
TFs in each type of cell fates (NPAS2, SOX5, NFATC2), 
we verified the above-mentioned differences at the pro-
tein level using immunofluorescence (Fig. 6d, e, Additional 
file 8: Fig. S6). The results showed that NPAS2 was highly 
expressed in the PJI group while SOX5 and NFATC2 were 
mainly expressed in the AL group.

Forskolin is a potential treatment strategy by targeting 
fibroblast differentiation
To identify potential compounds for regulating fibroblast 
differentiation, we carried out a CMap analysis. Differ-
entially expressed genes (DEGs) of fibroblasts in the PJI 
group were filtered by setting the adjusted p-value < 0.01 
and log2Foldchange at ± 1.4. A total number of 24 genes 
were upregulated and 45 were downregulated (Fig.  7a, 
Additional file  9: Table  S3). The most upregulated genes 
in the PJI group were IGKC, CXCL13, APOE, and IGLC3 
whereas the most downregulated genes were PRG4, MGP, 
PLA2G2A, and CXCL14 (Fig. 7b). The DEGs were used as 
an input for CMap analysis, the top 70 compound hits are 

shown in Fig. 7c. Only forskolin, an adenylyl cyclase activa-
tor, has an estimated score < − 90.

Discussion
Orthopedic implants have been used clinically for dec-
ades. Due to the existence of foreign materials, a variety 
of complications may be encountered following ortho-
pedic procedures (Schwartz et  al. 2020). This study 
focused on the most common complications after arthro-
plasty: PJI and AL. At present, research on the environ-
ment around medical implants is still in the exploratory 
stage. In 2021, Cherry et  al. (2021) published a single-
cell atlas regarding response to biomaterials by adopting 
the mouse volumetric muscle loss (VML) model. This is 
the first report depicting foreign body reactions using 
scRNA-seq technology. In contrast to their findings, B 
cells and plasma cells, which were observed in our cell 
atlas, were absent in the previous VML model. This dis-
crepancy could be caused by a variety of factors: species 
(human/mouse), postoperative period (months/weeks), 
sampling site (bone/muscle-implant interface), and mate-
rial (alloy/polycaprolactone). It is worth noting that, by 
comparing data from PJI04 and PJI03, we did not observe 
much difference in cell composition caused by implant 
material (PMMA v.s. titanium alloy coated with HA) and 
sampling site (knee v.s. hip). According to our observa-
tion, late chronic infections (PJI03 & PJI04) mainly con-
sists of T_1 cells while early acute infection (PJI11) is 
composed of Myeloid cells and Fibroblast. Thus, we 
hypothesize the infection stage might contribute sig-
nificantly to the cell heterogeneity rather than materials, 
coating and sampling site.

Through a meta-analysis of fibroblast transcriptome 
across various disease states, we identified that fibro-
blasts in the bone-implant interface were mainly com-
posed of CTHRC1+ fibroblasts. It was not the first report 
of CTHRC1+ fibroblast, Adrián et.al. demonstrated 
it as a novel regulator of the healing scar process and a 
prospective target for myocardial infarction treatment 
(Ruiz-Villalba et  al. 2020). The preferential occurrence 
of CTHRC1+ fibroblast in inflammatory bone-related 
diseases (AL, PJI, osteoarthritis, rheumatoid arthritis, 
and periodontitis) and its presence in the AL and PJI 
samples lead us to hypothesize its role in bone-implant 
osseointegration.

It was reported that CTHRC1+ fibroblasts take 
part in the healing repair process through SOX9 and 

(See figure on next page.)
Fig. 3  Fibroblast, myeloid cells and T_1 cells subtype analysis revealed cell functional differences. a, c, d UMAP visualization of fibroblasts (a)/
myeloid cells (c)/T_1 cells d from the periprosthetic tissue of patients with AL and PJI, cells are colored by subtypes. b, d, f Heatmap displayed the 
highly expressed marker genes for each fibroblast (b)/myeloid cell (d)/T_1 cell (f) subclusters. g AUCell quantification of Gene ontology term for 
Cytokine production in myeloid cells. h AUCell quantification of Gene ontology term for extracellular matrix organization in fibroblasts. i Images of 
HE and Masson staining results for AL and PJI samples
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Fig. 3  (See legend on previous page.)
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TGF-β signaling pathways, while our study indicates 
S. aureus infection could interfere with this process 
by modulating the fibroblast differentiation toward an 
inflammatory phenotype (Fig.  8). We observed down-
regulated SOX5/SOX9 levels and upregulated levels of 
TFEC/NPAS2 in the inflammatory fibroblast lineage. To 
our knowledge, TFEC is a MiT family transcription fac-
tor, its expression is highly restricted in macrophages 

