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Abstract 

Background  Studies have not systematically compared the ability to verify performance of prognostic transcripts in 
paired bulk mononuclear cells versus viable CD34-expressing leukemic blasts from patients with acute myeloid leuke‑
mia. We hypothesized that examining the homogenous leukemic blasts will yield different biological information and 
may improve prognostic performance of expression biomarkers.

Methods  To assess the impact of cellular heterogeneity on expression biomarkers in acute myeloid leukemia, we 
systematically examined paired mononuclear cells and viable CD34-expressing leukemic blasts from SWOG diagnos‑
tic specimens. After enrichment, patients were assigned into discovery and validation cohorts based on availability of 
extracted RNA. Analyses of RNA sequencing data examined how enrichment impacted differentially expressed genes 
associated with pre-analytic variables, patient characteristics, and clinical outcomes.

Results  Blast enrichment yielded significantly different expression profiles and biological pathways associated with 
clinical characteristics (e.g., cytogenetics). Although numerous differentially expressed genes were associated with 
clinical outcomes, most lost their prognostic significance in the mononuclear cells and blasts after adjusting for age 
and ELN risk, with only 11 genes remaining significant for overall survival in both cell populations (CEP70, COMMD7, 
DNMT3B, ECE1, LNX2, NEGR1, PIK3C2B, SEMA4D, SMAD2, TAF8, ZNF444). To examine the impact of enrichment on bio‑
marker verification, these 11 candidate biomarkers were examined by quantitative RT/PCR in the validation cohort. 
After adjusting for ELN risk and age, expression of 4 genes (CEP70, DNMT3B, ECE1, and PIK3CB) remained significantly 
associated with overall survival in the blasts, while none met statistical significance in mononuclear cells.

Conclusions  This study provides insights into biological information gained/lost by examining viable CD34-express‑
ing leukemic blasts versus mononuclear cells from the same patient and shows an improved verification rate for 
expression biomarkers in blasts.
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Background
AML is one of the most common and deadly hemat-
opoietic malignancies. Like many cancers, the incidence 
of AML increases with age, such that the median age at 
diagnosis is 68 years. Patients with AML can receive a 
variety of different therapies, ranging from disease modi-
fying agents to myeloablative allogeneic transplants. 
When deciding optimal care, physicians and patients 
must consider multiple factors, including age, perfor-
mance status, and likelihood of a favorable response to 
therapy. Over the last three decades, many prognostic 
biomarkers have been identified for adult patients with 
AML. These prognostic biomarkers have been incor-
porated into the European LeukemiaNet (ELN) risk 
classification [1], which remains the gold standard for 
prognostication of patients with AML [2, 3].

ELN risk is currently determined by a combination of 
cytogenetics, selective mutations, and preceding pre-
disposition to the development of AML (i.e., history of 
myelodysplasia, etc.). Gene expression forms one of the 
major cornerstones supporting the intrinsic biology of 
leukemic cells, with transcription being regulated by 
multiple genetic and epigenetic regulators. Although 
multiple expression biomarkers and profiles have been 
shown to correlate with clinical outcome, none are cur-
rently utilized in ELN risk stratification for AML [4–18]. 
There are likely multiple reasons for the lack of expres-
sion biomarkers translating into clinical practice, ranging 
from problems with reproducibility to technical issues 
for implementing assays in clinical setting. Nevertheless, 
given the importance of transcription, it seems that tran-
script biomarkers would hold the potential promise to 
inform and improve upon ELN risk classification in the 
clinical setting – especially if we could identify means 
to make these transcript biomarkers more reliable and 
reproducible.

Current biomarker assays primarily examine either 
total nucleated cells or bulk mononuclear cells (MNCs), 
with the leukemic blast percentage varying from 20 to 
100% in AML. This inter-specimen variability alters the 
quantitative expression [19], which likely impacts results 
of analyses investigating differentially expressed genes 
(DEGs). We hypothesized that eliminating the dying, 
non-leukemic and differentiated AML blasts (CD34-) 
may provide a unique window into the biology arising 
from known clinical prognostic factors, while poten-
tially improving the prognostic performance of expres-
sion biomarkers. Therefore, we systematically examined 

