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Cognitive disorders are prevalent in people with HIV (PWH) despite antiretroviral therapy. Given the heterogeneity of cognitive 
disorders in PWH in the current era and evidence that these disorders have different etiologies and risk factors, scientific rationale is 
growing for using data-driven models to identify biologically defined subtypes (biotypes) of these disorders. Here, we discuss the 
state of science using machine learning to understand cognitive phenotypes in PWH and their associated comorbidities, biological 
mechanisms, and risk factors. We also discuss methods, example applications, challenges, and what will be required from the field to 
successfully incorporate machine learning in research on cognitive disorders in PWH. These topics were discussed at the National 
Institute of Mental Health meeting on “Biotypes of CNS Complications in People Living with HIV” held in October 2021. These 
ongoing research initiatives seek to explain the heterogeneity of cognitive phenotypes in PWH and their associated biological 
mechanisms to facilitate clinical management and tailored interventions.
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Despite the success of current antiretroviral therapies (ART) in 
achieving viral suppression and improving longevity of people 
with human immunodeficiency virus (PWH), the mechanisms 
underlying human immunodeficiency virus (HIV)-associated 
neurocognitive disorders (HAND) remain poorly understood 
and effective adjunctive therapies are still lacking [1]. While 
the prevalence of HIV-associated dementia has declined with 
viral suppression on ART, milder forms of HAND remain prev
alent [1, 2]. The reported rates of HAND vary widely between 
studies of PWH who are virally suppressed, with estimates typ
ically ranging from 20% to 50% [1–7]. Given the heterogeneity 
of cognitive disorders in PWH in the current ART era and ev
idence that these disorders have different etiologies and risk fac
tors, scientific rationale is growing for using data-driven 
approaches to identify biologically defined subtypes (biotypes). 

Progress in research on blood and cerebrospinal fluid (CSF) 
biomarkers of HAND and wider availability of neuroimaging 
has further intensified interest in using data-driven approaches 
to understand biotypes of cognitive disorders in PWH.

The current research classification for cognitive disorders in 
PWH is the HAND criteria (often referred to as the Frascati cri
teria) published in 2007 [8]. These criteria rely on neurocogni
tive testing and assessment of functional ability to perform 
activities of daily living. While the HAND diagnostic scheme 
has significantly contributed to the conceptual framework for 
central nervous system (CNS) complications of HIV, method
ologies vary across studies. Furthermore, the HAND diagnostic 
scheme utilizes a symptom-based approach to meet thresholds 
for diagnosis and determination of HAND severity (asymp
tomatic neurocognitive impairment, mild neurocognitive dis
order, and HIV-associated dementia). Criteria vary across 
studies, particularly regarding the ascertainment of functional 
impairment. Moreover, potential biases in test construction 
and normative comparisons needed to establish HAND diag
noses have the potential to overpathologize cognitive impair
ment among individuals from racially/ethnically diverse 
populations [9]. Not surprisingly, studies have reported modest 
or inconsistent associations between HAND diagnostic catego
ries and neuroimaging or blood/CSF biomarkers in PWH re
ceiving ART [2].

Given the complex and highly dimensional nature of data 
available in the current era of NeuroHIV research, 
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sophisticated approaches are needed to define cognitive sub
types and their associated comorbidities, biological mecha
nisms, and risk factors, and to develop diagnostic tools and 
personalized treatments [2]. One such approach is to employ 
data-driven models (machine learning) to discover, character
ize, and explain distinct CNS biotypes among PWH, with the 
goal of discovering features to support clinical interventions. 
Data-driven models are also needed for initiatives using the 
Research Domain Criteria (RDoC) framework developed by 
the National Institute of Mental Health (NIMH) to integrate 
findings from measures of cognitive, affective, and psychosocial 
processes that cut across traditional diagnostic categories [10]. 
Applications of machine learning to understand cognitive dis
orders and mental health in PWH have enormous potential to 
advance the understanding of these disorders, but it requires 
availability of high-quality datasets, rich metadata, and com
bined expertise from stakeholders across multiple disciplines.

