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Abstract Endothelial cells (ECs) constitute the inner lining of vascular beds in mammals and are crucial for homeostatic regu-
lation of blood vessel physiology, but also play a key role in pathogenesis of many diseases, thereby representing re-
alistic therapeutic targets. However, it has become evident that ECs are heterogeneous, encompassing several sub-
types with distinct functions, which makes EC targeting and modulation in diseases challenging. The rise of the new
single-cell era has led to an emergence of studies aimed at interrogating transcriptome diversity along the vascular
tree, and has revolutionized our understanding of EC heterogeneity from both a physiological and pathophysiologi-
cal context. Here, we discuss recent landmark studies aimed at teasing apart the heterogeneous nature of ECs. We
cover driving (epi)genetic, transcriptomic, and metabolic forces underlying EC heterogeneity in health and disease,
as well as current strategies used to combat disease-enriched EC phenotypes, and propose strategies to transcend
largely descriptive heterogeneity towards prioritization and functional validation of therapeutically targetable drivers
of EC diversity. Lastly, we provide an overview of the most recent advances and hurdles in single EC OMICs.
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1. Introduction

Endothelial cells (ECs) line the interior surface of blood and lymph ves-
sels. The endothelium plays a crucial role in maintaining tissue homeosta-
sis in health,1 but also contributes to the progression of many diseases.2

ECs respond to various physical and chemical stimuli and interact with
other cells in the vessel wall, such as smooth muscle cells or pericytes, to
regulate vascular tone, blood flow, inflammation, permeability of solutes,
and cellular adhesion.1 Blood vessel overgrowth promotes diseases like
cancer,3 while EC dysfunction contributes to vascular complications in
diabetes, cardiovascular disease, and ageing-associated pathologies
(including neurological diseases with a vascular component, such as

Alzheimer’s disease4). Hence, understanding the basic function and dys-
function of the endothelium in health and disease has broad reaching
implications.

Despite their common characteristics,5 ECs are heterogeneous under
physiological and disease conditions6–8 (see Box 1 for definition of het-
erogeneity). Whilst they are present throughout the whole body, ECs
are highly specialized to meet the distinct needs of the organs and sites
they reside in. Within each organ, this heterogeneity is evident between
different vascular beds (arteries, veins, capillaries, and lymphatics), be-
tween different segments of the same vessel type, and even between
neighbouring ECs.8 EC phenotypes in disease are equally diverse, exem-
plified by their ability to activate or inhibit angiogenesis, metabolic
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.
switching or the release of vasodilators, reflecting varying responses to
different stimuli and changes in the pathological microenvironment.3

While EC heterogeneity was highlighted in other reviews,6–8 recent
advances in single-cell technologies brought new resolution and new
insights into this heterogeneity. Characterizing the different heterogene-
ity levels and their functional relevance is crucial,5 albeit dependent on
the technologies used to measure and quantify heterogeneity.9

In this review, after a brief historical perspective on the methods used
to study EC heterogeneity, we will focus on novel discoveries regarding
EC heterogeneity in health, disease and under therapeutic intervention,
made based on single-cell OMICs, and discuss the current challenges and
perspectives in the field. Rather than providing an all-encompassing over-
view, we discuss key principles and examples.

2. Historical perspective on
methods to unravel EC
heterogeneity

Prior to the advent of single-cell technologies, various in situ and in vivo
methods were developed to identify organ- and vessel type-specific en-
dothelial markers whilst circumventing difficulties faced in isolating pure
populations of ECs from tissues and the loss of the in vivo phenotype of
ECs cultured in vitro (reviewed in references10–12). The concept that ECs
from different organs and vascular beds express different molecular
markers was fuelled by early evidence of cancer and immune cells, pref-
erentially migrating to specific organs—likewise, peptides with a particu-
lar sequence homed to specific vascular beds.13–16 For instance, the
Stamper-Woodruff assay was designed to study lymphocyte-endothelial
binding in lymph nodes,13 later modified for use in other tissues,14,15 and
alongside an emerging monoclonal antibody technology, led to the iden-
tification of L-selectin as the receptor responsible for selective homing
of lymphocytes to high endothelial venules (HEVs) in lymph nodes.16

Phage display peptide libraries were used to unbiasedly screen peptide
sequences that home to particular organs17 or vascular beds in vivo.18

These approaches, as well as SAGE analysis19,20 and microarrays,21–23

contributed to the mapping of endothelial markers across different
organs and vascular beds within organs,24–30 the development of tissue-
targeted pharmacodelivery,18,31,32 and to increasing our understanding
of baseline EC phenotypes in different organs.33 However, these meth-
ods suffer from relatively low throughput and parallel processing capabil-
ities, and some of these strategies also require prior knowledge of the
cellular states and markers of the subpopulations of interest, limiting
their use in identifying novel EC subtypes. In addition, these techniques

allow us to study EC heterogeneity only at the bulk, not at the single-cell,
level. Hence, the advance in single-cell technologies has had unparalleled
influence on the study of ECs.

