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Abstract 

Background:  The research of biomarker-treatment interactions is commonly investi-
gated in randomized clinical trials (RCT) for improving medicine precision. The hierar-
chical interaction constraint states that an interaction should only be in a model if its 
main effects are also in the model. However, this constraint is not guaranteed in the 
standard penalized statistical approaches. We aimed to find a compromise for high-
dimensional data between the need for sparse model selection and the need for the 
hierarchical constraint.

Results:  To favor the property of the hierarchical interaction constraint, we proposed 
to create groups composed of the biomarker main effect and its interaction with 
treatment and to perform the bi-level selection on these groups. We proposed two 
weighting approaches (Single Wald (SW) and likelihood ratio test (LRT)) for the adap-
tive lasso method. The selection performance of these two approaches is compared 
to alternative lasso extensions (adaptive lasso with ridge-based weights, composite 
Minimax Concave Penalty, group exponential lasso and Sparse Group Lasso) through 
a simulation study. A RCT (NSABP B-31) randomizing 1574 patients (431 events) with 
early breast cancer aiming to evaluate the effect of adjuvant trastuzumab on distant-
recurrence free survival with expression data from 462 genes measured in the tumour 
will serve for illustration. The simulation study illustrates that the adaptive lasso LRT and 
SW, and the group exponential lasso favored the hierarchical interaction constraint. 
Overall, in the alternative scenarios, they had the best balance of false discovery and 
false negative rates for the main effects of the selected interactions. For NSABP B-31, 12 
gene-treatment interactions were identified more than 20% by the different methods. 
Among them, the adaptive lasso (SW) approach offered the best trade-off between a 
high number of selected gene-treatment interactions and a high proportion of selec-
tion of both the gene-treatment interaction and its main effect.

Conclusions:  Adaptive lasso with Single Wald and likelihood ratio test weighting and 
the group exponential lasso approaches outperformed their competitors in favoring 
the hierarchical constraint of the biomarker-treatment interaction. However, the perfor-
mance of the methods tends to decrease in the presence of prognostic biomarkers.
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Introduction
The exploration of treatment effect heterogeneity is commonly investigated in ran-
domized clinical trials (RCT) whatever the presence or absence of overall treatment 
effect. A treatment may benefit only a subgroup of patients with specific clinical or bio-
logical characteristics while it has no benefit or has a harmful effect in other subgroups. 
This heterogeneity corresponds to the existence of statistical interactions between the 
treatment and patient characteristics (or treatment effect modifiers in epidemiology). 
The discovery of interactions has increasing relevance in the setting of precision medi-
cine [1] since these interactions allow to identify biomarkers or to develop biomarker-
based scores or gene signatures that distinguish patients who will benefit most from a 
treatment. For example, the hormone receptors for estrogen (ER+) and progesterone 
(PR+) are the first biomarkers used as predictive factors of response to hormone therapy 
in breast cancer patients. The expression of at least one of the two receptors allows the 
selection of patients who will benefit from tamoxifen or other hormonotherapy [2, 3]. It 
is therefore important to identify biomarker-treatment interactions in RCTs [4, 5] since 
this is a key point for improving precision medicine [1].

In general, the identification of biomarker-treatment interactions through a limited 
number of biomarkers in RCTs starts firstly by developing a multivariable regression 
model that includes both the treatment indicator and selected biomarkers (main effects), 
and then by testing biomarker-treatment interactions. This follows the well-established 
condition used by statisticians, called the hierarchical constraint of interaction, that an 
interaction may be in a model if the corresponding main effects are also in the model 
[6–8]. The interest to encourage the development of a hierarchical model is multiple. 
The first reason is interpretability. It is difficult to interpret a model including an interac-
tion without the corresponding main effects. The second reason is to respect the notion 
of practical sparsity defined by Bien et  al. [8] by decreasing the number of measured 
variables in a model, which is particularly interesting in modeling for prediction. The 
third reason is that according to Cox [6] focusing on large main effects can lead to more 
appreciable interactions. In this paper, we focus on the treatment effect (which is forced 
in the model) associated to a survival outcome and the regression model will be the 
Cox proportional hazard (PH) regression model [9]. Different strategies can be used for 
the selection of biomarker-treatment interactions: all or a list of biologically plausible 
biomarker-treatment interactions are tested among the selected biomarkers (i) by add-
ing one at a time to the main effects model or (ii) by adding all together. However, in 
the rare case of qualitative interaction i.e an opposite biomarker effect in the two arms, 
this strategy may potentially miss true interactions. In high-dimensional data character-
ized by a large number of biomarkers compared to the sample size ( p ≫ n ), the selec-
tion of biomarkers is currently performed using the lasso penalization (Least Absolute 
Shrinkage and Selection Operator) [10] and/or its different extensions [11–14]. When 
the objective is to evaluate biomarker-treatment interactions, a previously chosen 2-step 
approach of identifying the biomarker-treatment interactions after penalizing all main 
effects did not perform satisfactorily in [15] and therefore was not included in the cur-
rent paper. A naive selection procedure would consist in using the penalized approach 
including all the biomarkers and their interactions with treatment (2p dimension). In 
fact, it is difficult to establish a list of biomarker-treatment interactions of interest to 
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be tested regarding the high number of biomarkers. This naive approach may result in 
the selection of biomarker-treatment interactions and not necessarily their biomarkers 
and so to the violation of the hierarchical interaction constraint. Thus, some conditions 
are needed in order to favor the hierarchical constraint of interaction aiming at select-
ing the biomarker main effect when its interaction with treatment is selected. Bien et al. 
[8] proposed a modification of the standard lasso method to estimate a sparse interac-
tion model which respects the hierarchical pairwise interaction constraint between 
two covariates, but their method was developed for a linear regression model. In a very 
recent work, Du et al. [16] proposed in a context of RCT a lasso approach for survival 
models to identify predictors of treatment response while forcing the hierarchical struc-
ture of interactions. An interaction between a variable and treatment is selected only 
when either the variable or both the variable and treatment have non-zero effects.

The objective of this paper is to develop an adaptive lasso-based approach to favor the 
hierarchical constraint of the biomarker-treatment interaction. In other words, to favor 
the selection of the biomarker main effect when its interaction with treatment is selected. 
Our approach differs from [16] since we seek to favor (without forcing) this hierarchical 
constraint. We aimed to find a compromise for high-dimensional data between the need 
for sparse model selection and the need for the hierarchical constraint.