the transcriptomes of paired bulk MNCs and viable leu-
kemic blasts expressing CD34 (VLBsCD34+) from diag-
nostic AML specimens (Fig. 1). We focused on patients 
with CD34+ leukemia (AMLCD34+), the most common 
immunophenotype in AML, to facilitate the enrichment 
of less differentiated VLBs (i.e., CD34+) and improve 
homogeneity of the examined cells. Furthermore, we 
included patients across a broad range of ages to examine 
the potential impact of age on the results, given that most 
current biomarker studies have been limited to younger 
patients and many of these prognostic biomarkers are 
less informative for older patients [3, 20, 21]. Analyses 
identified DEGs associated with sample source (blood vs. 
marrow), cell populations (MNCs vs. VLBsCD34+), clinical 
characteristics, and outcomes. Pathway analyses showed 
that the information derived from the transcriptome was 
dependent on the studied cell population. Adjusting for 
age and ELN risk eliminated most DEGs associated with 
prognosis in univariate analyses, allowing to focus verifi-
cation efforts on a select number of genes. Studies exam-
ining these prognostic DEGs in an independent cohort of 
patients showed a higher rate of verification using RNA 
from the VLBsCD34+ than bulk MNCs.

Methods
Patient materials
A review of SWOG Cancer Research Network leukemia 
repository inventory identified 351 out of 1042 previ-
ously untreated AML patients with pretreatment samples 
potentially containing enough cryopreserved vials for 
the proposed studies and who received intensive therapy 
with curative intent. Patients were enrolled onto proto-
cols SWOG-9031, SWOG-9333, S0106 and S0112 and 
treated as previously described [22–25]. Specimen han-
dling and cryopreservation were consistent across the tri-
als as previously described [3]. All participants provided 
written informed consent in compliance with the Decla-
ration of Helsinki, and studies were conducted with the 
approval of the Fred Hutchinson Cancer Center Institu-
tion Review Board.

Thawing, fluorescence‑activated cell sorting (FACS), 
and nucleic acid extraction
Cryopreserved samples were thawed as previously 
described [3, 19]. A portion of bulk MNCs was lysed, 
while the remainder underwent FACS to isolate 
VLBsCD34+ using forward by side scatter, DAPI staining 
and fluorescently-labeled antibodies to CD45, CD34, 
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CD38, and CD117 as previously described [3, 19]. DNA 
and RNA were extracted from the bulk MNCs and 
VLBsCD34+, quantified and assessed for quality as previ-
ously described [3, 19].

Identification of genomic mutations
Internal tandem duplications in FLT3 (FLT3-ITDs) were 
identified and censored at an upper limit of 20 as previ-
ously described [20, 26]. TruSight™ Myeloid Sequencing 
Panel (Illumina, San Diego, CA, USA) was used for DNA 
sequencing. TruSight™ platform provided inadequate cov-
erage for CEBPA and NRAS Exon 3; therefore, in-house 
targeted MiSeq assays were developed to cover these loci 
(Table S1A). See Supplemental Methods for additional 
details regarding alignment, annotation, and quality con-
trols [27–33]. All mutation data have been provided in 
Tables S1B and C. Nucleotide changes that were not classi-
fied as somatic mutations are provided in Table S1D.

RNA sequencing for transcript biomarkers
RiboErase (Roche, Wilmington, MA, USA) was utilized 
to deplete ribosomal RNA as per manufacture recom-
mendations. Transcriptome libraries were generated 
using KAPA Stranded RNA-Seq Library Preparation 
Kit (KAPA Biosystems/Roche Sequencing Solutions, 
Inc., Wilmington, MA, USA) [34], and sequenced in 
batches using either Illumina HiSeq 2500 (HiSeq) or 
NovaSeq 6000 (NovaSeq) instruments (Illumina, San 
Diego, CA, USA). Transcripts were mapped, aligned, 
and quantified using a standard bioinformatic pipeline 
of software for RNA sequencing (RNAseq) as described 
in Supplemental Methods [35–45]. Normalized count 
per million mapped fragment (CPM) and fragments 
per kilobase of exon per million mapped fragments 
(FKPM), as well as filtering parameters are provided in 
Tables S2A-C.

Fig. 1  Overview of the study. Figure provides the workflow for the overall study
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Quantitative RT/PCR of transcript biomarkers
TaqMan™ gene expression assays were purchased from 
ThermoFischer Scientific (Waltham, MA, USA). The 
list of the genes, targeted loci, and assays are provided 
in Table S3. Transcript expression was quantified as 
described in Supplemental Methods and previous reports 
[3, 6, 45].

Statistical analyses
From the available cohort of 351 patients we expected 
to have approximately 200 patients with a CD34+ phe-
notype. Patients were sorted and RNA was extracted 
sequentially in random order until 96 RNA samples (the 
size of one plate and approximately half of the expected 
200 patients) from patients with CD34+ phenotype were 
identified and assigned to discovery cohort. While the 
DNA and RNA analyses in the discovery cohort were 
ongoing, the remaining samples were extracted and 
assayed for quality. All patients with CD34+ phenotype 
were to be included in the second, validation, cohort. A 
total of 67 patients with CD34+ phenotype had sufficient 
material for downstream studies.