To review the state of the science and how to address gaps in 
knowledge, the NIMH held a virtual meeting on “Biotypes of 
CNS Complications in People Living with HIV” (21–22 
October 2021). A working group was convened to lead a session 
on machine learning to understand cognitive phenotypes in 
PWH. Here, we summarize talks and discussions led by the ma
chine learning working group on the following topics: (1) use of 
machine learning to advance the RDoC paradigm; (2) machine 
learning approaches for cognitive phenotyping in PWH; (3) 
what is required to make machine learning successful, includ
ing common data elements, high-quality datasets, and handling 
of confounds; (4) integration and harmonization of data across 
studies; and (5) validation of machine learning models. We also 
discuss how machine learning can lead to discoveries that can 
improve clinical management and development of personal
ized therapies.

THE RESEARCH DOMAIN CRITERIA INITIATIVE

The RDoC framework aims to cut across predefined diagnostic 
classifications to identify and characterize the mechanisms that 
underlie individual variability in complex mental health condi
tions, including cognitive impairment [10]. The goal of the ini
tiative is to identify novel therapeutic targets to inform the 
development and implementation of tailored prevention and 
intervention strategies. Central to the RDoC approach is the in
tegration of highly dimensional data across multiple units of 
analysis, from genes to circuits to behaviors. Traditional analyt
ic methods are not ideally suited to accomplish this task. 
Previous work in HIV-uninfected individuals with mental 
health conditions (eg, psychosis, depression) have successfully 
overcome the inherent limitations of traditional analytics via 
use of machine learning methods that identify biotypes and po
tential underlying mechanisms using data-driven clustering 
and classification algorithms.

Because RDoC is an integrated transdiagnostic system for 
understanding neurobehavioral dysfunction, it provides 
more flexibility in analysis and interpretation than the 
HAND classification scheme. Machine learning studies that 
integrate laboratory biomarkers, multimodal neuroimaging, 
cognitive performance, and psychosocial factors/comorbidi
ties may enable new insights into the diversity of cognitive 
phenotypes among PWH and reveal shared features between 
CNS disorders in PWH and other neurological and psychiat
ric disorders [11]. The combination of machine learning with 
methods for causal modeling represents a potentially power
ful approach to traversing levels of analysis (eg, from genomic 
to proteomic to metabolomic), and generating hypotheses 
about mechanisms underlying HAND. The RDoC framework 
does not specify relationships among the units of analysis, so 
investigators will need to develop prior hypotheses about pre
dicted associations to avoid problems with model misspecifi
cation and overfitting [12]. While machine learning is often 
described as an “agnostic” approach, prior work underscores 
the importance of incorporating a hypothesis-driven 
approach to machine learning applications in the behavioral 
sciences.

MACHINE LEARNING METHODS FOR 
CLINICAL PHENOTYPING

A graphical representation of machine learning to study cog
nitive phenotypes in PWH is shown in Figure 1. Machine 
learning approaches leverage large complex multimodal 
data to identify novel patterns that cannot be ascertained us
ing traditional statistical approaches. Machine learning algo
rithms vary by design, assumptions, and limitations, so 
proper selection of a method depends on the question being 
addressed and data available, including the types (categorical 
and continuous) of input features (predictors) used for 
analysis (Table 1 and Table 2) [13, 14]. In this section, we 
summarize 3 overarching categories of machine learning: 
supervised learning, unsupervised learning, and deep learn
ing (which can be trained using supervised or unsupervised 
approaches).

Supervised algorithms can be separated into classification al
gorithms for prediction of categorical outcomes (eg, cognitively 
impaired vs unimpaired) and regression algorithms for predic
tion of continuous outcomes (eg, neurocognitive scores). 
Training of algorithms consists of learning how to process 
the input features so the method can reproduce the outputs 
(outcome). Classification algorithms for categorical outcomes 
include decision trees, random forest, support vector machines 
(SVM), logistic regression, naive Bayesian models, and k- 
nearest neighbor, while algorithms for continuous outcomes 
include linear and polynomial regressions. Novel supervised 
learning methods are also being developed to understand 
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cognitive disorders in PWH [17, 19, 20]. For example, Adeli 
et al developed a novel supervised method incorporating a 
step that uses sparse classification technology to identify brain 
regions impacted by HIV that yielded better classification 

accuracy when applied to magnetic resonance imaging (MRI) 
datasets than SVM or other traditional approaches [19]. In an
other study, these investigators utilized another supervised 
method to discover altered patterns in brain MRI in people 

