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Abstract

Background: Rifampicin (RIF) resistance in Mycobacterium tuberculosis is frequently caused
by mutations in the rpoB gene. These mutations are associated with a fitness cost, which can

be overcome by compensatory mutations in other genes, among which rpoC may be the most
important. We analyzed 469 Peruvian M. tuberculosis clinical isolates to identify compensatory
mutations in rpoC/rpoA associated with RIF resistance.

Methods: The M. tuberculosis isolates were collected and tested for RIF susceptibility and
spoligotyping. Samples were sequenced and aligned to the reference genome to identify
mutations. By analyzing the sequences and the metadata, we identified a list of rpoC mutations
exclusively associated with RIF resistance and mutations in rpoB. We then evaluated the
distribution of these mutations along file protein sequence and tridimensional structure.

Results: One hundred and twenty-five strains were RIF susceptible and 346 were resistant.
We identified 35 potential new compensatory mutations, some of which were distributed on the
interface surface between rpoB and rpoC, arising in clusters and suggesting the presence of
hotspots for compensatory mutations.
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Conclusion: This study identifies 35 putative novel compensatory mutations in the B’ subunit

of M. tuberculosis RNApol. Six of these (S428T, L507V, A734V, 1997V, and V1252L M) are
considered most likely to have a compensatory role, as they fall in the interaction zone of the two
subunits and the mutation did not lead to any change in the protein’s physical-chemical properties.
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Introduction

Tuberculosis (TB) is the leading cause of death by a single infectious agent worldwide.[!]
With an average of 27,000 new cases per year, Peru has the second highest rate of TB in

the Americas; thanks to a national TB control program,[?] the incidence of TB has decreased
since 2000 by 1.6% per year.[3!

Rifampicin (RIF) is one of the most important drugs in the treatment of TB, and resistance
to RIF threatens the success of TB control programs globally.[4] In 2017, the WHO reported
more than 159,000 cases of RIF-resistant TB including 1,508 in Peru.l5] In the same year,
about 390,000 new cases of multidrug-resistant TB (MDR-TB) were reported worldwide.[?!
In the preceding decade, the average number of reported cases per year in Peru exceeded
1,100, with a trend toward an increase in the later years.[6]

RIF causes bacterial cell death by binding to the B-subunit of the bacteria’s RNA
polymerase (RNApol), blocking RNA transcription, and inhibiting gene expression.[7-10]
Mutations in rpoB, the gene encoding the Mycobacterium tuberculosis RNApol B-subunit,
have been shown to be the main cause of RIF-resistant microorganisms.[* Moreover, the
RIF resistance-determining region (RRDR) is an 81 bp region in rpoB within which 95% of
all known RIF-resistant mutations are found.[11] Many studies have examined the structural
variations of rpoB mutants and their association with drug binding.[X21 Escherichia coli
distinct species of Salmonella, Thermus, and Mycobacterium have been the most studied
models for RIF resistance to date.

Mutations in rpoB have been found to be associated with reduced fitness of the affected
strain. Several studies have demonstrated that the fitness loss due to rpoB mutations can
be compensated for by other mutations, which may consequently be positively selected.
These mutations have been mainly identified in the rpoC and/or rpoA genes which are
responsible for coding the B’ and a.-subunits of the RNApol complex, respectively, and
which interact closely with rpoB.[8:10.13-15] Several compensatory!13.14.16-19] and putative
compensatory[29-23] mutations in these two genes have been described, mostly in rpoC,
and including the V483A and L516P mutations that have been extensively described in M.
tuberculosis.[16:19.20.23]

In this study, we analyzed rpoA, rpoB, and rpoC gene sequences from 469M. tuberculosis
clinical strains, recovered from unrelated TB patients from Peru, to identify compensatory
mutations in rpoC/rpoA genes associated with RIF resistance. Characterization of these

mutations will improve our understanding of the mycobacterial compensatory mechanisms
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that allow them to overcome the fitness cost associated with rpoB mutations and thereby
enable the survival and ongoing transmission of RIF-resistant strains. Furthermore, this
study could provide insight into evolutionary processes, leading to RIF resistance in TB.