Cytogenetic risk was categorized per the ELN guide-
lines [1]. Complete remission (CR) required the fol-
lowing: > 20% marrow cellularity with maturation of all 
cell lineages, < 5% blasts, no Auer rods, ANC ≥1500/
μL, platelets > 100,000/μL, no peripheral blasts, and no 
extramedullary disease. The one exception was CR for 
S0106, which required all the previously mentioned char-
acteristics for CR, but utilized ANC ≥1000/μL rather 
than ANC ≥1500/μL. Overall survival (OS) was meas-
ured from the date of study registration to the date of 
death by any cause, with patients last known to be alive 
censored at the date of last contact. Quantitative and cat-
egorical factors were compared between groups using 
Wilcoxon Rank-sum tests and Fisher’s exact tests, respec-
tively. OS was estimated using the Kaplan-Meier method 
and compared between groups using log-rank tests.

Univariate logistic regression and Cox proportional 
hazard models were used to evaluate the association 
between CR and OS, respectively, and the log-2 trans-
formed FPKM values of each gene. Multivariable analyses 
adjusted for gender, age at study registration, cytogenetic 
risk, ELN risk, or age and ELN risk. Logistic regression 
models and the Cox proportional hazard models were 
also used to evaluate associations between the leukemic 
stem cell 17-biomarker (LSC17) signature and CR and 
OS, respectively [14].

Significance of RNA expression change was defined 
as a combination of FDR and either fold change (FC), 
odds ratio (OR) or hazard ratio (HR), as appropriate. 
An FDR < 0.01 and FC > 2 or < 0.5 was considered sig-
nificant in analyses examining DEGs in paired samples: 

batch effect, instrument effect, impact of tissue source, 
and comparisons between MNCs and VLBsCD34+. Signifi-
cant DEGs associated with gender, age, cytogenetic and 
ELN risk were defined using FDR < 0.1 in combination 
with following FCs: gender = FC > 2 or < 0.5; age = FC 
> 1.1 or < 0.9 per unit change (unit for age = 10 years); 
cytogenetics = FC > 2 or < 0.5 for one or more compari-
sons between cytogenetic risk groups; and ELN risk = FC 
> 2 or < 0.5 for one or more comparisons between ELN 
risk groups. Significant DEGs for clinical outcomes were 
defined as an FDR < 0.1 and OR > 1.5 or < 0.66 (CR) or HR 
> 1.5 or < 0.66 (OS). In the validation cohort, significance 
was defined as P-value < 0.05, regardless of clinical effect 
size.

Biomolecular pathway analyses
Reactome (http://​react​ome.​org) was utilized as a means 
to analyze and visualize biomolecular pathways associ-
ated with identified sets of genes as previously described 
[46]. Lists of significant DEGs were uploaded into the 
Reactome Analysis Tools to analyze the pathways asso-
ciated with DEGs. Significance for pathway association 
with gene list was defined as FDR < 0.1 [46].

Results
Patient characteristics
Flow cytometry examined diagnostic specimens from 
351 AML patients for blast viability and CD34 expres-
sion (Fig.  1). Flow studies revealed that samples from 
163 patients (46%) expressed CD34 and had adequate 
amounts of blasts for downstream studies (Table S4A), 
while samples from 188 patients were excluded due to 
insufficient VLBsCD34+ (N = 26) or lack of CD34 expres-
sion (N = 162). Analyses compared the mutation profiles 
between included and excluded patients (Fig. S1, Table 
S4B). The included AMLCD34+ patients had a lower fre-
quency of FLT3-ITD mutations (19 vs. 42%, P  < 0.001), 
and fewer mutations in NPM1 (6 vs. 62%, P  < 0.001), 
DNMT3A (19 vs. 40%, P  < 0.001), RUNX1 (7% vs. 17%, 
P = 0.002), and TET2 (9 vs. 20%, P = 0.002). In addition, 
the included AMLCD34+ patients were more likely to be 
categorized as adverse ELN risk (39 vs. 17%, P  < 0.001). 
Despite these differences, the CR and OS were not sig-
nificantly different between included AMLCD34+ and 
excluded patients (Table S4B). These 163 AMLCD34+ 
patients with adequate material were assigned into dis-
covery (N = 96) and validation (N = 67) cohorts (Fig. 1) 
and similar analyses compared characteristics of patients 
in two cohorts were done (Table S4C). These comparison 
analyses showed no significant difference with respect to 
gender, blast percentages, commonly detected mutations, 
ELN risk, or CR. OS was slightly higher in the discovery 
cohort as compared to the validation cohort (P = 0.05).