Figure 1. Graphical representation of machine learning to understand cognitive phenotypes in people with HIV (PWH). Machine learning is a relatively new approach for 
identifying cognitive phenotypes in PWH. Availability of multimodal data provides an opportunity to study physiological, molecular, behavioral, environmental, and external 
factors that may contribute to an individual’s phenotype. To understand cognitive phenotypes in PWH, machine learning can analyze diverse data types, including neuro
imaging, neurocognitive test performance, behavioral, and physiological data, using supervised or unsupervised approaches. A machine learning pipeline typically starts with 
a large representative dataset that has undergone data cleaning, curation, and harmonization. Features are selected/extracted from the initial dataset and used as inputs to 
train models to make classifications or predictions on a subject level. Models are then tested and validated on independent datasets. Deep learning techniques can model 
complex relationships between inputs and outputs and accept larger datasets and a wide variety of data inputs. As datasets become larger and more complex, machine 
learning methods will enable the identification of biological subtypes (biotypes) of cognitive disorders in PWH.

Table 1. Machine Learning Approaches for Clinical Phenotyping

Type of Machine 
Learning Algorithms Description

Supervised Machine learning methods that train predictive models on labeled data 
sets.

Categorical   
classification

Logistic regression, decision trees, support vector machine, 
k-nearest neighbors

Prediction of categorical outcomes using linear or nonlinear combinations 
of input data.

Continuous   
prediction

Linear regression, ridge/LASSO models, support vector 
machine, Gaussian process regression

Prediction of continuous outcomes. Input data can be continuous or 
categorical.

Unsupervised Machine learning methods that identify patterns in unlabeled data sets.

Clustering k-means, fuzzy c-means, expectation maximization, DBScan, 
Gaussian mixture model, hierarchical methods (divisive, 
agglomerative)

Machine learning approaches that group unlabeled data based on similar 
patterns of features to identify latent classes and predict class 
membership of new data.

Dimensionality   
reduction

Principal component analysis, factor analysis, linear 
discriminant analysis, backward feature elimination, 
random forests

Methods to transform data sets with many features into lower-dimensional 
forms by selecting important features or combining features to capture 
variance in the data set while preserving data relationships as much as 
possible.

Deep learning Multilayer perceptron, convolutional neural networks, 
recurrent neural networks, autoencoders

Machine learning methods that use training on artificial neural networks for 
representation learning; utilizes layers of nodes and edges resembling a 
simplified biological layered neural network to learn patterns or 
associations in large data sets by generating predictions from the input 
data and comparing them with ground truth annotations. The activation 
of a node or “neuron” depends on a weighted combination of inputs 
from the previous layer.
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with alcohol use disorder, HIV, or their comorbidity, and to 
identify diagnostic scores that predicted individual member
ship in these groups [20].

Unsupervised algorithms are useful when questions lack a 
known output, that is, where the assignment of samples to 
groups is unknown. Unsupervised learning methods include 
clustering and dimensionality reduction (Table 1). Clustering 
methods include k-means, hierarchical clustering, and latent 
class analysis, while dimensionality reduction methods include 
principal component analysis, factor analysis, linear discrimi
nant analyses, and Uniform Manifold Approximation and 
Projection (UMAP). Common outputs include a grouping or 
summary of the input features, for example predictors of cog
nitive profiles (eg, demographic features, biomarkers, clinical 
phenotypes, mental health factors, neuroimaging parameters). 
Examples of unsupervised approaches to discover cognitive 

phenotypes in PWH are discussed in more detail in the next 
section [15, 25].

Deep learning can handle a larger number of features com
pared to the approaches mentioned above. Deep learning can 
extract features informative for diagnosis directly from raw 
or minimally processed input data using neural networks for 
representation learning [14]. Example applications in the field 
of HIV include rapid diagnostic testing [26], predicting HIV in
fection among social networks [27], and engagement in care 
[28]. Deep learning performs well for analysis of imaging 
data because neural networks can handle complex unstructured 
data; however, a drawback is computational complexity and 
potential uncertainty about the features that drive classification 
accuracy (the “black box dilemma”) [15]. Nevertheless, studies 
have successfully implemented deep learning to investigate 
neuroimaging signatures of cognitive impairment and frailty 