Methods

Selection of strains and rifampicin-susceptibility testing

We selected 469 well-characterized MTB strains, isolated from unrelated TB patients in
hospitals from Callao and South Lima, Peru, between 2009 and 2013. These were collected
and selected as part of two large studies that have been described previously:[24] one was

a population-level study and the other a household follow-up study. The MODS assay was
used to confirm TB infection and determine RIF susceptibility. MODS is a highly sensitive
(98%) and specific (98.6%) tool that can both diagnose TB and detect drug resistance by
determining the presence or absence of bacterial growth under a fixed drug concentration,
and is approved for routine clinical use.[24-26]

The genotypes of these isolates have previously been studied using spoligotyping,[24 which
characterizes mycobacterial strains according to their hybridization patterns.[2427] Thus, in
this study, we also evaluated the association between RIF resistance and the spoligotype.

Sequences and mutations

The rpoA, rpoB, and rpoC gene sequences, and mutations in these genes compared to

the wild-type reference strain H37Rv (GeneBank: NC_000962) were obtained from the
complete genome sequences attained previously.[24] Briefly, samples were sequenced on the
Illumina MiSeq platform (150 bp paired-end reads) and aligned to the reference H37Rv
genome using standard methodology.

Mutations in rpoA and rpoC associated with rifampicin-resistant strains

The 469 strains were classified as RIF susceptible or RIF resistant according to their MODS
result. Each group was subclassified based on the presence or absence of at least one
mutation in the rpoB gene. Each of these four groups was further subclassified based on the
presence or absence one or more mutations in rpoA or rpoC.

To identify possible compensatory mutations in rpoC, we selected the RIF-susceptible
strains with mutations in rpoC and a wild-type rpoB gene, regardless of the presence or
absence of mutations in rpoA (set A). We also selected the RIF-resistant strains harboring
mutations in rpoC and any mutation in rpoB, regardless of rpoA status (set B). After
removing all rpoC mutations from set B that were also present in set A, we obtained a list of
rpoC mutations exclusively associated with RIF resistance and mutations in rpoB. The same
approach was applied to mutations in rpoA.

rpoA and rpoC compensatory mutations reported elsewhere

A literature search was performed to identify any mutations in rpoC or rpoA that have
previously been associated with RIF resistance and rpoB mutations and have been shown
experimentally to be compensating for a loss of fitness.[1314.16-23] These were compiled into
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a list, based on which we were able to classify the mutations identified in this study as either
previously reported or as potentially novel.

Distribution of potentially novel compensatory rpoC mutations along the protein sequence

The distribution of rpoC mutations was represented in a linear histogram, which indicated
an equitable amino acid spread along the complete sequence of the protein. The B’ subunit
(coded by rpoC) sequence comprises 1,300 amino acids, and the histogram was built on
blocks of 100 amino acids. Previously reported rpoC mutations and mutations identified

in this study were mapped separately. Peruvian mutations that had already been reported
elsewhere were marked. This analysis was not performed for mutations in rpoA because of
insufficient mutations, either previously reported or identified in this study.

Distribution of potentially compensatory rpoC mutations on the three-dimensional
structure of Mycobacterium tuberculosis RNA polymerase

To better understand the mechanism of action of the potentially compensatory rpoC
mutations, these were mapped onto the recently published crystal structure of the M.
tuberculosis RNApol transcription initiation complex[28] (PDB ID: 5UHD). The structures
were visualized and analyzed using VMD.[2% First, all of the putative compensatory rpoC
mutations were mapped onto the structure. Then, the mutations unique to this study were
differentiated from those reported previously.

We visualized the distribution of the mutations in the B’ subunit (coded by rpoC) that fell
within the region of the surface that interacts with the  subunit (coded by rpoB). To identify
the residues of physical importance in the B subunit, we identified those that arise within
5.0-6.0 A of these rpoC mutations.

Results

Determination of mutations in rpoB, rpoA, and rpoC

Among the 469 genomes analyzed [Table 1], we found 125 (27%) to be RIF sensitive and
346 (74%) to be RIF resistant according to the MODS assay [Figure 1]. We schematically
distributed the strains according to their sensitivity to RIF, mutations in rpoB, and mutations
in rpoC/rpoA [Figure 1]. 237 (50.5%) strains harbored mutation (s) in rpoC and/or rpoA.
322 (93.1%) RIF-resistant strains harbored at least one mutation in rpoB.

175 (54%) strains that were RIF resistant and harbored mutations in rpoB had at least
one mutation in rpoA or rpoC, suggesting that these may be compensatory mutations. 41
(41.8%) RIF-susceptible strains with no mutations in rpoB had at least one mutation in
rpoC or rpoA. The presence of these 41 mutations may suggest the occurrence of random
mutations, not necessarily associated with bacterial fitness.