The paper is organized as follows. In section  2, we present the full Cox PH model 
with biomarker and biomarker-treatment interaction in high-dimensional data and 
we describe the proposed approaches and possible alternative methods adapted to our 
research question. In section 3, we conduct a simulation study to evaluate the selection 
performance of the different methods across null and several alternative scenarios. In 
section 4, we illustrate the different approaches through the NSABP B-31 randomized 
trial aiming to evaluate the effect of adjuvant trastuzumab on distant-recurrence free 
survival in early breast cancer patients.

Methods
Assume a RCT which randomizes n patients into an experimental arm and a control 
arm. The main objective is to evaluate the treatment effect on a survival outcome esti-
mated by a Cox PH model [9]. Let T be the treatment indicator, which takes two val-
ues: + 1/2 for the experimental arm and − 1/2 for the control arm. Assume X a ( n× p ) 
matrix of p standardized biomarkers, where n is the sample size. For simplicity, no clini-
cal variables were considered in the regression model. The full Cox PH model including 
p biomarkers and their interaction with treatment is defined as follows:

where �0(t) represents the baseline hazard function, α , β = β1, . . . ,βp
T represent the 

main effects (i.e the log Hazard Ratio noted log HR) and γ =
(
γ1, . . . , γp

)T the regres-
sion coefficients associated to the biomarker-treatment interactions. The parameters of 
model 1 are estimated by maximising the penalized partial log-likelihood, ℓp , under the 
lasso [10] constraints:

(1)�(t | T ,X) = �0(t) exp



αT +
p�

j=1

βjXj +
p�

j=1

γjXjT



,
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where ℓ is the partial log-likelihood function of model 1, and � is the regularization 
parameter calculated by k-fold cross-validation (� ≥ 0).

As this optimization process does not set any constraint on the selection of interac-
tions and their corresponding main effects, it does not favor the hierarchical constraint 
of biomarker-treatment interaction. To respect the hierarchical interaction constraint 
(also known as “heredity” or being “hierarchically well-formulated” [17–19]) in model 1, 
the following mathematical constraint should be respected:

Since treatment is included in the model, this constraint corresponds to a strong hier-
archy [8] i.e when a biomarker-treatment interaction effect is nonzero then the corre-
sponding main effects (treatment and biomarker) should be in the model.

To favor the property of the hierarchical interaction constraint, we propose to express 
this constraint as a bi-level selection problem. In the first step, we create p groups com-
posed by the biomarker main effect and by the associated biomarker-treatment interac-
tion. In the second step, we perform the bi-level selection (both of the groups and within 
the groups). The reparametrization of the model 1 for a bi-level selection may then be 
written as follows:

where Vj = Xj and Vp+j = XjT  define the 2 elements of group j, j = 1, . . . , p . V  is a 
matrix of (n× 2p) elements which can be noted as follows:

The first p columns correspond to the columns of the biomarker matrix X 
and the columns from p+ 1 to 2p represent the pairwise product of X and T. 
θ = (θ1, . . . , θp, θp+1, . . . , θ2p)

T represents the vector of regression coefficients (the first 
p coefficients are associated to the biomarkers and the remainder are associated to the 
biomarker-treatment interactions).

Based on this new parametrization, we present our bi-level selection procedure based 
on the adaptive lasso and other alternative lasso extensions.

Bi‑level selection procedure based on the adaptive lasso

We extended the adaptive lasso penalized regression [11, 20] for a bi-level selection 
by constructing a penalty function including both the coefficients associated with the 
biomarkers and their interactions with treatment. The choice to use this method is 
motivated by the fact that the sizes of the main effect of a biomarker and its interac-
tion with the treatment can be very different, and the adaptive lasso method may assign 

(2)ℓp(α,β , γ | T ,X) = ℓ(α,β , γ | T ,X) − �




p�

j=1

��βj
��+

p�

j=1

��γj
��





γ̂j  = 0 =⇒ β̂j  = 0, j = 1, . . . , p.

(3)�(t | T ,X) = �0(t) exp



αT +
p�

j=1

�
θjVj + θp+jVp+j

�


,

V = (X | XT ).
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adaptive weights to each coefficient in order to penalize them differently. The adaptive 
lasso penalized regression consists in maximizing the penalized partial log-likelihood 
function

where ℓ is the partial log-likelihood function of model 3 and � is the regularization 
parameter. For each group j, 

(
ωj ,ωp+j

)
 represent the adaptive weights assigned to the 

coefficients associated with the biomarker main effect and its interaction with treatment, 
respectively. Contrary to the Eq. 2 that assigns an identical penalty to all biomarkers and 
their interaction with treatment, Eq. 4 assigns a specific penalty for each biomarker and 
its interaction with treatment contributing also to encourage the hierarchical constraint.

The adaptive weights are estimated in a preliminary stage. We propose two types of 
weights based on statistical tests as described below.

Single wald (SW)

Single Wald (SW) weighting is inspired by our previous work [21], where we showed 
that weighting strategies based on the Wald statistic gives good results for biomarker 
selection in the case of biomarkers grouped by pathways. The SW weighting strat-
egy assigns the same weight to the biomarker and its interaction with treatment. This 
weight is equal to the inverse of the Wald statistic ( Wj ) which is defined by a univari-
able Cox PH model incorporating only the biomarker-treatment interaction (i.e. 
�(t | T ,X) = �0(t) exp(γjXjT )).

For each group j, the specific adaptive weight is also set as:

A strong statistical association between biomarker-treatment interaction and survival 
outcome (high Wj ) corresponds to a small weight and thus a smaller penalty in model 
4. As we give the same weight to the interaction and the main effect, this allows to favor 
the selection of the latter when the former is selected.

Likelihood ratio test (LRT)

The likelihood ratio test (LRT) is used to evaluate the statistical significance of a vector 
of coefficients. In particular, it can be used to evaluate the relative goodness of fit of two 
nested regression models. To estimate the adaptive weights, we considered the following 
nested models:

•	 The basic model with only the treatment indicator 

•	 The main effects model 

(4)ℓp(α, θ | T ,X) = ℓ(α, θ | T ,X) − �

p∑

j=1

(
ωj

∣∣θj
∣∣+ ωp+j

∣∣θp+j

∣∣),

(5)
(
ωj ,ωp+j

)
=

(
1

Wj
,
1

Wj

)
.