Table 2. Example Applications of Machine Learning for Cognitive Phenotyping in People with HIV

Study Goals Dataset Data Type Methods Reference

Identify similarities in cognitive profiles 
among PWH and determine features 
associated with cognitive profiles

Cognitive testing and 
associated 
sociodemographic and 
clinical data

Multisite clinical and 
cognitive testing 
(N = 1646)

Self-organizing maps and clustering 
(unsupervised deep learning); random 
forest (supervised)

Dastgheyb 
et al [15]

Determine predictors of cognitive 
impairment subtypes in PWH using 
sociodemographic, clinical, and cognitive 
test data

Cognitive testing and 
associated 
sociodemographic and 
clinical data

Multisite clinical and 
cognitive testing 
dataset (N = 370)

Univariate and multiple logistic regression, 
random forest models (supervised)

Tu et al [16]

Predict neurocognitive trajectories in 
children with perinatal HIV using 
demographics, clinical blood markers, 
and mental health indices

Cognitive testing and 
associated 
sociodemographic and 
clinical data

Multisite clinical and 
cognitive testing 
dataset (N = 285)

Gradient boosted multivariate regression; 
feature selection with SciKit and 
PDPBox (supervised)

Paul et al [17]

Determine relationships between sleep 
health and cognitive function based on 
HIV serostatus and investigate 
interpretation based on analytical 
approaches

Cognitive testing, 
questionnaires, 
actigraphy data

Multisite actigraphy, 
pulse oximetry, and 
cognitive testing 
dataset (N = 463)

Partial least-squares regression, 
multidimensional construct, and random 
forest (supervised); latent class analysis 
(unsupervised)

De Francesco 
et al. [18]

Classify HIV infection based on structural 
MRI data and associated regional 
volumetric data and determine which 
regions are implicated in HIV infection

MRI and associated 
diagnoses

Single-site MRI 
dataset (N = 310)

Multiple kernel learning; chained and 
single-step regularization and support 
vector machine (supervised)

Adeli et al [19]

Predict diagnosis and cognitive measures 
in individuals with alcohol use disorder 
and HIV using structural MRI

MRI and associated 
diagnoses

Single-site MRI 
dataset (N = 549)

Customized sparse logistic regression 
with joint feature-sample selection 
compared with joint feature-sample 
selection with sparse feature selection 
and support vector machine 
(supervised)

Adeli et al [20]

Predict HIV-associated cognitive 
impairment using clinical and 
MRI-derived features including grey 
matter volumes and white matter 
integrity

MRI, clinical features, and 
associated diagnoses

Single-site MRI and 
cognitive testing 
merged datasets 
(N = 101)

Support vector machine; feature selection 
with LASSO regression (supervised)

Xu et al [21]

Classify HIV and cognitive impairment 
status using minimally processed 
structural MRI

T1-weighted MRIs and 
associated diagnoses

Merged MRI datasets 
(N = 1449)

Convolutional neural network with 
domain-specific predictors (supervised 
deep learning)

Zhang and 
Zhao et al 
[22]

Determine resting state networks that 
differentiate between groups based on 
HIV serostatus and cognitive status

MRI and associated 
diagnoses

Merged MRI datasets 
(N = 1806)

Relief feature selection and convolutional 
neural network (supervised deep 
learning)

Luckett et al 
[23]

Classify frail status based on neuroimaging 
features (volumetric data, arterial spin 
labeling, resting state functional MRI)

MRI and associated 
diagnoses

Single-site MRI 
dataset (N = 105)

Gradient-boosted multivariate regression; 
feature selection with SciKit and 
PDPBox (supervised)

Paul et al [24]

Abbreviations: HIV, human immunodeficiency virus; MRI, magnetic resonance imaging; PWH, people with HIV.
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in PWH [29], classify individuals by HIV or cognitive status 
within specific age bins [23], or distinguish HAND from mild 
cognitive impairment due to non-HIV conditions [22]. Other 
high-dimensional datasets have also been used for deep learn
ing to understand cognitive phenotypes in PWH (Table 2) and 
applications of these methods for discovery of clinical pheno
types will continue to rise.