with limited studies on its functions in fibroblasts (Kim 
et  al. 2021). In contrast, NPAS2 is a known transcrip-
tion factor that regulates circadian rhythms, and it 
controls CHI3L1 expression which has been reported 
by Brian et  al. taking part in neuroinflammation 
(Lananna et  al. 2020). The downregulated SOX5 and 
SOX9 are related to cartilage development and belong 
to the SOX family. It is noteworthy that the SOX4 and 

Fig. 4  Meta-analysis of human fibroblast scRNA-seq data. a Illustration of the selected scRNA-seq data from GEO publicly available database. 
scRNA-seq derived from different organs were acquired from the GEO database and integrated with the in-house generated scRNA-seq data, 
then fibroblast scRNA-seq was extracted for further meta-analysis. (b) UMAP visualization of the fibroblast, cells are colored according to cell 
meta-clusters. c Heatmap displayed the highly expressed marker genes for each fibroblast meta-clusters. d UMAP visualization of the fibroblast 
in each sample. e The heatmap shows the GSEA enrichment result for each of the fibroblast cell meta-clusters. GO:BP databases were used in this 
analysis. f GSEA results shows three GO terms (ossification, collagen trimer, collagen fibril organization) are enriched in the fibroblast meta-cluster 2
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Fig. 5  In-depth fibroblast trajectory analysis reveals a bipolar mode of differentiation. a UMAP visualization of the fibroblast, cells are colored 
according to CTHRC1 expression level. b Pseudotime trajectory analysis shows fibroblasts differentiation, cells are colored by pseudotime. c 
Trajectory plots show fibroblasts differentiation in AL and PJI groups, cells are colored by cell states. d Stacked bar plot showing proportions of each 
cell state in AL and PJI groups. e UMAP visualization of the fibroblast, cells are colored according to subclusters. f Fibroblast subclusters are projected 
to pseudotime trajectory, cells are colored by subclusters. g Heatmap revealed pseudotime-dependent differentially expressed gene clusters for cell 
fate1, cell fate2, and pre-branched cells. h Bar plots show the enrichment result of gene ontology and KEGG pathway for each of the gene clusters 
identified in (g), both are colored with log10qvalues

Fig. 6  Identification for both pseudotime-dependent and disease-dependent regulators. a Workflow for identification of 11 key regulators. SCENIC 
analysis result in 337 regulons with significant differences between PJI and AL groups then were intersected with genes critical for fibroblast 
differentiation (1348 genes identified during pseudotime analysis), resulting in 45 transcription factors. We further removed 34 transcription 
regulators whose expression levels were not consistent among individuals with the same diagnosis. b SCENIC analysis result for the selected 
eleven regulons visualized with heatmap. c Heatmap shows the eleven transcription factor expression changes along pseudotime differentiation. 
Immunofluorescent assays display NPAS2 d SOX5 e expression in the AL and PJI groups, sections were labeled with anti-collagen III (green) which 
shows the distribution of collagen

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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SOX11-mediated TGF-β pathway was also found to 
be involved in the fibrotic process in the VML mouse 
model (Cherry et al. 2021). Combining our study with 
previous research, the SOX family could be critical in 
promoting healing repair and osteointegration, and 
therefore a worthwhile focus for future studies.

In this study, we noticed the inflammatory fibro-
blasts mainly presented in PJI samples but also existed, 
though at a relatively low proportion, in AL speci-
mens. We speculated the activation of inflammatory 
fibroblasts in a sterile environment may contribute to 
osteolysis. The prevention of excessive inflammatory 
fibroblast differentiation might be a potential treatment 
for AL. We then found forskolin as a fibroblast differen-
tiation-regulating compound. Forskolin is an adenosine 
acid cyclase agonist (C22H34O7) and has been applied 
in clinical practice with several diseases (e.g., glau-
coma, hypertension, and asthma). The forskolin deriva-
tive (NKH477) has also been approved in Japan years 
ago for the treatment of heart failure (Ju et al. 2021). It 

can be a promising therapy once its function has been 
experimentally verified.