M0 : �(t,α|T ) = �0(t) exp (αT )

M1 : �(t,α,β | T ,X) = �0(t) exp
(
αT + βjXj

)
, j = 1, . . . , p
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•	 The main effects + biomarker-treatment interaction model 

Based on these three models, we consider the following hypotheses:

•	 For models M0 versus M2

•	 For models M1 versus M2

For each biomarker, we consider the partial likelihood ratio test statistics between 
models M0 and M2 ( �M2/M0 ) and between M1 and M2 ( �M2/M1 ). For each group j, 
j = 1, . . . , p , the adaptive weights assigned to the biomarker main effect ωj and the bio-
marker-treatment interaction ωp+j were defined

It is important to note that we assigned to a biomarker a weight based on the likelihood 
ratio test statistic ( �(j)

M2/M0
 ) comparing the basic model including treatment indicator 

only and the model with treatment indicator, biomarker and its interaction with treat-
ment in order to underpenalize the biomarker in presence of evidence of interaction with 
treatment. Using the likelihood ratio test statistic ( �(j)

M1/M0
 ) between the basic model and 

model with treatment and biomarker would not have allowed to take advantage of the 
presence of interaction in the weight assigned to the biomarker and thus would not have 
encouraged the hierarchical constraint selection. With this weighting strategy, if the 
value of �M2/M0 is high, the biomarker likely has a prognostic and/or predictive role, and 
thus the weight given to a coefficient βj of the biomarker Xj ( ωj = 1/�

(j)
M2/M0

 ) is small, 
which increases the chances that it will be selected in the final model. For a predictive 
biomarker j, the coefficient of its interaction with treatment is considered non-zero 
( γj  = 0 ), therefore the values of the likelihood ratio tests ( �M2/M0 and �M2/M1 ) are far 
from zero and then the weights given to the biomarker main effect and the biomarker-
treatment interaction ( ωj and ωp+j ) are low. This favors the selection of the biomarker-
treatment interaction and its biomarker main effect. On the other hand, if a biomarker 
j is a prognostic biomarker, i.e. has a large main effect but does not interact with treat-
ment ( βj  = 0 and γj = 0 ) then the value of �M2/M0 is high but �M2/M1 is low. Therefore, 
the value of weight ωj is low and weight ωp+j is high, this encourages selection of the 
biomarker main effect rather than selection of its interaction with treatment.

M2 : �(t,α,β , γ |T ,X) = �0(t) exp
(
αT + βjXj + γjXjT

)
, j = 1, . . . , p

H0 : βj = γj = 0

H1 :
{
βj and/or γj

}
�= 0

H0 : γj = 0

H1 : γj �= 0

(6)
(
ωj ,ωp+j

)
=

(
1

�
(j)
M2/M0

,
1

�
(j)
M2/M1

)
.
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Alternative approaches

We present several extensions of the standard lasso that have been developed to per-
form group and within-group selection. They differ according to the penalized func-
tion used. We have adapted them in the context of a bi-level selection of biomarker 
main effects and biomarker-treatment interactions and compared them to our pro-
posed approach. These methods include the adaptive lasso with ridge penalty-based 
weights, the composite Minimax Concave Penalty (cMCP), the group exponential 
lasso (gel) and the Sparse Group Lasso (SGL) and are presented below.

Adaptive lasso with a ridge‑based weights

In the context of the identification of predictive biomarker in RCT, Ternès et  al. [15] 
compared several approaches for biomarker-treatment interaction selection in high-
dimensional Cox regression models. Among these approaches, they studied different 
extensions of the standard lasso method that penalize both the biomarker main effects 
and the biomarker-treatment interactions but without addressing the question of the 
hierarchy constraint. The authors showed that the adaptive lasso method with weights 
estimated by the ridge method (presented below) works reasonably well to select bio-
marker-treatment interactions. The ridge regression [22] is a penalization method often 
used in the case of strong correlation between variables. This method introduces a pen-
alty term to the partial log-likelihood function of the model 3 to limit the instability of 
the coefficients. The ridge penalty term corresponds to the L2 norm of the regression 
coefficients and the penalized partial log-likelihood function is defined as follows:

By increasing the value of the regularization parameter � , the values of the regression 
coefficients shrunk towards zero. Unlike the lasso method, the ridge method does not set 
any regression coefficient to 0. Therefore, it does not perform variable selection. On the 
other hand, the ridge method provides a robust estimation of the parameters by reduc-
ing the variance. It also gives good predictive performances in terms of bias-variance 
trade-off [23]. Maximization of the penalized partial log-likelihood function 7 estimates 
ridge regression coefficients θ̃Rj  and θ̃Rp+j for biomarker main effect and biomarker-treat-
ment interaction, respectively. The adaptive weights given to the biomarker main effect 
and its biomarker-treatment interaction are defined as the inverse of the absolute value 
of these regression coefficients,

(7)ℓp(α, θ | T ,X) = ℓ(α, θ | T ,X)− �

p∑

j=1

(
θ2j + θ2p+j

)
.

(8)
�
ωj ,ωp+j

�
=



 1���θ̃Rj
���
,

1���θ̃Rp+j

���



.
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Composite minimax concave penalty (cMCP)

The composite Minimax Concave Penalty (cMCP) method [24, 25] performs bi-level 
selection by combining individual and group variable penalties. It allows to select the 
influent groups and the influent variables of these groups. Considering the model 3 
the penalized log-likelihood function of cMCP is written

where fO = f�,b and fI = f�,a are the outer and inner MCP functions [26], respectively 
(a> 0 and b > 0 are the shape parameters for the outer and inner penalties, respectively). 
The MCP is defined on the support [0,∞) as

Group exponential lasso (gel)

Like the cMCP method, the group exponential lasso (gel) [27] method also performs bi-
level variable selection. It maximizes the penalized partial log-likelihood function simi-
lar to cMCP, with an outer penalty equal to the exponential penalty and an inner penalty 
equal to the standard lasso penalty. The exponential penalty is defined on the support 
[0,∞) as

where τ is the rate of exponential decay. When τ −→ 0 , the gel method selects a model 
equivalent to the standard lasso, while when τ −→ 1 , it selects a model equivalent to the 
group lasso [13].

