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Abstract 

Background:  The main task of medical entity disambiguation is to link mentions, such 
as diseases, drugs, or complications, to standard entities in the target knowledge base. 
To our knowledge, models based on Bidirectional Encoder Representations from Trans-
formers (BERT) have achieved good results in this task. Unfortunately, these models 
only consider text in the current document, fail to capture dependencies with other 
documents, and lack sufficient mining of hidden information in contextual texts.

Results:  We propose B-LBConA, which is based on Bio-LinkBERT and context-aware 
mechanism. Specifically, B-LBConA first utilizes Bio-LinkBERT, which is capable of learn-
ing cross-document dependencies, to obtain embedding representations of mentions 
and candidate entities. Then, cross-attention is used to capture the interaction informa-
tion of mention-to-entity and entity-to-mention. Finally, B-LBConA incorporates dis-
ambiguation clues about the relevance between the mention context and candidate 
entities via the context-aware mechanism.

Conclusions:  Experiment results on three publicly available datasets, NCBI, ADR and 
ShARe/CLEF, show that B-LBConA achieves a signifcantly more accurate performance 
compared with existing models.

Keywords:  Medical entity disambiguation, Candidate ranking, Bio-LinkBERT, Cross-
attention, ELMo

Introduction
In recent years, with the development of medical technology, the volume of medi-
cal texts and medical knowledge bases have grown rapidly. It is critical to leverage the 
wealth of knowledge contained in these records to provide high-quality information to 
facilitate clinical decision-making [1]. However, many different medical concepts may 
have very similar mentions, and failure to disambiguate them will lead to a misinterpre-
tation of the entire context, which will pose a great risk to healthcare-related decisions 
[2]. Therefore, medical entity disambiguation is key to properly utilizing such knowl-
edge bases. Medical entity disambiguation is the task of linking a mention in a medical 
text to its corresponding entity in a medical knowledge base. Because the same medical 
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entity may have more than one name, the text representation of the entity can vary due 
to the problems of synonyms, abbreviations, and colloquial terms. For example, “cop-
per toxicosis” is also written as “ct”. Linking the mention “ct” to its corresponding entity 
”copper toxicosis” is an instance of medical entity disambiguation. Medical entity disam-
biguation has a wide range of applications in research, such as biomedical question and 
answer [3], diagnosis and medication decision-making, predictive modeling [4], health 
analysis, information retrieval, and information extraction [5].

Based on deep learning methods [6], researchers have proposed some medical entity 
disambiguation models. For example, medical entity disambiguation has been trans-
formed into an entity ranking problem using convolutional neural networks (CNNs) [7]. 
Recently, the introduction of BERT [8] has improved the performance of many natural 
language processing (NLP) tasks, including in the medical field [9, 10]. Medical entity 
disambiguation methods based on BERT models have achieved state-of-the-art results 
on many benchmark medical datasets [11]. However, the traditional entity disambigua-
tion models based on BERT (such as PubMedBERT [12]) only model the current single 
document. Although word embedding offers contextual knowledge, it cannot capture 
the dependencies and rich knowledge among documents, nor can it perform multi-hop 
inference. Meanwhile, medical entity disambiguation has a non-linkability (NIL) prob-
lem, in which some of the medical mentions lack corresponding entities in the knowl-
edge base. The above challenges will significantly increase the difficulty of medical entity 
disambiguation and may affect the ultimate value of the medical knowledge bases. 
Improving the performance and scalability of the method has important practical sig-
nificance for medical entity disambiguation [13].

In this study, we propose a model based on Bio-LinkBERT [14] and context-aware 
mechanism-B-LBConA, where Bio-LinkBERT encodes mentions and entities by cap-
turing the dependencies among documents, the cross-attention mechanism models the 
interaction information between mentions and entities, and ELMo encodes the context 
to obtain the rich disambiguation knowledge implicit in the context. Our main contribu-
tions are summarized as follows.

•	 Encoding mentions and entities using Bio-LinkBERT while adding character-level 
information to overcome the out-of-vocabulary problem.

•	 Modeling the relationships between mentions and entities through the cross-atten-
tion mechanism, and making full use of the interaction information between them.

•	 Encoding the context of mentions using ELMo, which captures lexical information, 
and computing the context score using a self-attention mechanism to obtain contex-
tual cues about disambiguation.

•	 Showing that the model proposed in this paper outperforms existing models, includ-
ing the traditional BERT-based model, through experiments on three publicly avail-
able datasets.

The rest of the article is organized as follows. Section “Related work” discusses related 
work on medical entity disambiguation. Section “Methodology” explains our approach 
and details the general structure of each module. Section “Experiments” presents an 
experimental validation of the proposed approach and provides an in-depth analysis of 
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the results. Finally, Section “Conclusion” summarizes our conclusions and delineates 
directions for further work.