3. Single-cell studies in ECs

Our characterization and understanding of EC heterogeneity have ad-
vanced considerably in the past years, due to the development of single-
cell OMICs approaches (Figure 1A). These techniques offer simultaneous
analysis of hundreds to thousands of cells from complex samples, such as
tissues and heterogeneous cell populations, often without any prior
knowledge of cell markers.34 In particular, single-cell transcriptomics have
been used to identify and study EC populations in health and disease, across
virtually all stages of life (e.g. development, adulthood, ageing), as detailed
hereafter. While initial studies often described a single organ in healthy con-
dition,35–40 recent studies now provide multi-organ analysis41–44 or focus
on a specific disease, allowing to study ECs in physiological and pathological
conditions. Most single-cell RNA-sequencing (scRNA-seq) experiments re-
lied on a droplet-based approach, with the majority using the 30 end se-
quencing Chromium 10� technology. The main characteristics and
advantages of the two major scRNA-seq platforms (10� Genomics and
Smart-Seq) are described in Figure 1B, and more details on these technolo-
gies and applications can be found in several reviews.45,46 Some scRNA-seq
studies were also accompanied by single-cell ATAC-seq (Assay for
Transposase-Accessible Chromatin sequencing), revealing the (epigenetic)
chromatin accessibility landscape in ECs.47–50 scRNA-seq studies of ECs us-
ing mouse tissues/models took advantage of tissue availability, allowing a
more in-depth study of development and/or early disease stages, for which
only late-stage human disease samples are available, such as pulmonary arte-
rial hypertension (PAH).51 scRNA-seq was also performed in healthy and
diseased human tissues, such as types of lung,52–58 liver,59 heart,60–63 or
brain64 diseases. Only a few studies combined both human and mouse
analysis,53,65,66 allowing a cross-species comparison. Of note, the interpreta-
tion and findings of the EC scRNA-seq studies described below are also lim-
ited by the study design and chosen data analysis pipelines. Some of these
limitations, as well as the general caveats of scRNA-seq analyses, have been
highlighted in Box 2.

4. Endothelial heterogeneity in
health

In the healthy adult, phenotypic and structural diversity of ECs are a re-
flection of the breadth of functions they perform to maintain tissue

Box 1 What is heterogeneity and how can it be quantified?
Heterogeneity is an immanent trait of living systems that is omnipresent across all biological levels. It can manifest in different scales, ranging from differ-
ent species arising from evolution to genetic differences within a population of seemingly identical cells. Although biological diversity is vital for the sur-
vival of organisms in a changing environment, it presents a formidable challenge for biologists to determine which of the observed heterogeneity have a
biologically meaningful function. Heterogeneity can be summarized as a statistical characteristic of a cell population. It is most commonly quantified
through epigenomic, genomic, transcriptomic, and proteomic studies, though the extent of heterogeneity at one level of regulation is not indicative of
the heterogeneity at another level of expression. Conceptually, heterogeneity within a cell population can be probed by first collecting single-cell meas-
urements from the population. Next, patterns of diversity can be identified by distilling distinct cellular behaviours into defined categories. Finally, func-
tional significance of the patterns observed can be tested by measuring whether one subpopulation significantly differs from another or if the
heterogeneity is informative as a predictor of responses to certain stimuli. We recommend the following commentaries for further conceptual explora-
tion of heterogeneity in biology and single cell profiling.5,9

7EC heterogeneity at single-cell resolution
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.homeostasis and are highly dependent on the organs and microenviron-
ment in which they reside. Given that different organs have different
needs,8 dissecting the functional specialization of ECs in healthy organs is
key to understanding EC health and behaviour, and essential for identify-
ing how and why they become dysfunctional in disease.