Strikingly, 11 RIF-susceptible strains of different spoligotypes harbored rpoB mutations in
the critical region (RRDR) [Table 1]. These mutations represent 3.4% of the 327 strains
harboring a mutation in the RRDR. Five of these 11 strains also harbored the G594E
mutation in rpoC [Table 2]. Notably, G594E appears only in the Haarlem genotype among
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these strains. This suggests that a very small percentage (3.4%) of mutations in the RRDR
may not be associated with RIF resistance.

Rifampicin susceptibility and genotyping
The distribution of RIF-resistant strains (i.e., the RIF-resistant/RIF-susceptible strains ratio)
was similar (1.4-4.6) within the different spoligotype clades [Figure 2]. This suggests that
our investigation is not biased toward a specific genotype. LAM was the predominant
genotype (54.4%), followed by Haarlem (17.3%), other small clades and T (10.03%),
Beijing (7.3%), Caprae (0.64%), and finally Bovis and EAI2-Manilla (0.21%).

Mutations in rpoA and rpoC associated with rifampicin resistant strains

The first group generated for analysis [setA, Supplementary Table 1] comprised a total of 43
strains, while the second group [set B, Supplementary Table 2] comprised 176 strains. Both
groups had a variety of rpoC mutations, as depicted in Figure 3.

Interestingly, G594E appeared in both groups, being related to strains associated with
RIF resistance and mutations in rpoB, but also to strains with a wild-type rpoB and RIF

susceptibility. Other studies also found this mutation and excluded it from their analyses.
[14,16,17,20,22,23]

Forty-four mutations found exclusively in set B [bold in Figure 3] were considered to be
potentially compensatory. Nine (22%) of these mutations have been previously described
[Supplementary Table 3]: N698K,[171 1491V,[17] H525Q,[17] P1040R,[17] L516P,[16.19]
V1252M,[171 vv483A [16.19] \/483G, [16.17.19] and /1252 L.[17] The remaining 35 (78%) were
novel.

Only three mutations in the rpoA gene were found (T187A, G31S, and V183G), all of
which have been reported elsewhere.[16:17.19] Our literature search identified a total of 29
compensatory mutations in rpoA.

Distribution of the potentially compensatory mutations along the rpoC protein sequence

A high frequency of mutations occurred between amino acids 400-500, 500-600, and 1000-
1100 (a total of 21 mutations) [Figure 4], suggesting the existence of hotspots. 47% of all the
potentially compensatory mutations proposed in this study arose in these regions. E49A and
P54 L were isolated from the rest, located within the first 200 amino acids of the protein.
The distribution of the mutations found here and those reported previously was found to be
remarkably similar (£ = 0.2318, Kolmogorov—Smirnov nonparametric test).

To better analyze this distribution, we classified the amino acids into the following groups:
basic (R, K, and H), acidic (D and E), polar (G, S, Y, C, Q, T, and N), and nonpolar (F, L,
W, P, I, M, V, and A). Based on this, we found that 54% of the potentially compensatory
mutations found in rpoC preserve their physical-chemical properties despite the amino acid
change.
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Distribution of the potential compensatory rpoC mutations on the three-dimensional
structure of Mycobacterium tuberculosis RNApol

The potentially compensatory mutations that we described above [Supplementary Table 3]
were mainly distributed on the surface of the three-dimensional (3D)-crystal structure of the
B’ subunit (82%), and 9 were buried below the surface [Figure 5]. Only one of the buried
mutated sites, H525Q, has been previously reported to be compensatory.[17] E49A, which
was visibly separated from the rest in the primary structure of rpoC, can be seen on the side
of the subunit 3D-structure, distant from the main cluster of mutations [Figure 5].

B’ RNApol has a domain that resembles the shape of an “arm” that hosts a particularly
large number of mutations. The “arm” is best visible on the right side of the structure
[Figure 6]. Our data show that some of the putative compensatory mutations fall in similar
spots as those that have been previously reported, in particular those located in this “arm”.
Interestingly, the reported mutation P54 L appears hidden below the surface along with
E49A [Figure 6]. We also found that two of the proposed mutations, G332R and W484S,
occur in regions where other mutations have already been reported.

The 3D-crystal structure of B’ interacting with the B subunit confirms that several mutations
fall in the regions of interaction (S428T, L507V, A734V, 1997V, and V1252 LM) [Figure 7].
These represent 13.5% of the surface mutations. All of the putative compensatory mutations
that we identified in the rpoC/rpoB contact surface conserved their physical-chemical
properties during the amino acid change [Figure 7].