Related work
In traditional entity disambiguation tasks, a mention needs to be accurately linked to 
a real entity in a common knowledge base that provides various types of information 
(such as entity name, entity description, entity attributes, or entity type). However, 
medical knowledge bases have little available information besides entity name. There-
fore, although some models perform well in traditional entity disambiguation tasks, 
it is difficult to apply these models to professional fields that cannot provide extensive 
knowledge.

Rule‑based entity disambiguation methods

Early studies of medical entity disambiguation used manually defined rules to simulate 
text coherence between mentions and entities. The disambiguation task was typically 
performed by specifying some order or weight combination of these rules to calculate 
string similarities between the mentions and entities. Kang et al. [6] proposed an NLP 
module containing five rules to improve the regularity of medical texts. Souza et al. [15] 
used ten rules of different priorities to measure the similarities between mentions and 
entities and obtained desirable experimental results on the National Center for Biotech-
nology Information (NCBI) dataset.

Rule-based methods usually have a very high accuracy rate because when defining 
rules manually, we know the correct entity and always adopt the rule that tends more 
towards the correct entity. However, these methods have the disadvantage of very low 
recall, which means that the correct entity is rarely present in the candidate set.

Machine learning‑based entity disambiguation methods

To avoid manual rules, machine learning methods automatically learn the similarities 
between mentions and entities [16]. DNorm modeled mentions and entities using a 
spatial vector model and evaluated their similarities via a similarity matrix. UWM [17] 
performed entity disambiguation by learning the edit distances between variations of 
medical mentions in UMLS for diseases, whereas TaggerOne [18] used semi-Markov 
models, and other methods used feature-based approaches. All of the above methods 
have achieved good results on the NCBI dataset.

The machine learning based methods have higher recall than the rule-based meth-
ods, but they cannot distinguish similar words using semantic information [19] and 
they require the use of complex feature engineering for computation in order to achieve 
higher accuracy rate.

Deep learning‑based entity disambiguation methods

Zhu et  al. [20] proposed a model that performed entity disambiguation using seman-
tic information of mentions and entities. Vashishth et al. [21] used type information to 
improve entity disambiguation. Li et al. [7] introduced entity disambiguation architec-
tures with pre-trained word embeddings for CNNs. The above approaches only allow for 
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independent representation of each word [19], and the models do not generalize well to 
related words.

Shahbazi et al. [22] and Broscheit [23] proposed entity disambiguation models for con-
textual word embeddings based on ELMo and BERT. These models used the contextual 
word embeddings of words around a mention to predict the target entity. Recently, Ji 
et al. [11] fine-tuned the BERT model, turning the medical entity disambiguation into 
a sentence pair classification task, and achieved better results on medical entity dis-
ambiguation datasets. Based on the BERT model, Peng et al. [24] proposed BlueBERT, 
which was initialized with BERT and further trained on biomedical corpora of Pub-
Med abstracted and clinical notes. Rohanian et al. [25] proposed BioTinyBERT, which 
has fewer word vector dimensions, hidden layers, and FFN layers than BERT. Although 
BioTinyBERT is lighter and has faster inference speed, it cannot fully capture the rich 
semantic information in the transformer. Liu et  al. [26] introduced SAPBERT, which 
uses the metric learning objective function to self-align the representation space of bio-
medical entities. Sung et al. [27] introduced BioSyn, which uses synonym marginaliza-
tion to maximize the probability of all synonym representations in candidates. However, 
the existing BERT-based approaches do not capture the relationships among documents 
and are not efficient in practice [13].

Other works have used entity textual information, such as entity descriptions, to gen-
erate entity representations. Logeswaran et al. [28] introduced the entity linking dataset 
in Zero-shot, with more focus on entity descriptions. Yao et al. [29] addressed remote 
modeling in entity descriptions by repeating location embeddings. However, as stated 
earlier, there is no information beyond entity name available in medical domain. In addi-
tion, the BERT-based model proposed by Logeswaran et al. [28] cannot fully capture the 
evidence of consistency between the mention and the target entity due to the limitation 
of BERT input length [30]. To address the above problems, we propose the B-LBConA 
model.

Methodology
In this section, we will describe the key modules that make up the B-LBConA model and 
how they process input.

Task Definition

Given a set of mention phrases (mentions with context) from a medical text document 
containing N mentions {M1,M2, . . . ,MN } , a knowledge base containing M entities 
{E1,E2, . . . ,EM} , and a training set that has correctly linked all mentions to entities, our 
aim is to link each mention in the test set to the correct entity in the knowledge base. We 
assume that there is no available information in the knowledge base other than the entity 
name. If there is no entity corresponding to the current mention in the knowledge base, 
it will be linked to NIL, indicating that the mention cannot be linked.