Any of these algorithms mentioned above can be coupled 
with techniques for clustering and dimensionality reduction 
(Table 1). Machine learning pipelines in RDoC and 
NeuroHIV research often begin with clustering followed by 
classification/prediction methods to discover features and 
mechanisms that explain the clusters [11, 12, 15, 20, 30]. One 
potential problem with clustering methods is discovering clus
ters that are not meaningful. Challenges encountered in dimen
sionality reduction can include spurious associations due to 
confounding factors or noise in the data. Alternative methods 
such as factor mixture modeling may help to identify latent 
classes and latent variables, but typically require large sample 
sizes [31].

CLUSTERING TO IDENTIFY COGNITIVE PHENOTYPES 
IN PWH

Unsupervised clustering algorithms are widely used across di
verse fields of medicine to identify clinical phenotypes 
[13, 14]. Here, we discuss examples using unsupervised cluster
ing to identify cognitive subtypes in PWH based on similar fea
tures (eg, symptoms, clinical manifestations, cognitive 
impairment). Supervised methods can then be applied to find 
sociodemographic, clinical, and neuroimaging/biomarker fea
tures predictive of cluster membership [15, 17, 30].

An example is a study of 388 PWH with chronic infection 
and at least 3 months of ART use who participated in neurocog
nitive testing and multimodal MRI. The objective was to iden
tify data-driven cognitive phenotypes and underlying features 
that correspond to subgroup classification. Paul et al [25] first 
applied hierarchical density-based clustering (HDBScan) with 
a UMAP variant to identify 4 cognitive phenotypes that dif
fered in the degree of impairment on tests sensitive to frontal- 
subcortical disruption (ie, psychomotor speed, learning and 
recall, executive function). Gradient boosted multivariate re
gression, a form of ensemble machine learning, was then em
ployed to identify combinations of features that could 
distinguish individual membership according to impaired ver
sus normal cognitive performance. HIV disease markers, 
resting-state functional MRI and volumetrics, substance use, 
and psychosocial variables were included as potential input fea
tures. Interestingly, the analysis revealed that alterations in 
brain regions involved in addiction, substance use, and psycho
social factors (rather than HIV disease metrics) classified indi
viduals into the data-driven cognitive subgroups [25].

Another example is a study by Dastgheyb et al that analyzed 
baseline neuropsychological data from the Women’s 
Interagency HIV Study (WIHS), a multicenter, longitudinal 
study of women with and without HIV [15]. An unsupervised 
deep learning algorithm called self-organizing maps (SOM, 
kohonen package in R) [32, 33] was used to reduce dimen
sionality and identify cognitive patterns among 1646 women 
(929 virally suppressed women with HIV, 717 women without 
HIV). SOMs reduce data complexity by taking information 
with multiple attributes (eg, neurocognitive test scores with 
timed values or number of correct answers) and generating 
a 2-dimensional output. The algorithm uses a competitive 
deep learning process to determine which nodes (“neurons”) 
respond (“activate”) to a set of data inputs and adjust 
weights of each node accordingly. The resulting network 
can be visualized in a structured topographic map. The au
thors then used clustering algorithms (mclust R package) 
[34] to identify 5 cognitive profiles in the cohort including 
impairments in (1) cognitive sequencing, (2) speed, (3) 
learning and recognition, (4) learning and memory, and (5) 
combination of learning, processing speed, attention, and 
executive functioning.

DISCOVERING PREDICTORS OF COGNITIVE 
PHENOTYPES IN PWH

Supervised machine learning is widely used to discover predic
tors of disease and has been successfully applied to neuroimag
ing and cognitive data. Dastgheyb et al used a supervised 
random forest classifier to identify factors associated with cog
nitive cluster membership in the WIHS study described above 
[15]. Random forest is an ensemble classification method that is 
sensitive to training data; thus, minor changes in training sets 
can result in different tree structures. To ensure predictive va
lidity, bootstrap aggregations (10-fold resampling, repeated 
5 times) was performed on a subset of the data (“training” 
data from 70% of the cohort) to ensure algorithms (“trees”) 
were trained on different subsets of data to make robust predic
tions. To identify potential predictors, variable (“feature”) im
portance was identified, and top variables associated with each 
profile were validated in the testing dataset (remaining 30% of 
the cohort). Among virally suppressed women with HIV, se
verity of depressive symptoms was a distinguishing feature in 
4 out of 5 cluster-defined cognitive profiles, while stress-related 
self-reports were associated with 2 profiles (sequencing and 
learning/memory), reinforcing the concept that mental health 
factors can associate with some cognitive profiles and remain 
a potentially modifiable target for improving cognition in 
PWH. A similar approach was used to reveal sex differences 
in patterns and predictors of cognitive phenotypes in a study 
of data from the University of California, San Diego’s HIV 
Neurobehavioral Research Program [35].
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DISCOVERY OF MENTAL HEALTH DETERMINANTS OF 
HIV DISEASE SEVERITY AFTER ART INITIATION