http://reactome.org
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Impact of batch effect and sequencing instrument 
on transcriptome
Batch effect can introduce significant expression changes 
and lead to erroneous results [47]. To assess for the 
potential impact of batch effect, libraries were prepared 
at three different time points using RNA from 4 diag-
nostic MNC specimens and then sequenced using the 
same instrument. Thirty-nine DEGs showed significant 
associations with batch effect (Figs.S2A and S3A; Table 
S5A), all of which represented non-coding RNAs. We 
also examined the impact of sequencing instruments on 
DEGs, given the availability and frequent use of HiSeq 
2500 vs. NovaSeq 6000 platforms. Libraries were pre-
pared using RNA from MNC specimens (N  = 5) and 
sequenced on both instruments. Applying the same defi-
nition for significance, 255 DEGs were significantly asso-
ciated with the sequencing instrument (Figs. S2B and 
S3B; Table S5B). Again, the vast majority of the DEGs 
were non-coding (N  = 246, 96.5%). Overall, 15 DEGs 
were significant in batch effect and in instrument analy-
ses (overlap).

Impact of tissue source on transcriptome
Peripheral blood (PB) and bone marrow (BM) speci-
mens are frequently included and analyzed together 
in AML biomarker studies. Therefore, we investigated 
the potential impact of tissue source (PB vs. BM) on 
RNAseq results using paired PB and BM samples from 
3 AML patients. For each tissue source, bulk MNCs and 
VLBsCD34+ were examined, providing 4 different RNA 
sources: MNCs/PB, MNCs/BM, VLBsCD34+/PB, and 
VLBsCD34+/BM. Libraries were prepared and sequenced 
on the HiSeq 2500 instrument. Comparison analyses 
(PB vs. BM) were performed separately for MNCs and 

VLBsCD34+, identifying 244 significant DEGs in analy-
ses comparing MNCs/PB versus MNCs/BM (Figs. S2C 
and S3C; Table S5C). The vast majority of the 244 DEGs 
represented coding genes, either for immunoglobulin-
related proteins (N  = 63, 26%) or other known coding 
proteins (N = 159, 65%). Analyses comparing VLBsCD34+/
PB versus VLBsCD34+/BM identified 53 significant DEGs 
between the two cell populations, 83% (44/53) represent-
ing coding genes (Figs. S2D and S3D; Table S5D). Most 
of the immunoglobulin-related DEGs from MNC com-
parisons (MNCs/PB vs. MNCs/BM) were not signifi-
cant in the VLBsCD34+ analyses. Overall, 34 DEGs were 
significant in both analyses comparing PB versus BM 
(Table S5E). Most of the overlapping transcripts (29/34, 
85%) represented coding genes in a variety of different 
pathways: apoptosis/cell cycle, cell adhesion, cell signal-
ing, histone maintenance/modification, mitochondria/
metabolism, and transcription regulation.

Expression differences between MNCs and VLBsCD34+

Ninety-six specimens had RNAseq data from paired 
bulk MNCs and VLBsCD34+ (Fig.  1). Transcripts associ-
ated with batch effect, sequencing instrument, and tissue 
source were eliminated from MNCs versus VLBsCD34+ 
analyses, as well as subsequent studies examining asso-
ciations with clinical characteristics and outcomes. We 
identified 767 DEGs that were significant between the 
MNCs and VLBsCD34+ (Fig. 2A; Table S5F). These DEGs 
led to a noticeable shift in the principal component anal-
yses (PCA) plot comparing bulk MNCs and VLBsCD34+ 
(Fig.  2B). Most DEGs between the two cell populations 
represented coding (N = 376, 49%) and immunoglobulin 
(N = 69, 9%) genes. The remainder included pseudogenes 
(N = 180, 23%), snoRNA/snRNA (N = 40, 5%), lncRNAs 

Fig. 2  Expression changes between bulk MNCs and VLBsCD34+. A Figure shows an MD plot displaying log2 fold change in expression profiles 
between MNCs and VLBCD34+. Decreased expression in VLBCD34+(blue); Increased expression in VLBCD34+ (red). B Figure shows a PCA plot showing 
the variance between paired MNCs and VLBCD34+ from 96 specimens. MNCs (light red). VLBCD34+ (light blue). C Figure shows correlation between 
Euclidean distance using log2 RPKM values (y-axis) and blast percentage (x-axis). Euclidean distance is used to measure overall transcriptome 
difference between a pair of MNC and VLB samples
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(N = 40, 5%), miRNA (N = 7, 1%) and other noncoding 
RNA variants (N = 55, 7%). The vast majority of DEGs 
(758/767, 98.8%) were decreased in the VLBsCD34+ rela-
tive to the MNCs. Analyses showed a significant nega-
tive correlation (Rho = − 0.54, P-value < 0.001) between 
blast percentages and Euclidean distances, indicating that 
a lower blast percentage resulted in a greater separation 
between the bulk MNCs and VLBsCD34+ (Fig. 2C).