Sparse group lasso (SGL)

Simon et al. [12] proposed the Sparse Group Lasso (SGL) method to promote sparsity 
at two different levels: “sparsity by group” and “sparsity within group” by performing 
the selection of relevant groups and within groups. The penalized partial log-likelihood 
function of the SGL method is

where α∗ ∈ [0, 1] . If α∗ = 1 or α∗ = 0 , the SGL penalty is equal to the standard lasso 
and group lasso, respectively. Note the group lasso method itself was not included in 
our study because it does not perform individual biomarker selection within the prede-
fined groups but only group selection. This does not address our goal of sparse model 

(9)ℓp(α, θ | T ,X) = ℓ(α, θ | T ,X)−
p∑

j=1

fO
(
fI
(
θj
)
+ fI

(
θp+j

))
,

(10)f�,a(θ) =
{

�θ − θ2

2a , if θ ≤ a�
1
2a�

2, if θ > a�
, with � ≥ 0.

(11)f�,τ (θ) =
�
2

τ

{
1− exp

(
−τθ

�

)}
,

(12)

ℓp(α
∗, θ | T ,X) = ℓ(α∗, θ | T ,X) − (1− α∗)�

p∑

j=1

√
2
∥∥∥θ(j)

∥∥∥
2
− α∗

��θ�1

= ℓ(α∗, θ | T ,X) − (1− α∗)�
p∑

j=1

√
2
(
θ2j + θ2p+j

)
− α∗

�

p∑

j=1

(∣∣θj
∣∣+

∣∣θp+j

∣∣),
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selection, as this approach may falsely select the biomarker-treatment interaction 
when its main effect is selected. As the SGL method does not adjust for clinical vari-
ables, treatment was considered as a penalized variable in a separate group. In contrast, 
the other methods presented above allow to include the treatment in the final model 
without penalizing it. In fact, with the adaptive lasso method we assign a zero weight 
to the treatment coefficient so that it is not penalized and included in the final model. 
The cMCP and gel methods assign to the group “0” the coefficients to be included in the 
model without being penalized.

For all these approaches described above as for the standard lasso, the regression coef-
ficients are estimated in 2 steps. Firstly, the optimal penalty term �̂cvl is selected by k-fold 
cross-validation (k set to 5) in maximizing the cross-validated log-likelihood [28, 29] 
Secondly, the penalized log-likelihood function is maximized.

Simulation study
We conducted a simulation study to compare the selection performance of methods 
described so far in the context of high-dimensional data for a survival outcome and in 
particular to investigate the ability of the methods to favor hierarchical constraint of 
biomarker-treatment interactions, i.e., to identify relevant interactions with their cor-
responding biomarker main effects.

Data simulation

We generated n = 3000 patients drawing a RCT divided into a training and a validation 
set with equal sample size ( n = 1500 ) and p = 500 biomarkers (gene expressions) lead-
ing to 500 biomarker-treatment interactions. Patients were randomly assigned to each 
treatment arm with probability of 0.5 (ratio 1:1). The treatment was coded + 0.5 for the 
experimental arm and − 0.5 for the control arm. The biomarkers were generated from 
a standard multivariate Gaussian distribution (means µ1 = · · · = µp = 0 and stand-
ard deviations σ1 = · · · = σp = 1 ). The biomarker correlation structure was defined as 
autoregressive by 20-biomarker blocks; in each block the correlation between two bio-
markers i and j was set to ρij = 0.7|i−j| . We generated survival times using an exponen-
tial distribution with a median survival of 1 year. Censoring times were generated from 
a uniform distribution U(2, 5), reflecting a trial with a 3-year accrual period and a 2-year 
follow-up.

Table 1  Scenarios of the simulation study

HR hazard ratio, Ctrl control arm, Exp experimental arm, qPo number of prognostic biomarkers, qPe number of predictive 
biomarkers

Scenarios Biomarker effect: ln(HR) = β ± 0.5γ Average 
censoring 
probabilityCtrl: β − 0.5γ Exp: β + 0.5γ

1 No effect 0 0 0.10

2 qPe = 1 predictive biomarker -0.5 ln(0.5) 0.5 ln(0.5) 0.13

3 qPe = 10 predictive biomarkers -0.5 ln(0.5) 0.5 ln(0.5) 0.20

4 qPe = 10 predictive biomarkers -0.5 ln(0.5) 0.5 ln(0.5) 0.31

qPo = 10 prognostic biomarkers ln(0.5) ln(0.5)
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Simulated scenarios

Different scenarios of RCT were generated by varying qPo , the number of biomarkers 
associated to the survival outcome (prognostic biomarkers) and qPe , the number of bio-
markers which interact with the treatment (predictive biomarkers) (Table  1). We first 
considered a null scenario with neither prognostic nor predictive effect for any biomarker 
(scenario 1); then two alternative scenarios 2 and 3 with no prognostic biomarker and at 
least one biomarker that interacts with the treatment; finally, the alternative scenario 4 
with both prognostic and predictive biomarkers. For this last scenario, the 10 prognostic 
biomarkers were chosen to be necessarily different from the 10 predictive biomarkers 
and they may be considered as noise in detection of the true interactions. We extended 
this last scenario by increasing the number of biomarkers from p = 500 to p = 5000 and 
keeping 10 predictive biomarkers and 10 prognostic biomarkers (scenario 4b). The treat-
ment effect was generated with an effect size of α = ln(HR) = ln(0.5) . Prognostic and 
predictive biomarkers were generated with an effect size of β = γ = ln(0.5) . For each 
scenario, 500 replications were simulated.

Evaluation criteria

For evaluating the ability of the different methods to select (i) true biomarker-treatment 
interactions (predictive biomarkers) and (ii) their corresponding main effects, i.e., to 
respect the hierarchical constraint of biomarker-treatment interactions, different crite-
ria of selection performance were used. For each simulated data set, we first report the 
number of selected biomarker-treatment interactions (nPe) and the number of selected 
main effects corresponding to the selected interactions (nPo) . Second, the false discov-
ery rate (FDR, proportion of selected parameters that are noninfluent) [30] and false 
negative rate (FNR, proportion of influent parameters that are not selected) [31] were 
calculated for the biomarker-treatment interaction and the corresponding main effect 
parameters, separately:

with i) TP the number of influent parameters that were selected, ii) FP the number of 
noninfluent parameters that were selected and iii) FN the number of influent parameters 
that were not selected. Since our objective is to favor the hierarchical constraint, the cal-
culation of the FDR and FNR of main effects is based only on the main effects of the 
selected interactions. A biomarker main effect is considered as a true positive or false 
positive if its interaction with treatment is a true positive or false positive, respectively. 
In addition, a biomarker main effect is considered as a false negative if its interaction 
with treatment is false negative.