Model Architecture

At a higher level, the B-LBConA model is divided into three modules: (1) data pre-pro-
cessing, (2) candidate generation, and (3) candidate ranking. The model architecture is 
shown in Fig. 1.
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Pre-processing: All mentions in the mention phrases and entity names in the knowl-
edge base are pre-processed to unify the format for subsequent operations.

Candidate generation: For each mention, a candidate entity set with k candidate enti-
ties {C1,C2, . . . ,Ck} is generated from the knowledge base.

Candidate ranking: Each candidate entity in the candidate entity set is scored by the 
candidate ranking module, and the candidate entity with the highest score is finally out-
put as the target entity.

Pre‑processing

Owing to the strong professionalism of the data, the unprocessed raw data may be 
very chaotic and have an incomplete structure, so we first pre-process the data to 
avoid unpredictable influence on the following work. The pre-processing methods are 
extended abbreviations, entity segmentation, number conversion and other processing.

Candidate generation

Owing to the particularity of the medical field, a mention may involve a large number 
of entities, but there is no available alias table. Therefore, we use the candidate genera-
tion module to obtain the candidate entity set {C1,C2, ...,Ck} of mention M so as to con-
trol the number of candidate entities. This module is crucial for the performance of the 
medical entity disambiguation model. In addition, the entity disambiguation model ulti-
mately generates results from the candidate set, so we need to recall as many candidate 
entities as possible to ensure that the target entity matched to the mention is in the can-
didate set. To achieve this goal, we construct the candidate set from two aspects: exact 
and fuzzy matching, and similarity calculation.

Exact and Fuzzy Matching We select candidate entities based on entity names that 
exactly match all the letters with the mention or share multiple common charac-
ters with the mention. In addition, we also consider information about other mention 
phrases. Specifically, if the current mention is an abbreviation or substring of a mention 
in another mention phrase, we merge the candidates of the original mention and the 
extended mention. For example, the mention ”eye movement abnormalities” contains 
the mention ”abnormalities” as a substring, so we treat ”eye movement abnormalities” 
as an extended form of ”abnormalities” and add its candidates to the candidate set of 
”abnormalities”.

Similarity Calculation The Levenshtein ratio (LevRatio) and cosine similarity are used 
to calculate the similarity between the mention and the candidates, and then the top k 
candidates with the highest scores are finally selected as candidates. Since entities may 
have multiple names, we calculate the similarity between a mention and all names of 
entities and take the maximum score as the score of mention M and entity E. Here, M 
and E are split into tokens: M = {m1,m2, . . . ,m|a|} , E = {e1, e2, . . . , e|b|} . LevRatio is 
calculated as

Fig. 1  The overview of the proposed B-LBConA model
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where ldist indicates the class edit distance. Its value reflects the similarity of the string, 
and the top 100 entity names with the highest scores are selected.

Considering the word order problem, we calculate the aligned cosine similarity by 
simultaneously calculating the similarity of the mention token to the entity name token 
and the similarity of the entity name token to the mention token.

Finally, the similarity scores of mention and candidate names are calculated as the aver-
age of aligned cosine similarity.

We create Cm = {< id1,C1, score1 >, ..., < idk ,Ck , scorek >} for each mention m, where 
idi is the candidate entity number, Ci is the candidate entity name, and scorei is the can-
didate entity similarity score. If there is a candidate entity with score = 1 , it means that 
this candidate is the target entity, and other candidates with score < 1 can be deleted to 
improve the efficiency of the model. Next, we use the candidate ranking module on the 
candidate set to output the final disambiguation results.

Candidate ranking

Given a mention M and its set of candidate entities, the candidate ranking module cal-
culates the scores of mention-candidate pairs and returns the highest scored candidate 
entity. The overall architecture of the candidate ranking module proposed in this paper 
is shown in Fig.  2, and in this section, we describe this candidate ranking module in 
detail. It mainly consists of an embedding layer, a cross-attention layer, a bidirectional 
GRU (Bi GRU) coding layer, an ELMo contextual coding layer, and an output layer. The 
candidate ranking module performs the following steps: 

(1)	 Mentions and candidate entities are converted into word vectors using Bio-Link-
BERT, and the word vectors are linked with character-level features of each word 
obtained using bidirectional long-short term memory (Bi LSTM).

(2)	 The cross-attention layer is used to capture the interaction between mentions and 
entities.

(3)	 The vectors are sent to the Bi GRU layer for encoding to obtain the final representa-
tions of mentions and candidate entities.

(4)	 A context score is calculated by self-attention to provide clues about which candi-
date entity to select.

(5)	 A two-layer fully connected neural network is used to calculate the final score.