Transcript correlation with clinical characteristics
Expression data from the paired MNCs and VLBsCD34+ 
(N = 96) were examined for DEGs associated with gen-
der, age, WBC, cytogenetic risk, and ELN risk. Gender 
was significantly associated with expression of a small 
number of DEGs (MNCs = 12 and VLBsCD34+ = 8; over-
lap = 4; Fig. S4A; Table S6A). Increasing age was signifi-
cantly associated with 133 and 289 DEGs in the MNCs 
and VLBsCD34+, respectively (overlap = 105, Fig. S4B; 
Table S6B). There were 392 and 455 DEGs (overlap = 270) 
significantly associated with cytogenetic risk in MNCs 
and VLBsCD34+, respectively (Fig. S4C; Table S6C), while 
168 and 313 DEGs (overlap = 145) were significantly cor-
related with ELN risk in MNCs and VLBsCD34+, respec-
tively (Fig. S4D; Table S6D).

Lists of DEGs significantly associated with age, cytoge-
netics, and ELN risk were analyzed using Reactome 
software [46]. Pathways were then ranked from most 
to least significant by increasing FDR. The lists of age-
related DEGs were significantly associated with 2 and 
15 pathways using data from the MNCs and VLBsCD34+, 
respectively (Table S7A-C). The top age-related pathway 
identified in MNCs was ranked 6 in VLBsCD34+, while the 
top age-related pathway in the VLBsCD34+ were ranked 
237 in the MNCs. For the lists of DEGs significantly asso-
ciated with cytogenetics, we identified 13 and 4 signifi-
cant pathways in the MNCs and VLBsCD34+, respectively. 
The top cytogenetic-related pathway in the MNCs was 
ranked 718 in the VLBsCD34+, while the top cytogenetic-
related pathways in the VLBsCD34+ was ranked 41 in the 
MNCs (Table S7D-F). Many of the most significant path-
ways associated with cytogenetics in the MNCs involved 
lymphocyte function, and their significance, as measured 
by rank, was substantially diminished by enriching for 
VLBsCD34+, while pathways involving transcription regu-
lation seem to be enriched by examining the VLBsCD34+ 
(Table 1). With respect to the genes associated with ELN 
risk, the same 2 pathways were significant in both MNCs 
and VLBsCD34+ (Table S7G-I).

Transcript expression associated with clinical responses
Univariate analyses identified 3 and 712 DEGs signifi-
cantly associated with CR in the MNCs and VLBsCD34+, 
respectively (Table S8A). Given the known association of 

age and cytogenetic risk with CR rates, a multivariable 
model incorporating age, cytogenetics, and gender was 
developed to adjust for these variables. After account-
ing for these variables, none of the transcripts remained 
significantly associated with CR in either the MNC or 
VLBsCD34+ data (Table S8B). Similarly, all transcripts 
lost their significance after adjusting for ELN risk and 
age (Table S8C). Univariate analyses identified total of 
2556 and 2678 DEGs significantly associated with OS in 
the MNCs and VLBsCD34+, respectively (overlap = 1771; 
union = 3463; Fig.  3A and B; Table S8D). Multivariable 
analyses adjusting for gender, age, and cytogenetic risks 
identified 101 and 69 transcripts significantly associated 
with OS in MNCs and VLBsCD34+, respectively (over-
lap = 38; union = 132; Fig.  3C and D; Table S8E). Multi-
variable analyses adjusting for ELN risk and age identified 
38 and 20 transcripts significantly associated with OS in 
the MNCs and VLBsCD34+, respectively (overlap = 14; 
union = 44; Fig. 3E and F; Table S8F).