Discussion

This study describes 35 novel mutations in rpoC, associated with RIF resistance and rpoB
mutations, detected in Peruvian clinical isolates of M. tuberculosis. These mutations may
serve to compensate for any loss of fitness caused by a mutation in rpoB, as reported in other
studies.[8:10.13-15] Of note, some were found to be associated with controversial mutations in
rpoB that have been identified in RIF-susceptible MTB strains.

The similarity in the distribution of the potentially compensatory rpoC mutations found in
Peru compared to those reported elsewhere is striking. The spatial distribution along the
protein sequence reveals a similar, almost mirrored pattern, suggesting that compensatory
mutations in rpoC preferentially occur in certain positions. These cluster-like regions could
be related to functional aspects of the protein or may be structurally critical. According

to the Pfam protein domain family database,[30-32] these high-frequency mutation zones
correspond to specific domains. The first zone (amino acids 400-500, second domain)
contains the protein’s active site, the second zone (amino acids 500-600, third domain)
contains the pore thought to act as a channel for nucleotides, and the third zone (amino
acids 1000-1100, fifth domain) includes the discontinuous cleft required to form the channel
where DNA is bound. Mutations occurring in these critical regions may cause significant
changes in function.

Surface mutations are more likely to interact with other subunits at a quaternary structure
level or with other proteins. Furthermore, a surface mutation would not significantly affect
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the tertiary structure of the protein, whereas a deep mutation may destabilize the whole
subunit. Thus, it would be favorable for compensatory mutations to be located on the surface
of the protein, even more on the interaction sites. In our study, the position of the novel
mutations on the crystal structure revealed that 82.2% fall on the surface of the B’ subunit.

Moreover, only six mutations were found in the region of interaction between the surfaces
of B and B, which constitute our most likely candidates for compensation, as a mutation at
this site would produce a conformational change sufficient to affect the binding between the
subunits but not significant enough to disrupt the inner core. Two of these six mutations have
already been reported, and although W484S was not found in the literature, W484G/C has in
fact been previously described. Moreover, as noted before and according to our expectations
that mutations would result in minimal (but significant) structural changes, every mutation
that we reported as a candidate conserves the physical-chemical properties of the original
amino acid, favoring the maintenance of the protein’s stability.[33] Several mutations found
in this study are very close to mutations reported elsewhere, and in some cases, even at the
same position. This may also indicate the preference of certain locations for the emergence
of compensatory mutations.

Only 20.5% of the mutations that we identified coincided with previously reported
compensatory mutations.[16:17.19] Thjs is likely to be due to the large genotypic diversity
among Peruvian M. tuberculosis strains. Of note, in our study, most of the isolates (250)
corresponded to the “LAM?” spoligotype.

We identified just three mutations in rpoA, which is thought to be, along with rpoC, the
most important site of RIF-resistant compensatory mutations. All three have been previously
reported. This is in keeping with previous findings that the majority of compensatory
mutations arise in rpoC,[16.17.19] syggesting that these may be more effective at recovering
loss of fitness arising from mutations in rpoB.[16.21-23]

Furthermore, we found mutations in rpoC that were not associated with any mutations in
rpoB but were present in RIF-resistant strains. It is likely that the appearance of these
mutations is random, but further studies are necessary to clarify their true nature.

We reported 11 RIF-susceptible strains harboring mutations in the RRDR, with 5 harboring
rpoC G594E [Table 2]. This is unlikely to be due to incorrect DST results, as MODS is a
highly sensitive (98%) and specific (98.6%) method.[26] Rather, this finding led us to further
analyze our data in search of patterns in the distribution of rpoC G594E. We found it to

be present in 17.3% of RIF-resistant and 39.8% of RIF-susceptible strains, being by far the
most common mutation. G594E has been described in strains with no rpoB mutations and is
a SNP present in all strains from a group within the Haarlem genotype, which would mean
that it arises independently of rpoB mutations and RIF resistance. Taken together, these

features make it unlikely that G594E is associated with drug resistance, as broadly stated
before.[14.16,17,20,22,23]

In view of this, we found G594E in both of our analysis groups: set A (rpoC mutations

in RIF-susceptible strains without rpoB mutations) and set B (rpoC mutations in RIF-
resistant strains harboring rpoB mutations). Furthermore, we found it in the five previously
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mentioned RIF-susceptible strains with mutations in the RRDR [Table 2]. Three of these
harbor rpoB L452P, described elsewhere.[19:34] The remaining two harbor rpoB S450M,
which is similar to the widely-known $450 L[10.17-19.34] and their described variants
S450F/Q/Y/W.[19:21,34-38] The detection of rpoB S450M is puzzling because a Ser to Met
mutation would require changes in two nucleotides (TCG — ATG), making it unlikely to
occur spontaneously. It is possible that S450F occurred first (TCG — TTG), followed by a
change from TTG — ATG, resulting in the end of a Ser to Met change. It is notable that
both amino acids are nonpolar; that is, they have similar physicochemical properties. We
could not find any other study describing S450M, so we encourage further investigation of
the role and evolution of this mutation, as our theory of its development is mere speculation.