We also investigated the impact of favoring the hierarchical constraint of biomarker-
treatment interaction by measuring the difference in concordance indices of a score 
defined as the product between the coefficients of the interactions retained in the train-
ing set and their biomarkers [15, 32] and the survival time, between the 2 treatment 
arms. This approach was originally proposed by Schemper [33]. We estimated these con-
cordances via the C-statistic of Uno [34] and we calculated the difference of this statistic 
between the two arms ( �C-statistic) both in the training and validation sets, respec-
tively. A high value of the difference indicates a high interaction strength. In addition, 

FDR = FP/(TP + FP), FNR = FN/(TP + FN )
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the usual Uno C-statistic estimated from the full linear predictor of the selected models 
was reported.

We used the simdata function of the biospear [35, 36] R package for the simula-
tion study and the following packages for the statistical analyses: glmnet [37, 38] for the 
adaptive lasso (LRT) and (SW) methods; biospear [35] for the adaptive lasso (ridge) 
method; grpreg [39] for the cMCP (default values for the tuning parameters a and b 
were considered) and gel methods with τ = 1/3 [27] and SGL [40] for the SGL method 
with the default value of the α parameter equal to 0.95. We used the default grid values 
in the R packages to select the tuning parameter �.

Results

Table  2 details the selection performance of biomarker-treatment interactions and of 
their corresponding main effects for the null and the three alternative scenarios. For a 
given scenario, the first and second rows correspond to the selection performance of 
biomarker-treatment interactions and of the corresponding main effects. Within each 
row, the average number of selected biomarkers ( nPe or nPo ), its 2 components (TP and 
FP) and the average FDR and FNR are reported for the 6 methods. In addition, Figs. 1 
and 2 complete this table by allowing to directly identify the methods offering the best 
trade-off between FDR and FNR (for biomarker-treatment interactions and their corre-
sponding main effects, respectively) across the different scenarios.

In the null scenario 1, with no signal ( qPe = 0 predictive biomarker and qPo = 0 prog-
nostic biomarker), the adaptive lasso method with LRT and SW weights selected more 
false interactions and corresponding main effects than the other methods. For exam-
ple, the adaptive lasso (LRT) method selected on average nPo = 3.96 main effects cor-
responding to nPe = 9.96 selected interactions. This translates into high FDR ( > 80% ) 
for interactions and main effects. In contrast, the cMCP and gel methods selected only 
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Fig. 1  False negative rate (FNR) versus false discovery rate (FDR) of biomarker-treatment interactions in 
alternative scenarios
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nPo = 0.01 main effects on average, corresponding to nPe = 0.68 and 0.44 selected inter-
actions, respectively. The SGL method did not select any interactions.

In the alternative scenario 2 ( qPe = 1 predictive biomarker and qPo = 0 prognos-
tic biomarker), all methods identified the true biomarker-treatment interaction 
(TP=1). The adaptive lasso method with LRT and SW weights selected on average 
nPo = 4.79 and 3.67 main effects, corresponding to nPe = 8.89 and 6.71 selected inter-
actions ( nPo/nPe ≥ 54% ), respectively. This yields to FDR/FNR values for interac-
tions of 0.72/0.00 and 0.44/0.00, respectively, and for the main effects of 0.63/0.13 
and 0.37/0.27, respectively. The other methods selected fewer interactions (varying 
from 1.37 to 4.31 in average) and corresponding main effects (less than 1 on aver-
age). For example, the SGL method had an average number of selected interactions 
of nPe = 1.37 and corresponding selected main effects of nPo = 0.11 . Similarly, the 
cMCP method selected only nPo = 0.05 main effects corresponding to nPe = 2.28 
selected interactions. Besides, the SGL and cMCP and gel methods have the lowest 
FDR (Figs. 1 and 2).

In the alternative scenario 3 ( qPe = 10 predictive biomarkers and qPo = 0 prognos-
tic biomarker), all methods selected the 10 true biomarker-treatment interactions 
(TP = 10). The adaptive lasso (LRT and SW) methods had similar selection perfor-
mance. Both favored the hierarchical biomarker-treatment interaction constraint 
( nPo/nPe ≥ 60% ) more than the other methods. Indeed, they selected nPe = 15.51 
and 15.18 predictive biomarkers and qPo = 9.54 and 9.15 corresponding main 
effects, respectively. The gel method gives similar results with nPe = 10.48 interac-
tions and nPo = 5.73 corresponding main effects. In terms of interactions, the pro-
posed approaches had an FDR around 0.32 higher than that of the gel method (0.04). 
In terms of main effects, the adaptive lasso (LRT and SW) had a lowest FDR/FNR 
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Fig. 2  False negative rate (FNR) versus false discovery rate (FDR) of biomarker main effects corresponding to 
selected interactions in alternative scenarios
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balance of main effects equal to 0.27/0.33 and 0.26/0.34, respectively. On the other 
hand, the gel method had a lower FDR equal to 0 and a higher FNR equal to 0.43.

In the alternative scenario 4 ( qPe = 10 predictive biomarkers and qPo = 10 prog-
nostic biomarkers) and as in the scenarios 2 and 3, all methods selected the 10 true 
biomarker-treatment interactions. The adaptive lasso (LRT and SW) and gel meth-
ods favored the hierarchical biomarker-treatment interaction constraint more than 
the other methods ( nPo/nPe ≥ 56% ). However, the adaptive lasso (SW) method 
selected more false positive biomarkers than the others: 60.89 noninfluent among 
70.88 selected interaction compared to 5.18/15.15 and 9.69/19.67 for the adaptive 
lasso (LRT) and gel methods, respectively. It had also the highest FDR and the lowest 
FNR: the FDR/FNR balance of the interaction was equal to 0.85/0.00, and that of the 

Table 2  Selection performance of biomarker-treatment interactions and main effects 
corresponding to the selected interactions

qPe number of predictive biomarkers, qPo number of prognostic biomarkers, nPe number of selected interactions, nPo 
number of selected main effects corresponding to the selected interactions, FP false positives, TP true positives, FDR false 
discovery rate, FNR false negative rate, AL adaptive lasso, LRT likelihood ratio test, SW single Wald