Prognostic significance of the LSC17 in the discovery 
patients
LSC17 signature has been validated using MNC speci-
mens from pediatric and adult patients with AML [14, 
48]. We examined the performance of the LSC17 signa-
ture in the paired MNCs and VLBsCD34+ using P-value 
< 0.05 to define statistical significance. Univariate analy-
ses showed that the LSC17 model was associated with 
a reduced CR rate, which was statistically significant 
in VLBsCD34+ data (OR = 0.91, P-value = 0.039) and 
borderline significant in the MNC data (OR = 0.93, 
P-value = 0.119; Table S8). After adjusting for age and 
ELN risk, the LSC17 signature was no longer significantly 
associated with CR in either the MNCs or VLBsCD34+ 
(P-values = 0.808 and 0.860, respectively; Table S8). The 
LSC17 signature was significantly associated with OS in 
MNCs (HR 1.11, P = 0.00053) and VLBsCD34+ (HR 1.11, 
P  = 0.00003), remaining prognostically significant for 
both the MNCs (HR = 1.07, P  = 0.023) and VLBsCD34+ 
(HR = 1.07, P = 0.00876) after adjusting for age and ELN 
risk (Fig. S5; Table S9).

Validation of prognostic transcripts in MNCs and VLBsCD34+

For the validation studies, we focused on DEGs that were 
significant in both MNCs and VLBsCD34+ after adjust-
ing for ELN risk and age (genes = 14; Table S8G). As a 
means to validate these DEGs, we chose to employ real-
time quantitative reverse transcription/polymerase chain 
reaction (Q-RT/PCR) assays, which are currently utilized 
in clinical practice for many diseases, including AML 
[49]. Therefore, Q-RT/PCR assays were obtained for the 
coding transcripts (11 of the 14 DEGs), and we examined 
the association between their RNA expression and OS in 
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paired MNCs and VLBsCD34+ from patients in validation 
cohort (N = 67; Fig. 1). After adjusting for age and ELN 
risk, only DNMT3B expression was close to meeting sta-
tistical significance for OS in the bulk MNCs (P = 0.06, 
HR = 1.23), while expression for 4 genes (CEP70, 
DNMT3B, ECE1, and PIK3CB) remained significantly 
associated with OS in the VLBsCD34+ (Table 2; Fig. 4). In 
addition, SEMA4D and TAF8 were borderline significant 
for adverse OS (P-values ≤0.1; Table 2).

Discussion
The impact of pre-analytic variables and non-leukemic 
cells on expression remains to be precisely defined but 
clearly impacts both RNA and protein expression profil-
ing [3, 50]. Our analyses identified a relatively large num-
ber of DEGs between paired bulk MNCs and VLBsCD34+ 
(N = 767), and as expected, the relative amount of DEGs 
was inversely correlated with blast percentage (Fig. 2C). 
By enriching for VLBsCD34+, we were able to mitigate 
the impact of the transcription signal from non-leu-
kemic and dead/dying cells, which also negated some 
of the impact that tissue source (PB vs. BM) had on the 

transcriptome. Most of the significant DEGs between 
MNCs and VLBsCD34+ were expressed at lower levels in 
the VLBsCD34+, and not surprisingly, many of the DEGs 
involved immunoregulatory pathways and/or coded for 
immunoglobulins. The impact of cellular heterogeneity 
on the transcription profile was further demonstrated 
when comparing the biological pathways associated with 
age and cytogenetic risk. For example, the list of DEGs 
associated with cytogenetic risk (i.e., cytogenetic-related) 
primarily enriched for pathways involving lymphocyte 
signaling in the MNCs, while the cytogenetic-related 
DEGs in VLBsCD34+ enriched for pathways associated 
with transcription regulation (Table  1). Overall, the 
results highlight the impact that non-leukemic cells and/
or more differentiated leukemic blasts have on transcrip-
tome profile, as well as the information gained and lost by 
examining bulk MNCs as compared to VLBsCD34+. These 
findings also underscore the importance of examining the 
appropriate cell populations to answer specific research 
questions. Given the complexity and differential activity 
of molecular pathways across hematopoietic cell lineages, 
studies of mixed populations of cells may impede the 

Table 1  Comparison of significant pathways enriched by DEGs associated with cytogenetic risk in paired bulk MNCs versus VLBs

The lists of DEGs significantly associated with cytogenetic risk groups from paired bulk MNCs and VLBs were downloaded into Reactome to identify pathways 
enriched in the lists. Pathways significantly associated with cytogenetic risk in bulked MNCs and VLBs were examined separately. Table shows the significance and 
rank by FDR of individual pathways that were significant in MNCs and VLBs using the list derived from bulk MNCs (left columns) and VLBs (right columns). Those 
pathways significant associated with the list of genes from bulk MNCs and VLBs are highlighted in light blue and gold, respectively. The significant pathways identified 
in the bulk MNCs (N = 13) were not significantly enriched for in the VLBs, and vice versa

Cytogenetic-Related Genes in MNCs (N = 392) Cytogenetic-Related Genes in VLBs (N = 455)

Pathway 
Rank 
(N = 835)

Pathway Name Entities FDR Pathway 
Rank 
(N = 1020)