This research only studied PJI caused by S. aureus due 
to its high prevalence. However, other pathogens also 
cause a large portion of PJI. Apart from S. aureus, the 
other commonly isolated pathogen for PJI was CoNS 
(41%) including S. epidermis (~ 30%) and S. lugdun-
ensis(4%) (Patel 2023), It is reported that S. lugdunen-
sis could  cause an array of clinical infections like that 
of S. aureus  (Cronin et  al. 2022). However, S. epidermis 
(~ 30%) is less virulent and relies primarily on biofilm to 
survive in the host (Lu et al. 2022). Other less frequently 
isolated pathogens include Streptococcus species (14%), 
Enterococcus species (8%), and Cutibacterium species 
(8%). Although many differences exist in pathogenicity 
among pathogens, several clinical retrospective studies 
found the outcome of PJI was similar for different patho-
gens (Renz et al. 2022; Trobos et al. 2022). Therefore, we 
hope our research could also enrich the understanding of 
PJI caused by other pathogens.

Fig. 7  CMap analysis screening for potential fibroblast differentiation regulators. a Scatter plot showing differentially expressed genes between PJI 
and AL group. The most significant hits are highlighted with color rectangles. b Lolipop displays the top ten upregulated and downregulated genes 
in the PJI group. c The heatmap shows correlation scores for each compound (columns) when treated to a specific cell line (rows). The bar plot 
displays the average scores for each tested compound
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At last, our study has some limitations. First, the 
research finding cannot reflect the conditions of the 
average population because of the small sample size. 
Secondly, our analysis did not distinguish between 
locations (knee/hip joints) of tissue retrieval. Although 
we did not observe significant differences in cell com-
position between samples from different locations, 
it is necessary to take this factor into account while 

analyzing. Lastly, most of our research findings are 
based on bioinformatic analysis which requires further 
validation using biological experiments. In addition, 
besides investigating the molecular changes between 
the AL and PJI group, studying the morphological char-
acteristic through techniques such as SEM and TEM 
would also be interesting in our future studies.

Fig. 8  Illustration of the bipolar differentiation of fibroblast in the bone-implant interface. Periprosthetic joint infection with S. aureus could 
induce inflammatory fibroblast differentiation through up-regulation of NPAS2 and TFEC, thus inducing immune cell migration and impairing the 
extracellular matrix deposition. An aseptic environment contains less inflammatory fibroblast and more matrix-producing fibroblast, resulting in 
more collagen deposition and promotion of ossification
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Conclusions
Our study found fibroblast in the bone-implant inter-
face expresses a high level of CTHRC1 and uncovered a 
bipolar mode of fibroblast differentiation. Most impor-
tantly, we identified key transcriptional regulators that 
determine the fate of fibroblast and demonstrated that S. 
aureus infection can alter fibroblast phenotype by upreg-
ulating NPAS2 and TFEC transcriptional regulators. We 
suggested the differentially regulated TFs could lead to 
significant differences in extracellular structure between 
PJI and AL groups. Our study could provide deeper 
insight into the importance of fibroblast fate regulation 
on S. aureus orthopedic IAI.

Materials and methods
Study subjects
Five patients requiring joint prostheses revision were 
involved in this study. The criteria of the Musculoskeletal 
Infection Society were used to define PJI (3 cases) and 
aseptic failure (2 cases). All antibiotics were discontinued 
for at least two weeks before the surgery. Patients with 
S.aureus infection were first diagnosed with metagen-
omic next-generation sequencing (mNGS) on prosthetic 
sonicate fluid as described previously (He et al. 2021) and 
later confirmed by bacterial culture after surgery. Written 
informed consent was provided by all participants. All 
procedures performed on patient samples were following 
the ethical standards of the ethics committee of Shang-
hai Sixth People’s Hospital. The clinical characteristic of 
patients is summarized in Additional file 1: Table S1.

Sample processing and single‑cell suspension preparation
Each sample(~ 1cm3) at the bone-implant interface was 
collected during the revision surgery, cut into small 
pieces (~ 1mm3) and washed twice with HBSS contain-
ing 1% FBS and 2  mM EDTA. The tissues were then 
enzymatically digested in 4 mg/mL collagenase III, with 
constant shaking for 45  min in a water bath at 37  °C. 
The enzymatic hydrolyzate was then filtered through a 
70 μm cell strainer and centrifuged at 300 g/5 min. After 
the supernatant was discarded, red blood cell lysis solu-
tion (#C3702, Beyotime) was used to resuspend the pre-
cipitates (#C3702, Beyotime) and incubated for 5  min, 
washed twice with HBSS and cell viability was assessed 
using trypan blue staining. Samples with > 90% viable 
cells were used for downstream processing.