(1)(b)LevRatio =
(|a| + |b|)− ldist

|a| + |b|
,

(2)(b)AlignCos(mi,E) = maxej∈E cos(mi, ej)

(3)(b)AlignCos(ej ,M) = maxmi∈M cos(ej ,mi)

(4)
(b)Sim(M,C) =

|a|

i=1

AlignCos(mi,E)+
|b|

j=1

AlignCos(ej ,M)

|a| + |b|
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Exact Matching At the candidate generation phase, there is a special case where 
the candidate entity can completely match the mention with score = 1 . Such a men-
tion can be linked directly to the target entity in the knowledge base and does not 
need to be computed in the candidate ranking module. In contrast, for entities with 
score < 1 in the candidate set, the results need to be output using the candidate rank-
ing module.

Embedding Layer The first layer of the candidate ranking module is the embedding 
layer, which concatenates the word embedding with the character embedding. In the 
first step, the mention token {wm

i }
|a|
i=1 and the candidate entity token {wc

j }
|b|
j=1 are repre-

sented using Bio-LinkBERT to obtain word embeddings {vmi }
|a|
i=1 and {vcj }

|b|
j=1 . However, 

not all words appear in the vocabulary, so we use Bi LSTM to capture character-level 
features to overcome the problem of out-of-vocabulary: the Bi LSTM is run on the 
character sequence of each word of the mention and candidate entities to obtain the 
character embeddings {cmi }

|a|
i=1 and {ccj }

|b
j=1 , and then the character embeddings are 

concatenated with the word embeddings. The final word representations {umi }
|a|
i=1 and 

{ucj }
|b|
j=1 are obtained with word-level and character-level information.

Cross-Attention Layer In this layer, we take the word representations of the men-
tion and candidate entities generated by the embedding layer as inputs and compute 

Fig. 2  The architecture of the candidate ranking module, which takes the mention with context and entity 
candidates as inputs
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their interactions through the cross-attention module so that we can learn the rela-
tionships between text features to obtain more accurate results. As proposed in Seo 
et  al. [31], we use a bidirectional attention mechanism: from mention to candidate 
and from candidate to mention. The two attentions are obtained from a shared simi-
larity matrix S ∈ R

m×n , which is computed from {umi }
|a|
i=1 and {ucj }

|b|
j=1 . The meaning of 

the elements sij in the matrix is the similarity between the token i of the mention and 
the token j of the entity. As shown in Eq. 5, Wa is a trainable weight vector and ⊙ is a 
dot product.

We can use S to obtain attention in both directions. In Eq. 7, the maximum function is 
calculated by column.

Mention-to-candidate Attention (M2CAtt):

Candidate-to-mention Attention (C2MAtt):

Bi GRU Encoding Layer To obtain word representations containing more information, 
we encode the representations of the mention and candidate entities that passed through 
the cross-attention layer using a Bi GRU encoder to obtain rmi  and rcj :

The GRU is a recurrent neural network capable of capturing sequential order informa-
tion. GRU can only encode in one direction, so we use a Bi GRU network consisting of a 
forward GRU and a backward GRU. The Bi GRU concatenates the two representations 
obtained from sequential and reverse computations to obtain the output. Finally, the 
representations of the mention and candidate entities are concatenated to obtain output.

Contextual Coding Layer The context can provide disambiguation cues. In this layer, we 
evaluate the relevance of the mention context to the candidate entities by calculating the 
context score. We first encode the candidate entities and the mention context using the 
ELMo model with two Bi LSTM layers to obtain the candidate entities representation ctxE 
and the mention context representation ctx′M . To select important keywords and ignore the 
effect of noise, we use a self-attention mechanism to assign a weight to each token in the 
context. Then we use the weighted sum to obtain the mention context representation ctxM . 
We compute the context score as the dot product of ctxM and ctxE:

(5)(b)sij = WT
a
· [umi ;u

c
j ;u

m
i ⊙ ucj ].

(6)
(b)Sα = softmax(row(S)),

attmi = umi ⊙ Sα .

(7)
(b)Sβ = softmax(maxcol(S)),

attcj = ucj ⊙ Sβ .

(8)

(b)
−→
rmi =

−−→
GRU(

−→
rmi−1, att

m
i ),

←−
rmi =

←−−
GRU(

←−
rmi+1, att

m
i ),

−→
rcj =

−−→
GRU(

−→
rcj−1, att

c
j ),

←−
rcj =

←−−
GRU(

←−
rcj+1, att

c
j ),

rmi = [
−→
rmi ;

←−
rmi ], rcj = [

−→
rcj ;

←−
rcj ].