Pathway Name Entities FDR

1 Phosphorylation of CD3 and TCR zeta chains 1.09E-11 1 Transcriptional regulation of granulopoiesis 8.70E-05

2 Translocation of ZAP-70 to Immunological 
synapse

2.46E-11 2 NR1H3 & NR1H2 regulate gene expression 
linked to cholesterol transport & efflux

0.003861

3 PD-1 signaling 4.86E-11 3 NR1H2 and NR1H3-mediated signaling 0.006610

4 Generation of second messenger molecules 2.46E-09 4 RUNX3 regulates CDKN1A transcription 0.061994

5 Neutrophil degranulation 4.79E-07 13 Neutrophil degranulation 0.450842

6 MHC class II antigen presentation 4.79E-07 53 Cytokine Signaling in Immune system 0.593232

7 Costimulation by the CD28 family 4.94E-07 90 Immune System 0.593232

8 Downstream TCR signaling 6.04E-05 128 Interferon Signaling 0.593232

9 TCR signaling 1.22E-04 359 MHC class II antigen presentation 0.593232

10 Interferon Signaling 7.42E-04 535 Generation of second messenger molecules 0.626337

11 Immune System 7.42E-04 687 Translocation of ZAP-70 to Immunological 
synapse

0.779539

12 Interferon gamma signaling 0.001212 718 Phosphorylation of CD3 and TCR zeta chains 0.802141

13 Cytokine Signaling in Immune system 0.003510 799 Costimulation by the CD28 family 0.871081

17 RUNX3 regulates CDKN1A transcription 0.107059 828 TCR signaling 0.898506

41 Transcriptional regulation of granulopoiesis 0.500239 991 Interferon gamma signaling 0.998825

55 NR1H2 and NR1H3-mediated signaling 0.557604 Not Identified PD-1 signaling N/A

59 NR1H3 & NR1H2 regulate gene expression 
linked to cholesterol transport & efflux

0.557604 Not Identified Downstream TCR signaling N/A
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Fig. 3  Volcano plots showing transcripts associated with overall survival. Y-axis represents negative Log10 of observed P-values. X-axis represents 
log of the hazard ratio (HR). A. Figure shows results for OS in data from MNCs without any adjustment. B. Figure shows results for OS in data from 
VLBsCD34+ without any adjustment. C. Figure shows results for OS in data from MNCs after adjusting for gender (G), cytogenetic risk (C), and age (A). 
D. Figure shows results for OS in data from VLBsCD34+ after adjusting for gender (G), cytogenetic risk (C), and age (A). E. Figure shows results for OS in 
data from MNCs after adjusting for ELN risk (ELN) and age (A). F. Figure shows results for OS in data from VLBsCD34+ after adjusting for ELN risk (ELN) 
and age (A). Grey dots represent non-significant transcripts. Red dots represent significant transcripts with an increased expression associated with 
poor OS. Blue dots represent transcripts with a decreased expression associated with a poor OS. 

Table 2  Identification and validation of prognostic transcripts

MNCs Bulk mononuclear cells, VLBsCD34+ Undifferentiated CD34+ viable blasts, RNAseq RNA sequencing expression results, Q-RT/PCR Quantitative RT/PCR assay 
expression results, HR Hazard ratio, FDR False discovery rate

Gene MNCs VLBs

RNAseq (N = 96) QRT/PCR (N = 67) RNAseq (N = 96) QRT/PCR (N = 67)

HR FDR HR P-value HR FDR HR P-value

CEP70 2.15 0.033 1.14 0.28 2.18 0.018 1.68 < 0.01

COMMD7 3.33 0.082 1.15 0.53 4.27 0.018 1.05 0.76

DNMT3B 1.57 0.076 1.23 0.06 1.61 0.078 1.30 0.05

ECE1 1.78 0.093 1.03 0.80 1.60 0.088 1.32 0.03

LNX2 3.38 0.054 1.10 0.62 3.21 0.078 1.08 0.59

NEGR1 1.64 0.070 1.02 0.74 1.51 0.078 1.07 0.32

PIK3C2B 1.74 0.093 1.06 0.63 1.82 0.088 1.30 0.04

SEMA4D 3.13 0.082 0.95 0.81 2.77 0.088 1.38 0.06

SMAD2 4.50 0.075 0.99 0.95 5.67 0.018 1.07 0.75

TAF8 8.12 0.070 1.12 0.60 8.73 0.058 1.22 0.10

ZNF444 4.14 0.033 1.10 0.18 3.06 0.088 1.05 0.40
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ability to dissect out which cell populations are contrib-
uting to the biological signal of interest. This phenom-
enon seemed to be most pronounced when examining 
potentially biologically meaningful DEGs associated with 
age and cytogenetics.