4.1 Organotypic heterogeneity
Initial single-cell transcriptomic studies characterizing EC heterogeneity
focused largely on single tissues.35,36,39,67 Although these studies
highlighted organotypic diversity in EC populations, and increased our
understanding of the EC subtypes in individual organs, a robust

Figure 1 Overview of single-cell omics techonologies and characteristics of the two main scRNA-seq approaches. (A) Single-cell OMICs technologies
are diverse, profiling different molecules at the single-cell level. scATAc-seq analyses chromatin accessibility while scRNA-seq defines gene expression by
measuring RNA steady state level. Other OMICs technologies such as proteomics and metabolomics are less commonly used at the single-cell level. (B)
Comparison of the two main scRNA-seq technologies in terms of cell isolation, recovered cell number, sequencing depth, and sequencing type. 10�
Genomics with its droplet based microfluidics technology allows the sequenting of thousands of cells providing a high resolution of cell populations but
without a full coverage of the transcriptome and no information on gene structure. In contrast, SMART-Seq, with its higher sequencing depth and full-
length sequencing, provides a better transcriptomics coverage but for a lower number of cells.

8 L.M. Becker et al.
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..comparison across different tissues requires multi-organ studies. A re-
cent study performed scRNA-seq on 32 567 ECs from 11 different mu-
rine organs to create a comprehensive single-EC transcriptome atlas
(EC atlas).41 Across different organs, inter-tissue heterogeneity in EC
transcriptional states was detected. ECs from different organs expressed
distinct transcriptional signatures, although ECs from certain organs had
overlapping gene signatures, suggesting shared biological processes.41

Higher expression of gene sets involved in immune modulation and scav-
enging were for example shared by liver and spleen ECs, while an enrich-
ment of genes involved in membrane transport was detected in heart
and skeletal muscle ECs41 (Figure 2). Different transcription factor (TF)
networks were moreover up-regulated in ECs from different tissues,
which may drive organotypic diversity of ECs. Regulons of the Gata fam-
ily were for example enriched in liver and spleen ECs, while spleen ECs
additionally showed up-regulation of Nr5a1 (Figure 2). Skeletal muscle
ECs displayed enriched expression of the Pparg network, while pulmo-
nary ECs showed higher expression of the Foxf1 network. Another
multi-organ study extracted mouse EC transcriptomes across 12 differ-
ent organs from the single-cell dataset generated by the Tabula Muris

consortium.42 Largely similar overall findings were reported in both
studies regarding unique EC molecular profiles across different organs
and overlapping gene expression between certain organs, as well as en-
richment of similar gene sets in the same organs (e.g. up-regulation of
transporter-related genes in brain ECs).

4.2 Vascular bed heterogeneity
Apart from organotypic heterogeneity of ECs, endothelial diversity also
exists within the vascular bed (artery, vein, capillary, and lymphatic). In
the aforementioned multi-organ study,41 conservation of EC vascular di-
versity across different organs was reported, as arterial, venous, capillary
and lymphatic ECs clustered together, regardless of the organ they origi-
nated from. The vasculature in all organs displayed an arteriovenous hi-
erarchy and the topography of various endothelial subclusters along the
vascular tree paralleled differences in blood flow, pressure, and chemical
composition in the circulation.41

scRNA-seq allowed finetuning of the traditional blood vascular EC
classification (artery, capillary, and vein). For instance, 24 renal endothe-
lial populations were identified across the glomerular, cortical, and

Box 2 Study design and bioinformatics consideration for scRNA-seq studies to identify
and characterize EC populations on the transcriptome level
Whole tissues vs EC enrichment vs EC isolated from reporter mice: Whole tissue/organ analysis potentially lowers the power and resolution of EC analysis,
yet allows their analysis amidst other cell types and querying of cell-cell interactions. To obtain a better resolution of the EC transcriptomic landscape,
enrichment strategies based on CD31 expression can be performed prior to sequencing.41,65,97,102 scRNA-seq of ECs isolated from reporter mice have
also been implemented in liver cirrhosis,100 after myocardial infarction89,103 and in atherosclerosis.197 Such designs allow the tracking of changes that ECs
undergo in diseases and reveal the presence and/or absence of cell transitions, such as endothelial-to-mesenchymal transition (EndMT).103