(9)(b)ctxscore(M,E) = ctxM ⊙ ctxE .
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Finally, we concatenate the context score into the vector output:

Output Layer We use two layers of fully connected neural networks to calculate the final 
output:

In Eq. 11, W1 and W2 are the learnable weight matrices, b1 and b2 are the bias values. The 
ReLU activation function is used in the first layer and the sigmoid activation function is 
used in the second layer.

NIL problem

Owing to the incompleteness of the knowledge base, a corresponding target entity 
cannot be found for every mention. For such mentions, entity disambiguation models 
usually link them to a special null entity (NIL) and cluster these null entities. We use 
a traditional threshold approach, where if the highest ranked candidate entity scores 
below a predefined threshold τ , the result is NIL. The threshold τ is a value learned from 
the training set. For datasets that do not contain the NIL problem, we set the threshold 
τ to 0.

Optimization

In this study, positive samples are randomly selected in the given training set, and nega-
tive samples are selected among the candidate entities (excluding the target entity) gen-
erated in the candidate generation phase. This makes the negative samples very similar 
to the positive samples, forcing the model to disambiguate entities at a finer granularity. 
We use the hinge loss as the loss function, which is commonly used in maximum-mar-
gin algorithms and is specific to binary classification problems. The loss function of the 
mention M and the candidate set C is defined in Eq. 12:

where E+ denotes positive samples, E− denotes negative samples, and µ is the margin 
hyperparameter. The purpose of the hinge loss function is to separate positive and nega-
tive sample pairs at a certain margin by optimizing the embedding space to ensure that 
the positive sample pairs are close enough to each other and the negative sample pairs 
are far enough away from each other.

Experiments
Datasets

In this study, the overall performance of the B-LBConA model is evaluated on three 
publicly available medical entity disambiguation datasets: the NCBI-disease corpus, the 
TAC 2017 Adverse Reaction Extraction (ADR) dataset, and the ShARe/CLEF corpus. In 
the following, we present some details of these three datasets.

(10)(b)output = [output, ctxscore].

(11)
(b)�

′

= ReLU(W1 · output + b1),

�(M,E) = sigmoid(W2 ·�
′

+ b2).

(12)(b)L(M,C) = max(0,�(M,E+)−�(M,E−)+ µ),
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NCBI This dataset consists of 793 PubMed abstracts, 693 of which are used for train-
ing and development, and 100 for testing. The disease terms in the abstracts are manu-
ally annotated and linked to the MEDIC disease tables. In this study, we use the July 6, 
2012 version of MEDIC, which contains 7827 MeSH identifiers and 4004 OMIM identi-
fiers, and includes a total of 9664 disease concepts. Mentions without a corresponding 
entity in MEDIC are not annotated, so all mentions in this dataset have corresponding 
entity identifiers and there is no NIL problem.

ADR This dataset consists of 200 drug labels, 101 of which are used for training and 
development, and 99 for testing. The ADR in each drug label is manually mapped to the 
MedDRA 18.1 knowledge base, which contains 23,668 concepts. From Table 1, we can 
calculate that 0.7% and 0.3% of the mentions in the training set and test set are unlink-
able. This illustrates the challenge of NIL in medical entity disambiguation.

ShARe/CLEF  The ShARe/CLEF corpus, which was released for an open challenge, 
contains 298 medical reports, 199 of which are used for training and 99 for testing. The 
reference knowledge base used here is the SNOMED-CT subset of umls2012aa [32]. 
From Table 1, we can calculate that 28.2% and 32.7% of the mentions in the training set 
and test set are unlinkable.

After analyzing the dataset, we find that about 80% of the entities in the test set are 
duplicates of the entities in training set. In order to get more real results, we process the 
test sets according to the method proposed by Tutubalina et al. [33], making the inter-
section of the training set and the test set null, and obtain the refined sets without dupli-
cate data. We also conduct experiments on the refined sets. This operation is known 
as zero-shot, and the zero-shot setting demonstrates how the model maps mention to 
invisible entities (new entities) without tagged data in the domain, reflecting the gener-
alization ability of the model. Table 1 shows the statistical information of the datasets, 
including the refined set.

Evaluation metrics

Recall in Eq. 13 is the evaluation metric in the candidate entity generation phase, which 
denotes the probability that the model predicts to be correct among all correct entities. 
Recall measures the model’s ability to recognize positive examples, and the higher the 
better. Accuracy in Eq. 14 is the evaluation metric in the candidate ranking stage, and the 
higher the accuracy, the better the model effect.

Table 1  Dataset statistics

NCBI ADR ShARe/CLEF

Train set 5932 7038 5816

Test set 960 6343 5351

Refined test 206(21.4%) 1544(24.3%) 1487(2.8%)

NIL Train set 0 47 1641

Test set 0 18 1750

Refined test 0 2 536

Concepts Train set 668 1517 1034

Test set 203 1323 942

Refined test 140 857 879
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In Eqs. 13 and 14, TP denotes the number of positive samples that are correctly identi-
fied, FN denotes the number of missing positive samples, TN denotes the number of 
negative samples that are correctly identified, and ALL denotes the total number of 
samples.