Nonetheless, we cannot avoid discussing the dichotomy regarding the appearance of rpoC
G594E. Considering all of the above, we propose another possibility toward its appearance,
which is that under certain conditions some mutations in rpoB do not cause RIF resistance
but may still decrease the fitness of the bacteria. This would subdue the bacteria to selective
pressure, leading to the positive selection of a compensatory mutation in rpoC. Until now,
most investigations have attributed the unlikeliness of G594E being associated with drug
resistance to its uncharacteristic appearance, but believe that there may be other ways for
this to happen and thus we cannot draw any conclusions about the true nature of this
mutation until more is known.

Our study identifies mutations that may have a compensatory role, but there is a need

for experimental confirmation of the effect of each mutation as some of these are likely

to arise at random. Previous studies have used methods such as the measurement of the
catalytic activity and rate of bacterial growth.[14-18] We suggest that the use of site-directed
mutagenesis techniques, such as the emerging CRISPR-Cas9 technology,[3%] would be
useful to assess the fitness of mutant strains.

Conclusion

This study identifies 35 putative novel compensatory mutations in the p” subunit of M.
tuberculosis RNApol. Six of these (S428T, L507V, A734V, 1997V, and V1252 L M) are
considered most likely to have a compensatory role, as they fall in the interaction zone of the
two subunits and the mutation did not lead to any change in the protein’s physical-chemical
properties. Further studies assessing the fitness change in strains harboring these mutations
are needed to confirm their potential compensatory role. In addition, it would be interesting
to evaluate the evolutionary relationship of the various SNPs found in this study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Financial support and sponsorship

This research was funded by the Wellcome Trust (Ref: 099805/2/12/Z), the Grand Challenge Canada (GCC
Number 0687-01-10), and the LOREAL-UNESCO-CONCYTEC 2014 award.

PS was supported by a Wellcome Trust Intermediate fellowship.

Int J Mycobacteriol. Author manuscript; available in PMC 2023 March 17.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Vargas et al.

Page 9

References

1. World Health Organization. World Health Statistics 2016: Monitoring Health for the SDGs,

Sustainable Development Goals. Geneva: World Health Organization. Available from: https://
apps.who.int/iris/bitstream/handle/10665/324835/9789241565707-eng.pdf7ua=1. [Last updated on
2020 Jan 13; Last accessed on 2019 Jan 20].

2. Silva C, Bermudez V, Arraiz N, BermUdez F, Rodriguez M, Valdelamar L, et al. FArmacos

de primera linea utilizados en el tratamiento de la tuberculosis. Arch Venez Farmacol Y Ter
2007;26:21-6.

3. World Health Organization. Global Tuberculosis Report. Geneva: World Health Organization

Available from: https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?
ua=1. [Last updated on 2020 Jan 13; Last accessed on 2019 Jan 20].

4. World Health Organization. Tuberculosis. Available from: https://www.who.int/en/news-room/fact-

sheets/detail/tuberculosis. [Last updated on 2020 Jan 13; Last accessed on 2019 Jan 20]

5. World Health Organization. Drug resistant TB-Data by WHO Region. Available from: http://

apps.who.int/gho/data/view.main.MDRTBWHOREG?lang=en. [Last updated on 2020 Jan 13; Last
accessed on 2019 Jan 20]

6. Ministry of Health. Lima: Analysis of the Epidemiological Situation in Peru. Available from: http://

bvs.minsa.gob.pe/local/MINSA/3446.pdf. [Last updated on 2020 Jan 13; Last accessed on 2019 Jan
20]

7. Mendoza L, Rodriguez H, Rodriguez E, Tarazona C. Conocimientos béasicos sobre antibacterianos.

1st ed. Maracaibo: Editorial Astro Data; 1999. p. 73-5.