Single‑cell RNA sequencing
Single-cell suspensions at concentrations of 800–1000 
cells/μL were loaded onto a Chromium single-cell instru-
ment (10 × Genomics, Pleasanton, CA, USA) for the 

generation of single-cell bead-in-emulsion. cDNA library 
construction was prepared using 10 × Chromium Sin-
gle-cell 3’ library kits according to the manufacturer’s 
protocol. Each sample was processed separately and all 
libraries were sequenced with Novaseq 6000 (Illumina, 
San Diego, CA).

Data pre‑processing and quality control
Raw sequenced data obtained from the previous process 
were demultiplexed and mapped to the human reference 
genome (GRCh38) using Cell Ranger (v5.0) for the gen-
eration of gene expression matrices. The resulting expres-
sion matrices were further processed for quality control 
individually in R (v4.1.2) using Seurat (v4.1.0) (Hao et al. 
2021) with the following criteria: (1) Genes expressed 
in fewer than three cells were removed. (2) Cells pos-
sessing > 6000 unique feature counts were removed. (3) 
Cells with unique feature counts < 600 were removed to 
exclude low-quality cells or empty droplets. (4) Cells hav-
ing > 25% mitochondrial counts. (5) Doublets identified 
by DoubletFinder (v2.0.3) (McGinnis et  al. 2019) were 
also excluded (the doublet rate was set to 0.054).

Normalization, integration, dimensionality reduction, 
unsupervised clustering, and cell‑type annotation
Feature counts for each cell were normalized to and log-
transformed using the “NormalizaData” function with 
the default method. Two thousand highly variable genes 
(HVGs) were identified with the “FindVariableFeatures” 
function. Then, expression matrices were integrated to 
correct for batch effect using the method provided by 
Stuart et al. (2019). The expression levels of HVGs were 
scaled before performing PCA in the variable gene space. 
Next, 30 principal components were used for subsequent 
clustering (resolution = 0.1) and UMAP dimensionality 
reduction. All the functions involved in this section are 
provided by the R package Seurat (v4.1.0).

Marker genes/Differentially expressed genes (DEGs) 
detection
To obtain the marker genes in a cluster of interest, the 
expression in all other cells was set for comparison. We 
used Wilcoxon’s test for statistical analysis. Genes whose 
log fold change was > 0.5 and q-value < 0.05 with expres-
sion in > 30% of that cluster were defined as marker genes.

To obtain the DEG list between the two groups, we 
used the default Wilcoxon’s test implemented in the 
“FindMarkers” function from Seurat. DEGs were defined 
as genes whose log fold change was > 1.5 with a q-value 
(FDR) < 0.001.
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Gene set enrichment via AUCell algorithm
To explore the gene set enrichment scores between sam-
ples, well-studied gene sets from GO biological processes 
were selected and considered as input for AUCell (Aibar 
et al. 2017) quantification. The gene sets and their mem-
ber genes could be obtained from the msigdb database 
and gene ontology database.

Fibroblast pseudotime trajectory analysis
The pseudotime trajectory analysis was performed using 
the R package monocle2 (Qiu et  al. 2017a, b; Trapnell 
et al. 2014) (v2.22.0). Two thousand highly variable genes 
were detected among fibroblasts by Seurat using the ’Var-
iableFeatures’ function for pseudotime trajectory build-
ing. Pseudotime states of single cells were determined 
using the ’orderCells’ function with default parameters 
and projected onto a trajectory tree after dimensional 
reduction via ’DDRTree’ method. The pseudotemporal 
dependent gene expression patterns were analyzed using 
the ’BEAM’ function, genes were divided into three clus-
ters (genesets1–3) according to their expression mode.

Single‑cell regulatory network inference and clustering 
(SCENIC)
We down-sampled the fibroblasts derived from the 
AL group to 1500 cells, in order to mitigate the effects 
of over-representation compared with those from the 
PJI group. The SCENIC analysis was performed with a 
standard workflow provided using pySCENIC (Sande 
et  al. 2020). Briefly, the co-expression modules are first 
inferred with the GRNBoost2 program. Then, indirect 
targets are pruned using cis Target. Two databases con-
taining DNA motif information were downloaded from 
the cis Target database and used during analysis (Data-
base1: https://​resou​rces.​aerts​lab.​org/​cista​rget/​datab​ases/​
homo_​sapie​ns/​hg38/​refseq_​r80/​mc9nr/​gene_​based/​
hg38__​refseq-​r80__​10kb_​up_​and_​down_​tss.​mc9nr.​feath​
er; Database2: https://​resou​rces.​aerts​lab.​org/​cista​rget/​
datab​ases/​homo_​sapie​ns/​hg38/​refseq_​r80/​mc9nr/​gene_​
based/​hg38__​refseq-​r80__​500bp_​up_​and_​100bp_​down_​
tss.​mc9nr.​feath​er). Last, the activity of these regulons 
was quantified via AUCell enrichment method.