AL(LRT) AL(SW) AL(ridge) SGL cMCP gel

Scenario 
1
qPe = 0

qPo = 0

Interac-
tions

nPe 9.96 13.02 1.95 0.00 0.68 0.44

FP 9.96 13.02 1.95 0.00 0.68 0.44

FDR 0.95 0.97 0.95 - 0.24 0.20

Main 
effects

nPo 
(nPo/nPe)

3.96 (40%) 5.68 (44%) 0.24 (12%) 0.00 0.01 (1%) 0.01 (2%)

FP 3.96 5.68 0.24 0.00 0.01 0.01

FDR 0.85 0.88 0.17 - 0.01 0.01

Scenario 
2
qPe = 1

qPo = 0

Interac-
tions

nPe 8.89 6.71 4.31 1.37 2.28 1.54

TP / FP 1.00/7.89 1.00/5.71 1.00/3.31 1.00/0.37 1.00/1.28 1.00/0.54

FDR / 
FNR

0.72/0.00 0.44/0.00 0.53/0.00 0.15/0.00 0.26/0.00 0.15/0.00

Main 
effects

nPo 
(nPo/nPe)

4.79 (54%) 3.67 (55%) 0.48 (11%) 0.11 (8%) 0.05 (2%) 0.34 (52%)

TP / FP 0.87/3.93 0.73/2.94 0.07/0.41 0.05/0.06 0.03/0.02 0.33/0.01

FDR / 
FNR

0.63/0.13 0.37/0.27 0.24/0.93 0.06/0.95 0.02/0.97 0.01/0.67

Scenario 
3
qPe = 10

qPo = 0

Interac-
tions

nPe 15.51 15.18 22.40 20.20 13.68 10.48

TP / FP 10.00/5.51 10.00/5.18 10.00/12.40 10.00/10.20 10.00/3.68 10.00/0.48

FDR / 
FNR

0.33/0.00 0.32/0.00 0.51/0.00 0.48/0.00 0.24/0.00 0.04/0.00

Main 
effects

nPo 
(nPo/nPe)

9.54 (61%) 9.15 (60%) 2.28 (1%) 4.09 (20%) 1.02 (7%) 5.73 (55%)

TP / FP 6.74/2.80 6.61/2.54 0.93/1.35 1.69/2.40 0.96/0.07 5.72/0.01

FDR / 
FNR

0.27/0.33 0.26/0.34 0.43/0.91 0.55/0.83 0.04/0.90 0.00/0.43

Scenario 
4
qPe = 10

qPo = 10

Interac-
tions

nPe 15.15 70.88 19.93 26.27 14.57 19.67

TP / FP 9.97/5.18 9.99/60.89 10.00/9.93 10.00/16.27 10.00/4.57 9.99/9.69

FDR / 
FNR

0.32/0.00 0.85/0.00 0.46/0.00 0.60/0.00 0.29/0.00 0.49/0.00

Main 
effects

nPo 
(nPo/nPe)

8.43 (56%) 52.40 (74%) 2.04 (10%) 6.88 (26%) 2.73 (19%) 15.56 (78%)

TP / FP 5.80/2.63 8.99/43.41 0.91/1.13 2.07/4.82 1.11/1.62 6.05/9.51

FDR / 
FNR

0.29/0.42 0.82/0.10 0.42/0.91 0.68/0.79 0.56/0.89 0.62/0.39
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corresponding main effects was equal to 0.82/0.10. The adaptive lasso (LRT) outper-
formed the other competitive approaches by the best FDR/FNR balance for interac-
tions (0.32/0.00), and for corresponding main effects (0.29/0.42).

When comparing the selection performance of the different methods in increas-
ing the number of true predictive biomarkers from 1 (scenario 3) to 10 (scenario 4), 
one important result is the behaviour of the adaptive lasso (SW) with respect to the 
adaptive lasso (LRT). The performance of the former decreases while that of the latter 
is comparable in terms of FDR of both interactions and corresponding main effects 
(Figs. 1 and 2).

Overall, the �C-statistics estimated on the training set and for the different methods 
are similar within a scenario since all methods selected the true biomarker-treatment 
interactions (Additional file 1: Fig. S1A) and the coefficients of the selected false inter-
actions are close to zero (data not shown). On average �C-statistics were around 0.2 
(scenario 2), 0.5 (scenario 3) and 0.27 (scenario 4) and it decreases very slightly on the 
validation set. For this scenario 4, we observed that the adaptive lasso (SW) method had 
an estimated �C-statistics in the training set higher than 0.3 due to a higher number of 
selected false interactions than the other methods (overfitting). The difference in sce-
nario 3 compared to the scenario 2 is explained by the higher number of true biomarker-
treatment interactions selected. The reason of a decreasing �C-statistics in scenario 4 
compared to scenario 3 is due to lower regression coefficients of selected interactions 
(lower interaction strength). The predictive performance of the selected models, evalu-
ated by the C-statistic on the training set (Additional file 1: Fig. S1B), is globally similar 
across the different approaches within a scenario: around 0.65 for scenario 2, 0.75 for 
scenario 3 and 0.85 for scenario 4 with a large variability for the adaptive lasso (SW). It 
slightly decreases on the validation set with a distribution of C-statistic quasi-identical 
between the approaches for a given scenario except for the adaptive lasso (SW) in sce-
nario 4 for which the decrease is more marked. The property of favoring the hierarchical 
interaction constraint for the adaptive Lasso (SW and LRT) did not translate into higher 
C-statistic values.