Paul et al combined group-based multitrajectory analysis, tra
ditional statistics, and ensemble machine learning to investi
gate causal pathways of persistent CD4/CD8 T-cell ratio 
trajectories modeled before and after ART initiation in acute 
HIV infection [36]. This approach allowed for simultaneous 
modeling of CD4+ and CD8+ T-cell trajectories over 144 weeks 
to determine the relative contributions of perturbations in each 
T-cell population as an independent or synergistic determinant 
of persistent inversion in the ratio despite suppressive ART. In 
a study of over 400 individuals who initiated ART within 
30 days of infection and maintained viral control for 144 weeks, 
49% failed to achieve CD4/CD8 T-cell ratio normalization after 
prolonged use of suppressive ART. Latent trajectory analysis 
identified 2 specific immune risk phenotypes for chronic inver
sion of the ratio, one with incomplete CD4+ T-cell recovery af
ter treatment onset and another with high CD8+ T-cell count 
before and after treatment. Treatment after Fiebig stage II (ap
proximately 7 days after initial infection) was a robust predictor 
of chronic CD4/CD8 ratio inversion. Machine learning analysis 
further revealed that mental health factors during early stages 
of infection strongly predicted inversion due to incomplete 
CD4+ T-cell recovery. These results emphasize the contribution 
and potential synergy between mental health factors and HIV 
pathogenesis at time of treatment onset as factors contributing 
to long-term immune dysregulation despite optimal treatment 
of HIV.

DATA HARMONIZATION ACROSS COHORTS

Data harmonization is a critical step for machine learning using 
common measures across multiple cohorts. The amount of 
data on CNS complications in PWH is growing rapidly. 
Available resources for machine learning include data from 
cross-sectional studies and well-characterized longitudinal co
horts, including multisite clinical trials (eg, AIDS Clinical Trials 
Group studies) and large observational studies (eg, Multicenter 
AIDS Cohort Study [MACS]/WIHS Combined Cohort Study, 
Pharmacokinetic and Clinical Observations in People Over 
Fifty [POPPY], Comorbidity in Relation to AIDS [COBRA]). 
Data from such studies, however, are typically “siloed” and in
tegration is often limited by scientific and methodological bar
riers, including differences in study design, use of different 
instruments to measure the same construct, and divergent pop
ulations (eg, virally suppressed vs viremic). Improved access to 
suppressive ART poses an additional barrier for comparison of 
older and newer studies. Ethical and legal barriers related to 
conducting human subjects research create further challenges 
by impeding data sharing [13].

Despite these hurdles, pooling data across studies offers im
portant advantages: (1) larger samples provide increased power 

to identify the contribution of multiple factors that individually 
lack predictive strength; (2) larger samples improve the perfor
mance and reliability of machine learning models; (3) harmo
nized data can reduce biases introduced by methodological 
choices, promoting cross-study equivalence; and (4) incorpora
tion of diverse characteristics in larger samples can facilitate 
novel discovery, for instance by increasing power for detection 
of effect modifiers. Pooling data across cohorts to increase de
mographic diversity also tends to improve generalizability, al
beit at a cost of individual prediction.

Data harmonization is a multistep process requiring delinea
tion of research objectives, documentation of methods, and se
lection of core variables (data schema) to improve consistency 
and enable pooling and statistical cocalibration. The lack of 
common data elements in NeuroHIV research, however, limits 
data integration and harmonization. Therefore, it is crucial to 
plan prospectively for data harmonization by establishing in
frastructures to ensure consistent data collection, establishing 
common data elements, and preparing metadata to enhance ef
ficient data use. Quality of the data must be assessed prior to 
dissemination, and FAIR (findable, accessible, interoperable, 
reusable) standards should be met [37]. Dissemination and re
producibility will be further enhanced by establishing mini
mum reporting standards [38].