Although previous biomarker studies have identified a 
large number of prognostic transcripts associated with 
clinical outcomes [4–18], relatively few studies have 
shown that these transcript profiles remain significant 
after adjusting for other prognostic factors. Thus, our 
studies were primarily designed to identify DEGs after 
adjusting for ELN and age – the two most informative 
prognostic risk factors for AML [1, 3, 20, 51], while 
simultaneously examining the potential impact of cel-
lular heterogeneity on DEGs. As with other studies, we 
identified many prognostically significant DEGs prior 
to adjusting for age and ELN risk. However, most DEGs 
lost significance after adjusting for age and ELN risk 
(Fig.  3). We also examined the prognostic significance 
of the LSC17 signature, which has been shown to be 
prognostic for pediatric and adult patients with AML 
[14, 48]. Unlike most prognostic transcript profiles, the 
LSC17 was first derived by examining leukemic stem 
cells and then applied to bulk MNCs. In our analyses, 
we showed that the LSC17 was statistically associated 
with OS in both cell sources and remained significant 
after adjusting for age and ELN risk (Fig. S5). However, 
the clinical effect size in our analyses was relatively small 
(HR = 1.07).

Previous prognostic studies have primarily exam-
ined the transcriptome in bulk MNCs from patients 
with AML [4–18, 48], and studies have not systemati-
cally compared the ability to verify prognostic DEGs in 
paired MNCs and VLBsCD34+. After adjusting for age 
and ELN risk, we identified a modest number of coding 
DEGs (N  = 11) with comparable statistical significance 
and clinical effect sizes in both MNCs and VLBsCD34+ 
(Table  2). Focusing on these DEGs, we investigated if 
examining their expression in VLBsCD34+ may improve 
their verification rate. A targeted approach using real-
time Q-RT/PCR was selected for verification since this 
methodology remains the “gold standard” for independ-
ent validation of transcript expression [39, 52] and is 
currently utilized in clinical practice [49]. In the MNCs, 
expression of the DNMT3B was borderline significant 
(P  = 0.061, HR = 1.23), while expressions for the other 
genes were not statistically significant (Table  2). The 
results from VLBsCD34+ showed a higher rate of prog-
nostic verification. Four DEGs were significantly asso-
ciated with OS, with all four displaying a HR ≥1.30. 
Furthermore, the expressions of SEMA4D and TAF8 
were borderline significant in VLBsCD34+ (Table 2). Some 
DEGs produced markedly different results using RNA 
from the paired MNCs and VLBsCD34+. For example, 
CEP70 was most prognostically significant in VLBsCD34+ 
(P = 0.002, HR = 1.68) but failed to meet significance in 
MNCs (P = 0.282, HR = 1.14). Thus, while some DEGs 
may be informative in MNCs compared to VLBsCD34+ 

Fig. 4   Prognostic P-values for overall survival in validation cohort. Y-axis shows the P-value for overall survival from the Q-RT/PCR for each gene 
(x-axis). Light blue represents P-value from MNC data. Orange represents P-value from VLBCD34+ data. The y-axis is log2 transformed to provide a 
better discrimination for the lower P-values. Red Dotted line represents P-value=0.05.
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or potentially vice versa, our results suggest an increased 
likelihood of verification and thus, potentially the perfor-
mance of biomarker assays examining biologically rele-
vant cells. At a minimum, the pathway analyses indicated 
that biological information elucidated by investigating 
the transcriptome is different depending upon homoge-
neity and cell populations.

We focused our analyses on specimens expressing 
CD34 to facilitate enrichment of a homogenous popu-
lation of less differentiated VLBs. Given the focus on 
CD34-expressing leukemia, the results may not be gen-
eralizable to other immunophenotypes of AML, and the 
sample numbers may have limited our ability to identify 
and verify some prognostic transcripts – especially those 
with modest clinical effect sizes. Despite these poten-
tial limitations, the results show for the first time an 
increased rate of verification of prognostic biomarkers 
in enriched leukemic blasts and highlight the challenges 
of examining heterogenous specimens and the need for 
additional studies examining the impact of cellular het-
erogeneity on biomarkers in AML.

Conclusions
This study provides novel insights into biological infor-
mation gained/lost by examining bulk MNCs versus 
VLBsCD34+. In addition, the results show a potential 
benefit for validating expression biomarkers in purified 
populations of AML blasts. However, additional studies 
are warranted in larger numbers of samples to verify the 
relative benefit of biomarker assessment in VLBCD34+ and 
translate findings into clinically compliant assays.
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