8. Koch A, Mizrahi V, Warner DF. The impact of drug resistance on Mycobacterium tuberculosis

physiology: What can we learn from rifampicin? Emerg Microbes Infect 2014;3:e17. [PubMed:
26038512]

9. Hughes D, Brandis G. Rifampicin resistance: Fitness costs and the significance of compensatory

evolution. Antibiotics (Basel) 2013;2:206-16. [PubMed: 27029299]

10. Alifano P, Palumbo C, Pasanisi D, Tala A. Rifampicin-resistance, rpoB polymorphism and RNA
polymerase genetic engineering. J Biotechnol 2015;202:60-77. [PubMed: 25481100]

11. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, et al. Detection
of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993;341:647-50.
[PubMed: 8095569]

12. Goldstein BP. Resistance to rifampicin: A review. J Antibiot (Tokyo) 2014;67:625-30. [PubMed:
25118103]

13. Brandis G, Hughes D. Genetic characterization of compensatory evolution in strains carrying
rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. J
Antimicrob Chemother 2013;68:2493-7. [PubMed: 23759506]

14. Song T, Park Y, Shamputa IC, Seo S, Lee SY, Jeon HS, et al. Fitness costs of rifampicin
resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and
compensated by mutation in the B’ subunit of RNA polymerase. Mol Microbiol 2014;91:1106-19.
[PubMed: 24417450]

15. Mariam DH, Mengistu Y, Hoffner SE, Andersson DI. Effect of rpoB mutations conferring
rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob Agents Chemother
2004;48:1289-94. [PubMed: 15047531]

16. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, et al. Whole-genome sequencing
of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in
RNA polymerase genes. Nat Genet 2011;44:106-10. [PubMed: 22179134]

17. Cohen KA, Abeel T, Manson McGuire A, Desjardins CA, Munsamy V, Shea TP, et al.
Evolution of extensively drug-resistant tuberculosis over four decades: Whole genome sequencing
and dating analysis of Mycobacterium tuberculosis isolates from kwazulu-natal. PLoS Med
2015;12:€1001880. [PubMed: 26418737]

18. Brandis G, Wrande M, Liljas L, Hughes D. Fitness-compensatory mutations in rifampicin-resistant
RNA polymerase. Mol Microbiol 2012;85:142-51. [PubMed: 22646234]

Int J Mycobacteriol. Author manuscript; available in PMC 2023 March 17.


https://apps.who.int/iris/bitstream/handle/10665/324835/9789241565707-eng.pdf7ua=1
https://apps.who.int/iris/bitstream/handle/10665/324835/9789241565707-eng.pdf7ua=1
https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1
https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1
https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis
https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis
http://apps.who.int/gho/data/view.main.MDRTBWHOREG?lang=en
http://apps.who.int/gho/data/view.main.MDRTBWHOREG?lang=en
http://bvs.minsa.gob.pe/local/MINSA/3446.pdf
http://bvs.minsa.gob.pe/local/MINSA/3446.pdf

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Vargas et al.

Page 10

19. Zhang H, Li D, Zhao L, Fleming J, Lin N, Wang T, et al. Genome sequencing of 161
Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated
with drug resistance. Nat Genet 2013;45:1255-60. [PubMed: 23995137]

20. Ali A, Hasan Z, McNerney R, Mallard K, Hill-Cawthorne G, Coll F, et al. Whole genome
sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis
isolates from Pakistan. PLoS One 2015;10:e0117771. [PubMed: 25719196]

21. Casali N, Nikolayevskyy V, Balabanova Y, Ignatyeva O, Kontsevaya I, Harris SR, et al.
Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res 2012;22:735-45.
[PubMed: 22294518]

22. de Vos M, Miller B, Borrell S, Black PA, van Helden PD, Warren RM, et al. Putative
compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are
associated with ongoing transmission. Antimicrob Agents Chemother 2013;57:827-32. [PubMed:
23208709]

23. Li QJ, Jiao WW, Yin QQ, Xu F, Li JQ, Sun L, et al. Compensatory mutations of rifampin
resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis
Beijing genotype strains in China. Antimicrob Agents Chemother 2016;60:2807-12. [PubMed:
26902762]

24. Grandjean L, Gilman RH, Iwamoto T, Kdser CU, Coronel J, Zimic M, et al. Convergent evolution
and topologically disruptive polymorphisms among multidrug-resistant tuberculosis in Peru. PLoS
One 2017;12:0189838. [PubMed: 29281674]

25. Caviedes L, Lee TS, Gilman RH, Sheen P, Spellman E, Lee EH, et al. Rapid, efficient
detection and drug susceptibility testing of Mycobacterium tuberculosis in sputum by microscopic
observation of broth cultures. The Tuberculosis Working Group in Peru. J Clin Microbiol
2000;38:1203-8. [PubMed: 10699023]