Inference of cell–cell communication
Cellchat (Jin et al. 1088) (v1.1.3) method was applied for 
cell–cell communication inference. All cell types in AL 
and PJI groups were preprocessed separately and merged 
into a single object according to the instructions from the 
developers. The differential strengths of cell interactions 
were determined using the "netVisual_diffInteraction" 
function and "netVisual_heatmap". PCA plots for the 
major sources and target cell types in each group were 
drawn using the "netAnalysis_signalingRole_scatter" 

function. The comparison of the overall information flow 
of each signaling pathway was plotted with the "rankNet" 
function. The dysfunctional ligand-receptor pairs were 
calculated by comparing the communication probabili-
ties with the "netVisual_bubble" function.

Fibroblast scRNA‑seq meta‑analysis
The meta-analysis procedure was done as described by 
Buechler et al. (2021), Briefly, publicly available scRNA-
seq data were acquired by searching the GEO database. 
Detailed information on the datasets involved in this 
study was listed in Additional file 10: Table S4. All of the 
scRNA-seq data were downloaded and proceeded with 
a quality control process to remove doublet cells, empty 
droplets, and dead cells. Individual expression matrices 
were integrated and batch effects were removed using 
the widely used harmony method (Korsunsky et  al. 
2019). The subsequent analysis procedures including cell 
and marker genes identification were done as described 
above.

Connectivity map (CMap) analysis
The connectivity map analysis (Lin et al. 2020) was con-
ducted online. Differentially expressed genes in infected 
fibroblasts were compared with those of the aseptic 
group; (log2Foldchange ≥ 1.5) was considered as input 
for CMap analysis. The generated hit compounds were 
ranked according to their enrichment scores and the 
top 70 hit compounds were illustrated as a heatmap and 
barplot.

Hematoxylin–eosin and Masson staining
Fresh tissues collected during the surgery were fixed 
with 10% formalin for over 24  h and embedded in par-
affin. Tissue Sections (5  μm) were deparaffinized with 
xylene and washed with 100% ethanol, then rehydrated 
through ethanol gradients (95%, 80%, 70%). Hematoxy-
lin–eosin staining was performed according to routine 
protocols. Briefly, sections were stained with hematoxylin 
solution for 10 min, immersed in 1% acid ethanol for 5 s, 
then washed with distilled water. After being stained with 
eosin solution for 3  min, the slides were washed with 
running water for 1  h. Masson staining was performed 
with the ready-to-use kit following the manufacturer’s 
instructions (G1340, Solarbio, Beijing, China).

Immunofluorescence assay
Tissue sections were prepared as described in the pre-
vious section. After deparaffinization and rehydration 
through ethanol gradients (95%, 80%, 70%), sections 
underwent an antigen repair process in sodium citrate 
buffer using microwave thermal repair and endogenous 
peroxidase blocking in 0.3% hydrogen peroxide. After 
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nonspecific reactions were blocked with 5% goat serum 
at 20℃ for 10  min. Sections were first incubated with 
anti-COLIII primary antibody (GB111629, Servicebio, 
Wuhan China) overnight at 4  °C, then incubated with 
horseradish peroxidase-labeled goat anti-rabbit second-
ary antibody, and fluorescent dye was ligated to it accord-
ing to the manufacturer’s instructions (abs50012, Absin, 
Shanghai, China). After washing with PBST 3 times, sec-
tions were further incubated with the second primary 
antibody (anti-SOX5 (A6985, Abclonal, Wuhan, China), 
anti-NFATC2 (A3107, Abclonal), anti-NPAS2 (A16930, 
Abclonal)) at room temperature for 1 h. The procedures 
were repeated starting from the second antibody incuba-
tion. After all the procedures were completed, the slides 
were washed in PBST, counterstained with DAPI, and 
sealed with anti-fluorescence quenching sealing tablets. 
The stained tissue sections were examined using a Leica 
DMI8 microscope (Leica, Germany).
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