Methodological issues involved in retrospective data harmo
nization for studies on CNS complications in PWH are illus
trated by studies that pooled data from the CNS HIV 
Antiretroviral Therapy Effects Research (CHARTER) and 
National NeuroAIDS Tissue Consortium (NNTC) cohorts 
[39, 40]. Collectively, these cohorts include approximately 
4000 PWH. Extensive data harmonization across CHARTER 
and NNTC has been performed through a combination of 
manual and computational techniques to maintain uniformity 
[41]. Methods to assess cognitive function and behavior have 
significant overlap between CHARTER and NNTC, but mea
sures vary widely when compared to other large cohort 
studies (eg, MACS/WIHS, POPPY, COBRA, Neurocognitive 
Assessment in the Metabolic and Aging Cohort 
[NAMACO]). Using factor analysis or transforming neurocog
nitive test data into derived summary variables (eg, global def
icit scores) or applying other psychometric methods that 
produce a robust summary score [42] can help to minimize 
such differences [41, 43], albeit at the expense of specificity of 
the individual tests. These approaches will facilitate data pool
ing across studies using different neuropsychological tests to 
reveal novel phenotypes and predictors of disease.

Machine learning using pooled data across cohorts requires 
addressing additional challenges, including differences in study 
design, cohort characteristics, data processing, and handling of 
missing data. Quality control standards can also vary across 
studies, leading to issues in interpretation, validity, and gener
alizability. Latent confounds can differ between cohorts; for 
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example, aging and medically complex populations may expe
rience high rates of some confounds that are uncommon in 
younger cohorts. Recruitment bias is another confounder 
that can influence findings; for example, nonrandom enroll
ment of participants willing to perform test batteries and pro
vide biosamples may select individuals less likely to be 
employed [44]. Information bias is exemplified by a focus on 
factors presumed in advance to be important, ie, “searching un
der a streetlight.” This phenomenon also has the potential to ar
tificially inflate health disparities in underrepresented 
populations when sociocultural factors are not considered. 
Unbalanced study designs can affect classification problems. 
When unequal representation of groups is unavoidable, choice 
of model performance metrics becomes crucial. In such cases, 
the F1 score (weighted sum of precision and sensitivity) can 
be more informative than area-under-the-curve (AUC).

While these challenges are considerable, they can be ad
dressed through machine learning models that account for 
them, use of common data elements, and data harmonization 
[22]. In addition, shared standards for data acquisition, pro
cessing, interpretation, and reporting will increase the validity 
and reproducibility of findings derived from pooled samples 
[37, 38]. Although machine learning approaches can alleviate 
some problems related to differences across datasets, the need 
for careful data inspection and curation by researchers with do
main expertise remains. Bringing together multidisciplinary 
teams including data scientists, statisticians, clinicians, and 
stakeholders to discuss study goals, data quality, data process
ing, and validation can help to mitigate these challenges and fa
cilitate more robust machine learning analyses and more 
accurate, clinically relevant prediction models [13].

VALIDATION OF MACHINE LEARNING MODELS FOR 
PHENOTYPING IN PWH

As machine learning becomes more commonly used for iden
tifying cognitive phenotypes in PWH, it is important to estab
lish best practices based upon frameworks in published 

guidelines [38, 45, 46]. A set of recommended best practices 
for machine learning to understand cognitive phenotypes in 
PWH is shown in Table 3. Early development of rigorous 
study design, selection of appropriate models, and use of rep
resentative training sets will be critical for improving chal
lenging issues such as collinearity, missingness, biases, and 
overfitting. The need for interpretable models must be ba
lanced with approaches that increase predictive power, as 
some highly predictive models may not be interpretable or ac
tionable (“black box” models). While internal and external 
validation to ensure reproducibility, transparency, and rigor 
remain the idealized objectives, methods have not yet been 
standardized for studies on cognitive phenotyping (eg, 
documenting and publishing code, use of large or representa
tive training sets, reducing biases while curating data). 
Techniques such as cross-validation to assess model perfor
mance on independent test datasets are suggested as guidance 
for judging high-quality studies. Given that there are multiple 
types of cross-validation procedures including k-fold, repeat
ed random subsampling, and leave-one-out, a fundamental 
understanding of available methods and their pros and cons 
is critical.