26. Minion J, Leung E, Menzies D, Pai M. Microscopic-observation drug susceptibility and thin layer
agar assays for the detection of drug resistant tuberculosis: A systematic review and meta-analysis.
Lancet Infect Dis 2010;10:688-98. [PubMed: 20813587]

27. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al.
Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis
and epidemiology. J Clin Microbiol 1997;35:907-14. [PubMed: 9157152]

28. Lin W, Mandal S, Degen D, Liu Y, Ebright YW, Li S, et al. Structural Basis of Mycobacterium
tuberculosis Transcription and Transcription Inhibition. Mol Cell 2017;66:169-790. [PubMed:
28392175]

29. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph 1996;14:33-
8, 27-8. [PubMed: 8744570]

30. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein
families database: Towards a more sustainable future. Nucleic Acids Res 2016;44:D279-85.
[PubMed: 26673716]

31. Severinov K, Mustaev A, Kukarin A, Muzzin O, Bass |, Darst SA, et al. Structural modules of the
large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the
beta and beta’ subunits of Escherichia coli RNA polymerase. J Biol Chem 1996;271:27969-74.
[PubMed: 8910400]

32. Cramer P, Bushnell DA, Kornberg RD. Structural basis of transcription: RNA polymerase Il at 2.8
angstrom resolution. Science 2001;292:1863-76. [PubMed: 11313498]

33. Ladunga I, Smith RF. Amino acid substitutions preserve protein folding by conserving steric and
hydrophobicity properties. Protein Eng. Des. Sel 1997;10:187-96.

34. Casali N, Broda A, Harris SR, Parkhill J, Brown T, Drobniewski F. Whole genome sequence
analysis of a large isoniazid-resistant tuberculosis outbreak in London: A Retrospective
Observational Study. PLoS Med 2016;13:€1002137. [PubMed: 27701423]

35. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, et al. Integration
of published information into a resistance-associated mutation database for Mycobacterium
tuberculosis. J Infect Dis 2015;211 Suppl 2:S50-7. [PubMed: 25765106]

36. Yang C, Luo T, Shen X, Wu J, Gan M, Xu P, et al. Transmission of multidrug-resistant
Mycobacterium tuberculosis in Shanghai, China: A retrospective observational study using

Int J Mycobacteriol. Author manuscript; available in PMC 2023 March 17.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Vargas et al.

Page 11

whole-genome sequencing and epidemiological investigation. Lancet Infect Dis 2017;17:275-84.
[PubMed: 27919643]

37. Ullah I, Ahmad W, Shah AA, Shahzada A, Tahir Z, Qazi O, et al. Detection of rifampicin
resistance of Mycobacterium tuberculosis using multiplex allele specific polymerase chain
reaction (MAS-PCR) in Pakistan. Infect Genet Evol 2019;71:42—6. [PubMed: 30890494]

38. Miotto P, Cabibbe AM, Borroni E, Degano M, Cirillo DM. Role of Disputed Mutations in
the rpoB Gene in Interpretation of Automated Liquid MGIT Culture Results for Rifampin
Susceptibility Testing of Mycobacterium tuberculosis. J Clin Microbiol 2018;56:601599-17.
[PubMed: 29540456]

39. Rock JM, Hopkins FF, Chavez A, Diallo M, Chase MR, Gerrick ER, et al. Programmable
transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform.
Nat Microbiol 2017;2:16274. [PubMed: 28165460]

Int J Mycobacteriol. Author manuscript; available in PMC 2023 March 17.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Vargas et al. Page 12

___ rpoC/rpoA mutation

rpoB mutation (12)
(27) wild-type rpoC/rpoA
RIF sensitive — (15)
(125) .
—  rpoC/rpoA mutation
wild-type rpoB (41)
(98) wild-type rpoC/rpoA
469 ‘ (57)
Genomes ___ rpoC/rpoA mutation
(175)
fpok mutation wild-type rpoC/rpoA
, (322) = (147)
RIF resistant
(346) ___ rpoC/rpoA mutation
wild-type rpoB ©)
(24) wild-type rpoC/rpoA
_ (15)