Cell number: A low number of sequenced cells could limit the identification of minor EC populations.
Inclusion of technical and biological replicates: As expected for novel technologies and in part due to their costs, study designs vary considerably in terms of
biological/technical replicates. In some studies, lack of or a low number of replicates prevent an analysis of variability and reproducibility and will require
further studies and additional validations.
Depth of EC downstream analysis: The depth of downstream EC analyses also varies across different studies, sometimes due to the study design (e.g. lim-
ited number of isolated ECs), or to incomplete characterization of EC clusters. Especially in cases of whole tissue scRNA-seq, EC analysis has often been
performed alongside the analysis of other more abundant cell types, and lacks in-depth investigation and/or detailed subclustering of ECs. For instance, in
studies of abdominal aortic aneurysm,198 Alzheimer disease,199 cancer,56 cirrhosis/fibrosis,52,59 and atherosclerosis,200 ECs were present but their EC
subsets were not studied.
scRNA-seq analysis- general caveats: Besides EC-specific considerations in terms of study design and analysis, hurdles in quality control (QC) of the data re-
main an ongoing challenge in the field of single-cell OMICs. For instance, during library preparation using droplet-based methods, multiple cells may have
been captured together (doublets), non-viable cells may have been captured, or, droplets may have been sequenced that harboured no cells (empty
droplets). Differences in library preparation might also stem from variability in cell recovery and quality, which results from different isolation protocols.
After sequencing, it is thus imperative to implement a series of QC steps to ensure the analysis will be performed on high-quality cells only. Generally,
QC of scRNA-seq data is based on three variables: (i) the number of counts per cell, (ii) the number of genes per cell, and (iii) the fraction of counts
from mitochondrial genes per cell. Filtering of outliers, based in examination of the distributions of these QC variables, can be applied to eliminate
unwanted cells. For example, low-quality cells can be identified by a low number of detected genes, non-viable cells are characterized by a high fraction
of mitochondrial counts, and cells with an unexpectedly large number of detected genes may represent doublets. Specifically for doublet removal, several
computational tools can additionally be used to further optimize their detection beyond manual inspection of gene counts (DoubletDecon,201 Solo,202

scds,203 Scrublet,204 and Doublet Finder205). Additionally, cell hashing strategies can be implemented to enhance the detection of doublets.206

scRNA-seq results typically also suffer from sparsity, as the data often only captures a small fraction of the transcriptome, and genes can be detected at a
low or moderate expression level in one cell, yet go undetected in another cell of the same cell type (zeros). Several computational approaches can be
implemented to tackle this problem. Selecting only the most highly variable genes in the data, and applying several dimensionality reduction strategies
represent common methods of handling data sparsity.207 Moreover, various methods have been developed to ‘impute’ values for observed zeros, includ-
ing SAVER208 and MAGIC.209

Furthermore, to accurately decipher findings from scRNA-seq data, normalization is an essential step to adjust for unwanted biases resulting from se-
quencing depth, sparsity, and other potential technical artefacts. Numerous normalization methods have been developed specifically for scRNA-seq
data. One of the most general methods of normalization is the NormalizeData function, implemented within the Seurat R package. With this method,
gene counts for each cell are normalized by the total expression, before multiplying by the scale factor (10 000 by default) and natural log transforming
the result. Various alternative normalization methods have been described and tested, but these appear highly comparable to the method built in to
Seurat.210

9EC heterogeneity at single-cell resolution



Figure 2 Endothelial heterogeneity in health. EC phenotypes in health differ across organs, vascular beds and non-organotypic/vascular bed factors includ-
ing sex and ageing. Organotypic heterogeneity: ECs from different organs highly express genes involved in different biological processes. Liver and spleen ECs
have a shared high expression of gene sets involved in immunoregulation, whilst heart and skeletal muscle ECs have up-regulated expression of genes associ-
ated with membrane transporter and redox homeostasis. Vascular bed heterogeneity: Within each vascular bed, ECs from different segments of the same ves-
sel type are diverse with several different EC subtypes. Two different subtypes of murine lung capillary ECs have been identified, aerocytes and general
capillary ECs (gCap). Modified illustration from Gillich et al.68 Non-organotypic/vascular bed heterogeneity: EC phenotypes also vary across sex and age. Male
ECs have enriched Lars2 expression, compared to female ECs. Aged ECs are phenotypically different from younger ECs, such as brain capillary ECs express-
ing more pro-inflammatory and senescence-associated genes, resulting in dysregulated tight junctions in the blood–brain barrier.