Baselines

To verify the effectiveness of the proposed model, we compare B-LBConA with other 
methods proposed in recent studies on entity disambiguation: 

	 (1)	 BERT-based Ranking [11]: This method fine-tunes the BERT pre-training model 
to set medical entity disambiguation as a sentence pair classification task.

	 (2)	 Edge-weight-updating NN [34]: Entity embeddings capture more accurate infor-
mation about semantic similarity between matched entities by minimizing the 
distributions of edge weight on the Ground Truth Entity Graph and the Similar-
ity-Based Entity Graph.

	 (3)	 SciFive [35]: A T5-based model designed for biomedical literature related tasks.
	 (4)	 ED-GNN [1]: The mention in the text is represented as a query graph, and an 

effective negative sampling method is designed to improve the disambiguation 
ability of the model.

	 (5)	 D-C + OD-T [36]: A text-only model that encodes mentions and entities through 
transformers which are trained by online hard triplet mining.

	 (6)	 ResCNN [37]: Uses a residual convolutional neural network for biomedical entity 
linking.

	 (7)	 Lightweight-NN [19]: Changes between mention and entities are captured using 
an alignment layer with an attention mechanism.

	 (8)	 KRISSBERT [38]: It uses the domain ontology to generate self-supervised men-
tion examples on unlabeled text, sampling the examples as prototypes for each 
entity, and linking by mapping the test mentions to the most similar prototypes.

	 (9)	 Inter- and Intra-Attention [13]: Inter- and intra-entity attention is aggregated to 
capture relationships between mentions and entities and among themselves.

	(10)	 G-MAP [39]: It enhances domain-specific PLMs with memory representations 
built from frozen generic PLMs, without losing any generic knowledge.

Experimental setup

We implement the proposed model using Keras and train the model on a single Intel(R) 
Core(TM) i9-10900F CPU @ 2.80GHz, using less than 10Gb of RAM. Adam is used as 
the optimizer in the experiments. Other parameters are shown in Table 2.

(13)(b)Recall =
TP

TP + FN
,

(14)(b)Accuracy =
TP + TN

ALL
.
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Results

Performance comparison

In the process of generating candidate entities using the Levenshtein ratio and alignment 
similarity methods, we generate 50 candidate entities for each mention. The recall of cor-
rect entities on the NCBI, ADR, and ShARe/CLEF test sets is shown in Fig. 3. From the 
results, it can be seen that the highest recall is achieved when top k = 50, with 94.52%, 
96.73%, and 98.19% recall on NCBI, ADR, and ShARe/CLEF test sets, respectively, mak-
ing the candidate generation method used in this paper valid.

Table  3 shows the performance comparison results between B-LBConA and the 
baselines on three datasets. As the datasets are publicly available and the evaluation 
metrics are the same, the results of the baselines are taken from the original papers. 
The experimental results in Table 3 show that our model outperforms the baselines, 
with accuracies of 93.57%, 94.72%, and 94.23%, respectively. On the NCBI dataset, the 
accuracy of our model is 4.61 and 6.94 percentage points higher than the BERT-based 
Ranking model on official test and refined test. On the ADR dataset, the accuracy of 
our model is 3.07 and 4.47 percentage points higher than KRISSBERT. But on ADR’s 
refined test, our model is 0.16 percentage points lower than Edge-weight-updating 
NN, we speculate that the Edge weight updating NN optimizes the parameters of the 
baseline BERT model by minimizing the difference between the discrete distribution 
of the edge weights of the Ground Truth Entity Graph and the Similarity-Based Entity 

Table 2  Hyperparameter settings

Hyperparameter Value

Character embedding dimension 128

Context sentence length 100

Learning rate 0.001

Decay rate 0.05

Batch size 128

Dropout 0.1

Epochs 30

Hinge 0.1

Top k 50

Fig. 3  Impact of the number of top k on three datasets
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Graph. Therefore, our model can achieve better results even when facing new entities 
that have not appeared in the training set. On the ShARe/CLEF dataset, our model 
outperforms Lightweight-NN and BERT-based Ranking, suggesting that the Bio-
LinkBERT model using bidirectional transformers is more effective than traditional 
word embedding models. Our model exceeds the ResCNN by 1.17, 0.89, and 1.44 per-
centage points on the three official test sets, indicating that the attention mechanism 
is more effective. The performance results also show that our model outperforms the 
current state-of-the-art model G-MAP. Lightweight-NN [19] is a lightweight entity 
disambiguation model. Although Lightweight-NN has fewer parameters and shorter 
inference time than our model, its accuracy is 1.4 percentage points lower than our 
model in the three datasets on average.