Figure 1:
Representation of our 469-strain dataset [detailed in Table 1], classified according to

resistance/susceptibility to rifampicin, presence/absence of mutations in rpoB, and presence/
absence of mutations in rpoC or rpoA. The number in brackets indicates the number of
strains with certain characteristics (i.e., there are 9 rifampicin-resistant strains that have a
mutation in rpoC/rpoA but do not harbor mutations in rpoB)
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Frequency histogram of the 469 strains divided by spoligotype and sorted according to
susceptibility to rifampicin. Red represents resistance while blue represents susceptibility.
The white numbers represent the number of strains (frequency) that belong to certain
spoligotypes and are susceptible/resistant to rifampicin. Black numbers have been added for
contrast purposes but serve the same role. Green numbers in boxes represent the ratio of
rifampicin resistant/rifampicin susceptible strains of each spoligotype
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Graphical representation of rpoC mutations in Set A (mutations in rifampicin susceptible
strains with wild-type rpoB, shown in orange on the left) and Set B (mutations in rifampicin-
resistant strains harboring rpoB mutations, shown in green on the right). Mutations in bold

are those found exclusively in Set B and thus possible compensatory mutations
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Worldwide
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Linear distribution of the identified putative rpoC compensatory mutations throughout
the protein sequence (scale: 100 amino acids per space). The upper part of the image
lists the mutations found in our analysis, while the lower part shows mutations reported
in the scientific literature. Mutations in red are those already reported elsewhere, but
not necessarily underwent experimental confirmation of compensatory behavior. Upper
mutations marked with an asterisk (*) are those already reported as compensatory by

experimental assays
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Figure5:
Crystal of the Mycobacterium tuberculosis B’ subunit (rpoC), represented according to its

surface and its secondary structure. The surface, B sheets, and a helices are shown in green,
while loops are colored gray. The mutations found in our study are either pictured in blue
patches (surface) or as Van der Waals spheres (alpha carbon of buried residues only, radius
scale = 1.4 A). The arrows in the left panel indicate the direction of the rotation of the
protein along the Y axis
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Figure6:
Crystal of the Mycobacterium tuberculosis B’ subunit (rpoC), represented by its secondary

structure. The B sheets and a helices are shown in green, while loops are colored gray.
Different types of mutations are shown in different colors, as follows: Blue for the putative
compensatory mutations found in our study, red for previously reported compensatory
mutations, yellow for mutations reported in the literature and also found in our study, and
magenta for mutations found in this study that had another amino acid change (for the
same position) reported in the literature. All the mutations are represented as Van der Waals
spheres (alpha carbon only, radius scale = 1.4 A). The arrows indicate the direction of the
rotation of the protein along the Y axis
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Figure 7:
Crystal structure of Mycobacterium tuberculosis transcription complex showing interaction

of B’ (rpoC) and B (rpoB) subunits. Proteins are represented by their secondary structure
and their surface; rpoC is shown in iceblue and rpoB is shown in red. Two DNA strands are
shown in green as a ribbon, along with a rifampin molecule in light blue (panel a) or black
(panels b- f). rpoC residues whose sites would carry compensatory mutations are marked
in yellow in Corey-Pauling-Koltun model (CPK) representation (side chain included). rpoB
residues within 5.00 A (6.00 A for panel c) of the marked rpoC residues are shown in cyan
in CPK representation. rpoC residues within that distance are shown in iceblue in CPK
representation, (a) Provides a full, general view of the interaction between the subunits,
while the rest of the panels show the putative rpoC compensatory mutations interacting with
close residues in rpoB: S428T (b), L507V (c), A734V (d), 1997V (e), V1252 LM (f). The
amino acids are indicated according to standard code, according to the subunit they belong
(yellow for rpoC, blue for rpoB)
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Table 2:

Page 35

Mutations in the rpoB critical region (rifampicin resistance-determining region) not associated with rifampicin

resistance

Strain number

Mutation Mutationin

inrpoC RRDR

Spoligotyping

14722_6#36_H37Rv
14722_6#41_H37Rv
14722_6#53_H37Rv
14892_2#11_H37Rv
14892_2#37_H37Rv
14892_2#49_H37Rv
14722_6#17_H37Rv
14722_T#75_H37Rv
14892_2#26_H37Rv
14892_2#48 H37Rv
14893 2#17 H37Rv

0 D435F
0 D435F
0 D435V
0 L452P

0 D435V
0

G594E L452P
G594E L452P
G594E S450M
G594E S450M
G594E L452P

D435Y, V695L

Beijing
Beijing
LAM
LAM
LAM

T
Haarlem
Haarlem
Haarlem
Haarlem

Haarlem

Trait present: Mutation in amino acid code, Trait absent: 0.

RIF: Rifampicin, RRDR: RIF resistance-determining region
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