10 L.M. Becker et al.
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medullary compartments,37 whilst studies on pulmonary ECs highlighted
extensive heterogeneity within the capillary endothelium.68,69 The mu-
rine alveolar microvasculature was reported to consist of two cellular
subtypes, aerocytes and general capillary ECs (gCap), both of which
were morphologically distinct from other capillary cells in the bronchial
circulation and other organs.68 Aerocytes with large, thin, and expansive
morphology, are anatomically localized with alveolar type I (AT1) cells
and enriched with adhesion and leucocyte-sequestration genes, suggest-
ing that these capillary ECs are unique to the lungs and are specialized
for optimal gas exchange and leukocyte trafficking (Figure 2). In contrast,
gCap cells are positioned in thick regions of the pulmonary stroma, regu-
late vasomotor tone, and function as specialized stem/progenitor cells in
alveolar capillary homeostasis and repair. Both these alveolar capillary
EC subtypes and their subtype-specific functions are conserved in
humans, although human aerocytes express major histocompatibility
complex (MHC) class II genes whilst in mice, these genes are preferen-
tially expressed by gCap cells.68 scRNA-seq of human pulmonary cells
also identified nine subpopulations of ECs, including two bronchial endo-
thelial groups that were distinctly enriched in matrix, fenestration and
cell cycle-related genes, compared to ECs that make up the pulmonary
circulation69 (Figure 2). In addition, there were also two rare capillary
subpopulations with features of both aerocytes and gCap cells.

One of the first studies to use scRNA-seq to systematically investigate
the molecular profiles of vascular cells in the adult mouse brain identified
gradual changes in endothelial transcriptional profiles along the arterio-
venous axis, known as zonation.70 While clusters of cells corresponding
to arterial, microvascular and vein ECs could be identified, these cells
could be ordered into a single one-dimensional range with markers of
the different clusters displaying a gradual change across this axis. Arterial
ECs were enriched in TFs, whilst transporter transcripts were domi-
nantly expressed in capillary and vein ECs, suggesting that trans-
endothelial transport of molecules across the blood–brain barrier (BBB)
are concentrated in the latter regions. Similar zonation was observed in
liver sinusoids, with 67% of liver sinusoidal ECs asymmetrically distrib-
uted along the portal vein-central vein axis, though there was limited
conservation of zonation profiles between human and mouse scRNA-
seq data.38–40 These studies provided insights into how zonation influen-
ces endothelial function and have implications for improving central ner-
vous system drug delivery in treating brain diseases, as the BBB remains a
significant physiological hurdle for drug design and development,71 and
for understanding the relevance of EC zonation in disease pathogenesis.

4.3 Non-organotypic/vascular bed
heterogeneity
Apart from organotypic and vascular heterogeneity, endothelial pheno-
types were also found to differ between gender and ages in normal
health.

4.3.1 Gender
Since the Tabula Muris consortium used both male and female mice,
their single-cell studies allow for the assessment of gender as a potential
factor contributing to transcriptome diversity among ECs from the same
organ. Indeed, adult male and female mice showcase different endothelial
gene expression signatures and subpopulations in the brain, heart, and
lung.42 For instance, the gene encoding mitochondrial leucyl-tRNA syn-
thetase (Lars2) is enriched in male vs. female ECs (Figure 2). Another
study using the endothelial compartment from the same Tabula Muris
dataset did not find any differences in EC subtype abundance between

male and female mice, though this particular study had used another EC
annotation method (scmap and top 10 marker genes of each EC pheno-
type) to map the Tabula Muris-derived ECs onto the subpopulations
identified in their EC Atlas.41 However, this study did not further exam-
ine EC sex differences beyond the comparison of subtype proportion. A
third study, using an independent Tabula Muris dataset generated from
young and aged mice (3 months and 18 months),43,44 found similar up-
regulation of Lars2 in the young male mice in addition to the up-regula-
tion of S100a8 and S100a9 in the older male mice, when compared with
the female. However, they concluded that EC gene expression was
largely similar between the sexes when taking age into consideration.
Further investigation is warranted to reveal how gender influences EC
heterogeneity, and may explain gender differences in cardiovascular
risks.

4.3.2 Ageing
Natural ageing influences changes in endothelial phenotypes and may ex-
plain age-related susceptibility to diseases.72 In an attempt to uncover
the impact of ageing on the mammalian heart, one study compared the
single-cell transcriptomes of cardiac cells from 12-week-old and 18-
month-old mice.73 Findings from this study suggest that the paracrine
crosstalk between cardiac fibroblasts and cardiac ECs is impaired during
ageing. Blunted angiogenesis and autophagy, as well as proinflammatory
activation in aged cardiac ECs were attributed to aged fibroblasts, which
had the most significant differential gene expression. Increased expres-
sion of serpins in aged fibroblasts was found to mediate the anti-
angiogenic effects on cardiac ECs. A separate study investigating how
ageing affects neurovascular dysfunction compared single endothelial
transcriptomes from young (2–3 months old) and aged (18–20 months
old) mouse brains.74 The age-associated transcriptional changes were in-
volved in immune/cytokine signalling (Arhgap5, Pak2, Rdx, Gng5, Cdkn1a,
Hnrnpk), BBB integrity (Afdn, Ctnna1, Iqgap1, Cgnl1, Nedd4, Ocln), and en-
ergy metabolism (Cox6c, Cox7b, Ucp2, Hmgcs2, Pea15a), most promi-
nently in capillary ECs. Another study observed up-regulation of von
Willebrand factor, a marker of endothelial dysfunction, in gCap cells but
not aerocytes, in the lungs of aged mice.68 ECs across five different
organs in aged mice (18 months) have higher expression of immune and
inflammation-related genes, compared to their younger counterparts.43