LIMITATIONS AND CHALLENGES

It is important to acknowledge limitations and potential pitfalls 
when using machine learning to identify, characterize, and pre
dict cognitive phenotypes in PWH. Machine learning applica
tions remain challenging in the absence of established accuracy 
and reporting standards [13]. The complexity of many machine 
learning methods can hinder the core objectives of reproduc
ibility and transparency. Care must be taken to balance accura
cy with audience accessibility and ease of interpretability, given 
that clinical medicine requires both high classification accuracy 
and interpretability.

Another limitation is the size and scope of datasets needed to 
train reliable machine learning models, a problem that is exac
erbated by intersite differences but minimized by data harmo
nization. Issues of data quality must also be considered, 
including presence of noisy, skewed, missing, or flawed mea
sures. The axiom of “garbage in–garbage out” describes the ten
dency for data-quality issues to produce unreliable conclusions 
or inflate prediction accuracy [47]. Robust internal and external 
validation are therefore important to assess model 
performance.

Although not all machine learning methods assume normal
ity, it is important to examine data distributions, including 
identification of missingness and outliers with potential to dis
proportionately affect models and conclusions. Missing values 
are a common source of error, especially when missingness is 
not at random, and researchers must consider the best ap
proach for handling missing data. It is also important to 

Table 3. Recommended Best Practices for Machine Learning to 
Understand Cognitive Phenotypes in People with HIV

Well-curated high-quality data

Cohort size should take into account study goals and quality, dimensionality, 
and completeness of dataset (ie, no “one size fits all”)

Larger studies can be complemented by more focused studies with smaller 
cohorts

Make decisions on best methods to handle missing data

Choose models and metrics that take into account the balance of classes

Internal/external validation to demonstrate model stability and reproducibility

Representative training sets from diverse cohorts (including people with 
common comorbidities) to increase generalizability

Accurately report and account for biases and confounders

Measures that can be used across international settings
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accurately model potential confounders to prevent models 
from reaching spurious conclusions [48].

The risk of overfitting to training data must be considered in 
the development and interpretation of machine learning ap
proaches. Overfitted models effectively “memorize” particular
ities of the training set rather than learning true relationships 
among study variables, and thus inflate performance on train
ing data but fail to generalize. A method to avoid overfitting is 
early stopping, where training is monitored and halted when 
performance on holdout data reaches a plateau.

Given phenotypic heterogeneity and complexity among 
PWH, large studies with thousands of cases are likely to be 
needed to discover clinically meaningful cognitive phenotypes. 
Larger studies can be complemented by more focused work us
ing smaller cohorts to gain deeper understanding of underlying 
mechanisms and distinct biotypes through analysis of blood/ 
CSF and neuroimaging biomarkers.

CONCLUSIONS

These discussions highlight opportunities and challenges of data 
harmonization, multimodal data integration, and machine learn
ing to identify cognitive phenotypes in PWH by elucidating rela
tionships within diverse clinical and biomarker data. Machine 
learning presents new opportunities to better characterize CNS 
complications in PWH outside of conventional classifications, 
for example by identifying cognitive subtypes beyond HAND 
categories and elucidating their relationships to comorbidities 
and mental health. Data-driven approaches may help researchers 
discover complex relationships among blood/CSF biomarkers, 
neuroimaging, and neurobehavioral profiles in PWH. For such 
methods to succeed, computational expertise applied to large, di
verse datasets is necessary, but not sufficient. These resources 
must be supplemented with clinical and analytical expertise en
hanced by best practices in data acquisition, processing, and har
monization. Pitfalls and sources of error must be anticipated and 
mitigated, including missing data, confounders, and recruitment 
or information bias. Machine learning approaches offer enor
mous potential to enhance the clinical relevance of research on 
CNS complications of HIV, but clinical applications will require 
advances in model usability and interpretability. To enhance 
clinical utility, rigorous methods and standards should be adopt
ed to promote reproducibility, validity, and generalizability. 
These principles will increase the likelihood of success for ma
chine learning applications to improve future clinical care and 
develop personalized therapies for PWH.
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