When increasing the number of biomarkers in scenario 4 (p from 500 to 5000 biomark-
ers), called scenario 4b, the main differences are (1) the gel approach favored mostly the 
hierarchical biomarker-treatment interaction constraint with nPo/nPe > 70% followed by 
the adaptive lasso (LRT and SW) with nPo/nPe < 50% (Additional file 1: Table S1), and 
(2) the adaptive lasso (SW) selected a higher number of false interactions. In terms of �
C-statistics evaluating the strength of interaction, we observe similar results as in sce-
nario 4 (with p=500) but with a larger difference between the training and validation 
for the adaptive lasso (SW) (Additional file 1: Fig. S2A). Only the adaptive lasso (ridge) 
reports a small value for this �C-statistic since it selects the smallest number of interac-
tions among all approaches (Additional file 1: Table S1). The c-statistics estimated on the 
training set (Additional file 1: Fig. S2B) are similar across the different approaches except 
for the adaptive lasso (ridge) yielding a smaller c-statistic with a large variability. It is 
explained by the small number of true interactions selected by this approach (Additional 
file 1: Table S1). Although the c-index is slightly lower on the validation set as compared 
to the training set for the two approaches with the higher FDR i.e. the adaptive lasso 
(SW) and (ridge), the c-statistics are quite similar between the training and validation 
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sets. This trend is consistent across the alternative scenarios and could be explained by 
the similar way the training and validation sets are generated with strong effect sizes 
among candidate biomarkers with a specific correlation structure (see subsection Data 
simulation). Compared to scenario 4 (with p = 500), the c-indices of scenario 4b (with p 
= 5000) are numerically smaller but still in the same range illustrating the ability of these 
approaches to capture the true signal (characterized by the effect size of true biomarkers 
and correlation patterns) and distinguish this signal from the noise (characterized by the 
high number of biomarkers unrelated to the outcome) in the simulations we performed.

Application
We illustrated the proposed approaches on data from a National Surgical Adjuvant 
Breast and Bowel Project (NSABP) B-31 randomized controlled trial evaluating the 
effect of adjuvant trastuzumab on the distant-recurrence free survival (DRFS) in patients 
with early breast cancer [41]. A total of n = 1574 patients were randomized into two 
treatment arms: chemotherapy alone (C arm, n = 795 ) and chemotherapy plus tras-
tuzumab as adjuvant therapy (C + T arm, n = 779 ). The censoring rate was 73% (431 
events for DRFS) and the 5-year DRFS was 65% [95% CI: 61% -68%] and 84% [95% CI: 
81% -86%] for patients in arms C and C+T, respectively (Fig. 3). Trastuzumab in combi-
nation with chemotherapy significantly improved DRFS compared with chemotherapy 
alone with a HR = 0.46 [95% CI: 0.38 -0.56]. The proportional hazards assumption was 
not violated. However, this effect may not be the same across the study population, and 
the benefit of adding trastuzumab could varied due to the presence of gene-treatment 
interactions. Gene expression data had been collected for p = 462 genes and thus 462 
potential gene-treatment interactions of potential interest.
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The objective of this application is to identify gene-treatment interactions and the 
corresponding main effects of these genes which predict the response of trastuzumab 
in patients diagnosed with early breast cancer. To address the well-known problem of 
instability of the lasso approach on the optimal � and thus the selected model resulting 
to the fold assignment of the cross-validation process [42], we performed 500 replica-
tions by randomly dividing the dataset into a training set (60% of the original data) and a 
validation set (40%) each time. For evaluating the respect or not of the hierarchical inter-
action constraint, we calculated, on the training set, the proportion of selected mod-
els containing both the gene-treatment interaction with its corresponding main effect 
among the selected models containing the gene-treatment interaction (with or without 
its corresponding main effect). The closer the proportion is to 1, the more the hierarchi-
cal gene-treatment interaction constraint is favored in the selection procedure. We also 
calculated, like in the simulation study, the concordance index, �C-statistic, between the 
experimental and control arms on the validation set and the overall concordance index, 
C-statistic, of the selected models.

Figure  4 shows the genes for which the interaction with treatment is selected in 
at least 20% of the 500 replicates (100/500) by each method. The x-axis ranks the 
genes most selected by the different methods down to the least selected and the 
y-axis ranks the method that selects the fewest gene-treatment interactions down 
to the one that selects the most. Each square corresponds to a gene whose inter-
action with treatment is selected. The intensity of the color is proportional to the 
percentage that the model with a gene-treatment interaction and its main effect are 
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selected among all models selecting this gene-treatment interaction term (property 
of respecting the hierarchical constraint). This also characterizes the property of 
the hierarchical constraint. Overall, the adaptive lasso methods with ridge weight-
ing and SW weighting identified the highest number of gene-treatment interaction 
with 10 and 7, respectively. Among these genes, the adaptive lasso (SW) favors the 
gene-treatment interaction constraint more than the adaptive lasso (ridge) method. 
Indeed, the proportion of model selection that includes both gene-treatment inter-
actions with its corresponding main effects varies from 28.2% for the C16orf14 gene 
to 98.8% for the MED13L gene. In contrast, the highest proportion obtained with 
the adaptive lasso (ridge) is less than 50.6% (KRTAP2.4 gene). This means that the 
adaptive lasso (ridge) method selects more often the gene-treatment interaction 
only. The gel method selected only 1 gene (LOC400590) whose proportion of model 
selection with both a gene-treatment interaction and main effect is 100%. The adap-
tive lasso with LRT weighting method selected the C16orf14 gene respecting the 
property with a proportion of 9.9%. The SGL and cMCP methods selected no gene-
treatment interactions more than or equal to 20% of 500 iterations.

When increasing the cut-off of selection of gene-treatment interaction model 
(with or without main effect) to 40 and 50%, the number of identified genes sub-
stantially decreases for all methods. Only the adaptive lasso (ridge) and (SW) meth-
ods have identified gene-treatment interactions respecting the property. Indeed, 
the adaptive lasso (SW) have selected 3 genes (SIAH2, KRTAP2.4, CD9) and the 
adaptive lasso (ridge) only the C16orf14 gene. No method has selected interactions 
above the cut-off of 50% (data not shown). Among the gene-treatment interactions 
selected, several articles [43–45] have reported that down-regulation of CD9 is asso-
ciated with increased aggressiveness of breast carcinoma. Jansen et al. [46] showed 
that the SIAH2 protein is a predictor of disease progression in ER-positive breast 
cancer after tamoxifen treatment. Notably, SIAH2 messenger RNA is significantly 
associated with ER protein levels in primary breast tumors. In another example, 
Chan et al. [47] noted that SIAH2 protein levels were mostly upregulated in ER-neg-
ative breast cancer and that overexpression of SIAH2 was associated with unfavora-
ble survival.