Ablation experiments

To demonstrate the effectiveness of each layer of the candidate ranking module in the 
proposed model, we construct ablation experiments with five ablation models (w/o 
Bio-LinkBERT, w/o character feature, w/o cross-attention, w/o Bi GRU, w/o context). 
The results of the ablation experiments on the three test datasets are shown in Table 4 
and discussed as follows: 

Table 3  Performance of different models

The best performance on each dataset is marked in bold, and the second-best performance is marked in underline; “−” 
means the result is not provided

Model NCBI ADR ShARe/CLEF

test refined test test refined test test refined test

BERT-based Ranking [11] 88.96 67.44 93.17 79.83 91.09 80.47

Edge-weight-updating NN [34] 91.72 71.15 92.21 80.05 91.56 81.45
SciFive [35] 90.47 69.53 92.17 75.18 91.01 79.83

ED-GNN(GraphSAGE) [1] 92.44 72.36 92.03 78.25 89.46 76.39

D-C + OD-T [36] 92.25 - - - 90.41 -

ResCNN [37] 92.40 73.02 93.83 78.96 92.79 79.13

Lightweight-NN [19] 92.56 69.65 93.07 80.34 92.73 80.78

KRISSBERT [38] 89.93 70.88 91.65 75.42 90.41 78.92

Inter- and Intra-Attention [13] 91.28 - 93.13 - - -

G-MAP [39] 92.61 73.75 93.26 79.23 92.98 81.29

B-LBConA (our model) 93.57 74.38 94.72 79.89 94.23 80.68

Table 4  Ablation studies of our proposed model B-LBConA on test datasets

Model NCBI ADR ShARe/CLEF

w/o Bio-LinkBERT 92.45 93.97 93.00

w/o character feature 93.30 94.40 94.10

w/o cross-attention 92.77 93.58 92.78

w/o BiGRU​ 92.35 91.74 91.86

w/o context 92.64 94.56 93.34

Full model 93.57 94.72 94.23
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(a)	 Impact of Bio-LinkBERT When Bio-LinkBERT is not used for encoding, the per-
formance decreases by 1.12, 0.75, and 1.23 percentage points, respectively, indicat-
ing that Bio-LinkBERT is able to obtain cross-document dependencies for better 
encoding of mentions and entities.

(b)	 Impact of character features We find that the performance after removing character 
features decreases by approximately 0.27, 0.32, and 0.13 percentage points on the 
three datasets, suggesting that character features are able to capture morphological 
changes at a finer granularity.

(c)	 Impact of the cross-attention module The performance after removing the cross-
attention module decreases by 0.8, 1.14, and 1.45 percentage points, respectively, 
demonstrating the effectiveness of the cross-attention module in capturing infor-
mation about the interaction between mention-entities.

(d)	 Impact of Bi GRU​ With the removal of Bi GRU, the accuracy decreases by 1.22, 
2.98, and 2.37 percentage points.

(e)	 Impact of context module Removing the context module reduces the accuracy by 
0.93, 0.16, and 0.89 percentage points on the three datasets, suggesting that the use 
of mention contexts containing rich information can further filter entities’ features. 
The above ablation experiments demonstrate that all layers of the candidate ranking 
module of our model are necessary.

Comparison with other BERT‑based approaches

To address the validity of the Bio-LinkBERT, we replace the Bio-LinkBERT with other 
BERTs: BlueBERT [24], PubMedBERT, BioDistilBERT [25], BioTinyBERT [25], BioMo-
bileBERT [25], SapBERT [26] and BioSyn [27]. The results of the experiments are listed 
in Table 5, where Bio-LinkBERT shows better performance than other BERT. B-LBConA 
is 1.06 and 0.34 percentage points higher on the NCBI’s official test set and refined test 
with BioSyn(init. w/SAPBERT). On ADR dataset, the BioSyn achieved the best results 
due to the model’s use of synonym marginalization techniques to maximize the prob-
ability of all synonym representations in the top candidates object. On ShARe/CLEF 

Table 5  Comparison with other BERT variants

The bold font indicates the best performance on each dataset and the italics font indicates the second-best performance

Model Parameters NCBI ADR ShARe/CLEF

test refined test test refined test test refined test

BlueBERT(Fine-Tuned) [24] 110 M 88.13 69.73 92.87 79.36 90.66 74.92

PubMedBERT(Fine-Tuned) [12] 110 M 90.28 72.79 93.01 81.96 92.45 78.26

BioDistilBERT(Fine-Tuned) [25] 80 M 91.15 72.13 92.79 80.45 92.67 83.29
BioTinyBERT(Fine-Tuned) [25] 18 M 87.48 67.34 89.68 75.31 89.48 78.64