In terms of the concordance index, the strength of the selected interactions is 
globally not very high since the maximum of the mean of the Uno � C statistic is 
about 0.16 (Fig.  5A). This is reached with the adaptive lasso (SW) and gel meth-
ods. These two methods correspond to the approaches that most favor the hierarchi-
cal constraint for at least one gene when compared with the other competitors. The 
gel method selected interactions with relative high regression coefficients, whereas 
the adaptive lasso (SW) method selected 10 times more gene-treatment interac-
tions but with lower regression coefficients (Additional file  1: Fig. S3). To a lesser 
degree, the adaptive lasso (ridge) and the adaptive lasso (LRT) methods had an aver-
age of �C-statistic equal to 0.13 and 0.11, respectively. These two methods have �
C-statistic values close to those of the adaptive lasso (SW) method, except that 
the adaptive lasso (LRT) method selects fewer interactions than the last two. This 
explains the lower median and mean �C-statistic than these other two methods. 
As expected cMCP and SGL methods had a mean �C-statistic close to 0 (0.07 and 
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0.05, respectively). While the former selected the lowest number of gene-process-
ing interactions, the latter selected the lowest regression coefficients of interactions 
(close to 0). Figure 5B shows the distribution of the predictive performance (C-sta-
tistic) of the selected models by the different approaches on the validation sets. The 
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two adaptive lasso approaches (SW and ridge) which identified the largest number 
of gene-treatment interaction (Fig.  4) have numerically similar C-statistic average 
compared to other approaches.

Discussion
In this study, we proposed two weighting schemes for the adaptive lasso method 
for time-to-event outcomes to favor the biomarker-treatment interaction hierarchi-
cal constraint. For this purpose, we created groups composed of the biomarker main 
effect and its interaction with the treatment, and then performed a two-level selection 
of the groups and within the groups while favoring the hierarchical interaction con-
straint. The first weight was defined by the inverse of the Wald statistic of interaction 
and is identical for each component of the group. The second extension used a weight 
defined by the partial likelihood ratio test inversely proportional to the strength of 
the interaction between biomarker and treatment. These two adaptive lasso methods 
were compared through a simulated study to the adaptive lasso (ridge), cMCP, gel and 
SGL methods in terms of selection performance and strength interactions. Overall, 
the results indicated that the two proposed adaptive lasso methods (Single Wald and 
Likelihood ratio test) and gel favor more the hierarchical constraint of biomarker-
treatment interaction compared to the other methods. They are characterized by a 
higher ratio between the number of selected main effects of the biomarkers and the 
number of its selected interactions. They yield the lowest FNR for main effects under 
all scenarios, but may entail a high FDR of selected interactions compared to other 
methods i.e. a high probability to select interactions which are noninfluent. This is 
the case, except for gel method, for situations where only one true predictive marker 
exist (possible situation in practise, scenario 2) and for situation where several predic-
tive and prognostic biomarkers exist (less probable situation in practise, scenario 4 
and 4b). All methods were consistent in selecting the true interactions but had more 
difficulties when prognostic biomarkers exist (scenario 4 and 4b). This is shown by 
the decrease of the difference of the Uno C-statistic between the two treatment arms 
from scenario without prognostic biomarkers (scenario 3) to scenario with 10 prog-
nostic biomarkers (scenario 4). Finally, the general findings of the Wald weighting-
based adaptive lasso were also found through the analysis of a randomised clinical 
trial in breast cancer patients. A high number of interactions were selected favoring 
the selection of its main effects but the robustness analysis with different cut-offs in 
the selection procedure suggested that some of gene-treatment interactions are prob-
ably false.

The idea of selecting more or less biomarker main effect when its interaction is 
selected in high-dimensional data is not new. Bien et al. [8] addressed this point in 2013 
for Gaussian and binary outcomes and recently in Du et al. [16] investigated this topic 
in the context of RCTs. These authors proposed to use a more restrictive condition on 
the selection of interactions and corresponding main effects since they automatically 
force the latter when the former is selected. In addition, there are other parsimonious 
approaches such as [48, 49] that model important variables that interact with the treat-
ment but without the constraint of hierarchical interaction.
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In our work related to high-dimensional data analysis, we focused a priori on methods 
that favor the biomarker-treatment interaction hierarchy without necessarily forcing the 
main effect to be included in the final model in order to find a compromise between 
general parameter sparsity and the hierarchical constraint. An interesting extension of 
this work for low to middle-dimensional data problems would therefore consist of com-
paring the proposed approaches with approaches that force the hierarchical constraint 
[16] in simulated situations where hierarchical and no hierarchical structure is satisfied. 
In the setting of a randomized trial, however, biomarkers with interaction effects should 
often, but not always, have prognostic effects [50]. Despite the inherent limitations of 
simulations due to their arbitrary nature in the choice of parameters and scenarios, some 
recommendations can be drawn from our results. When we expect a low number of pre-
dictive biomarkers, the adaptive lasso with Single Wald weighting may be of interest. 
Otherwise, if we expect both a high number of predictive and prognostic biomarkers, the 
adaptive lasso with likelihood ratio test weighting seems the most appropriate approach. 
Although this article focuses on censored time-to-event outcomes and the Cox semi-
parametric model, the approaches presented can be applied more generally to other 
types of outcomes (such as binary or continuous) and other models (as logistic or linear 
models). As perspectives of further work research, it could be also interesting to investi-
gate the consideration of predictive pathways (i.e. group of biomarkers interacting with 
the treatment) in the selection procedure combined with the hierarchical constraint. A 
possible approach is to consider weights for the adaptive lasso method that take into 
account both the pathway information and the individual biomarker information. For 
the sake of simplicity, we assumed a log-linear relationship between the biomarkers and 
the risk of the occurrence of the outcome. Incorporating the generalized additive model 
selection [51, 52], which allows a greater flexibility by fitting sparse generalized additive 
models in high-dimension with l1 penalty, could generalize the methods that we inves-
tigated to overcome the log-linear assumption. To control the false positive rate of the 
proposed approaches in this paper, we could adapt the approach of Wang et al. [50] to 
the hierarchical constraint setting. This approach was developed to identify biomarker-
treatment interactions in randomized clinical trials with control of familywise error rate. 
The authors used a screening procedure employing two independent stages: a stage 1 for 
screening biomarkers and a stage 2 to test treatment interaction on the biomarkers that 
passed the screening.

In conclusion, we proposed specific weightings with the adaptive lasso for addressing 
the recent question of hierarchical constraint of interaction in high dimensional data for 
censored outcomes. These approaches may be of particular interest for the research of 
putative biomarkers-treatment interactions which is more and more investigated in ran-
domized clinical trials.
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