BioMobileBERT(Fine-Tuned) 
[25]

30 M 89.86 68.21 90.14 75.93 90.28 76.83

SAPBERT(w/o Fine-Tuned) [26] 110 M 90.02 70.41 92.37 79.52 90.89 77.47

SAPBERT(Fine-Tuned) [26] 110 M 92.34 73.25 93.42 81.64 91.37 78.59

BioSyn [27] 110 M 90.58 72.48 95.02 81.19 92.16 77.34

BioSyn(init. w/SAPBERT) [27] 110 M 92.51 74.04 94.65 82.45 93.45 79.85

Bio-LinkBERT (ours) 108 M 93.57 74.38 94.72 79.89 94.23 80.68
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dataset, we achieve the best and the second-best, respectively. BioDistilBERT is derived 
from knowledge distillation from biomedical teacher and continuous learning on Pub-
med datasets. Because the teacher model with higher precision is trained in advance, 
then the knowledge distillation of the student model with this trained teacher model will 
get a higher precision model, so BioDistilBERT obtained a relatively better performance. 
In conclusion, the medical entity disambiguation model proposed in this paper, which 
mainly uses Bio-LinkBERT, has achieved better performance than other BERTs on three 
selected benchmark datasets.

Results on data sets of different sizes

To investigate the performance of the model on different sizes of training samples, we 
sample the dataset twice. As shown in Fig. 4, the performance of the model improves as 
the number of training samples gradually increases. Even with only 20% of the training 
samples, the model achieves an accuracy of 89.50%, 92.67%, and 86.75% on the NCBI, 
ADR, and ShARe/CLEF datasets, respectively.

Results of different negative sampling methods

We replace our negative sampling method with other popular negative sampling meth-
ods to verify the effectiveness of our method. The experimental results are shown in 

Fig. 4  Effects of different data sizes on performance of our model

Table 6  Model performance with different negative sampling methods

The bold font indicates the best performance on each dataset

Method NCBI ADR ShARe/CLEF

test refined test test refined test test refined test

Random Negative Sampling [40] 78.26 52.98 75.84 50.49 80.96 60.74

Popularity-biased Negative Sampling [41] 79.32 50.30 80.21 55.21 78.39 58.23

Adversarial Negative Sampling [42] 85.66 70.76 85.43 67.38 86.52 69.79

Dynamically Negative Sampling [43] 90.47 81.13 92.03 80.67 91.65 77.18

Our sampling method 93.57 74.38 94.72 79.89 94.23 80.68
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Table 6. The experimental results show that our negative sampling method is the most 
effective and can maximize the learning ability of the model.

Error analysis

We list three representative examples of prediction error in Table  7. Based on the 
ground truth, the model’s prediction results are unsatisfactory for one of the following 
two reasons: a) one mention corresponds to multiple entities, or b) the entity name is 
part of the mention. In future work, we plan to improve the ability of B-LBConA to 
avoid these problems.

Conclusion
In this study, we propose B-LBConA, a medical entity disambiguation model based 
on Bio-LinkBERT and context-aware mechanism. Our model uses Bio-LinkBERT to 
encode mentions and entities while capturing the interaction information between 
them using the cross-attention module; the mention context is used to obtain a con-
text score, which measures the relevance of each candidate entity to the context to 
provide disambiguation cues. Extensive experiments show that our model achieves 
better results than the BERT-based entity disambiguation approach on three bench-
mark medical entity disambiguation datasets.

In future work, we plan to improve our model by (1) further improving the recall 
rate in the candidate generation stage, where disambiguation would be better facil-
itated if the target entities were more often present in the candidate entity set; (2) 
using additional information, such as previous knowledge, to further improve the 
results; and (3) designing modules that can correctly predict for the case of one men-
tion corresponding to multiple entities.

Abbreviations
BERT	� Bidirectional encoder representations from transformers
CNNs	� Convolutional neural networks
NLP	� Natural language processing
NIL	� Non-linkability
NCBI	� National center for biotechnology information
ADR	� Adverse reaction extraction
GRU​	� Gated recurrent unit
Bi GRU​	� Bidirectional GRU​
Bi LSTM	� Bidirectional long-short term memory
NER	� Named entity recognition
Ab3p	� Biomedical text abbreviation recognition tool
LevRatio	� Levenshtein ratio
CRF	� Conditional random fields

Table 7  Examples of prediction error

Mention Prediction Ground-truth

Toenail abnormalities Toenail pitting Toenail disorder

Colorectal carcinoma and adenomas Colorectal carcinoma, adeno-
matous

Colorectal adenomas

Breast/ovarian cancer and other cancers Breast cancer Breast neoplasms, 
ovarian cancer, 
cancers
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