Taken together, these findings suggest heterogeneous regulation of the
different EC populations during ageing that may contribute to the devel-
opment of chronic diseases such as atherosclerosis, hypertension and
Alzheimer’s disease (Figure 2).

4.4 Endothelial heterogeneity in
development
EC functional heterogeneity during development is evident in the devel-
oping heart,75 where the endocardium, a specialized endothelium lining
the inner heart walls, acts not only as a physical barrier protecting the
cardiac tissue from the chamber circulation but also as an essential
source of different cardiac cell types.76 Heart valve formation begins
with the development of endocardial cushions at the atrioventricular ca-
nal and outflow tract, and at E8.5 to 9.0, a subset of these cushion endo-
cardial cells undergoes endothelial-to-mesenchymal transition (EndMT)
to give rise to the precursor cells that will eventually go on to form the
mature heart valves.77 Previously, it was unknown if this endocardial sub-
set was predetermined to undergo EndMT or if the surrounding myocar-
dium and haemodynamic circulation push this subset towards such a
fate, since the trabeculae endocardium does not undergo EndMT.

11EC heterogeneity at single-cell resolution
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Endocardial heterogeneity was confirmed by a recent scRNA-seq study,
which sequenced 36 000 cardiac cells from three distinct developmental
stages at E7.75 when cardiac progenitor cells begin to differentiate, dur-
ing heart tube formation at E8.25 and at E9.25 when the heart tube
loops.75 This study identified three endocardial subpopulations: haema-
toendothelial progenitors, ECs and endocardial cells initiating EndMT.
However, this study did not further examine these subpopulations be-
yond their identification and assignment in the single-cell dataset. As
such, important questions remain about the origin(s) of endocardial sub-
populations and the wider endothelial heterogeneity in vascular develop-
ment: (i) Are all ECs different from the initial point of their formation;
and (ii) If not, when do they start becoming different and what drives this
differentiation during development?

Since a functioning circulatory system is vital for embryonic growth,
formation of the vascular network precedes the formation of all other
organ systems. ECs originate de novo by vasculogenesis from mesoder-
mal precursors in at least three sites: the yolk sac, allantois, and embryo
proper. Primitive ECs at this stage are highly plastic and were presumed
to be non-specialized as they undergo rapid expansion and coalesce to
form the primary vascular plexus, before acquiring arterial, venous and
lymphatic identities. A scRNA-seq of whole mouse embryos at E8.25
reported that subsets of these primitive ECs show unique identities that
could be demarcated by their maturity and anatomical origins.78

Allantoic ECs express distinct transcriptional signatures, characterized
by Tbx4, Hoxa10, and Hoxa11 expression, while non-allantoic ECs could
be subdivided by their maturity based on their expression levels of Etv2,
Cdh5, and Pecam1. These findings, alongside scRNA-seq profiling of early
Xenopus embryos,79 suggest that EC diversity begins much earlier in de-
velopment than previously thought. It remains to be seen if and how this
early diversification of EC identity influences their heterogeneous func-
tion and phenotypes later in life, and in the pathophysiology of diseases.

As the vascular plexus continues to remodel into distinct vasculatures,
developing ECs continue to differentiate into the different vessel types
and subsequently specialize to meet the needs of their resident organs
during organ vascularization. Bipotentiality has been reported in pulmo-
nary plexus cells, as they give rise to both subsets of alveolar capillary
ECs (aerocytes and gCap cells) during development.68 Aerocyte devel-
opment has also been reported to depend on AT1-derived Vascular
Endothelial Growth Factor A (VEGF-A), as this population of ECs is spe-
cifically and completely lost in AT1-specific Vegfa mutant lungs.80 These
findings again suggest early specification of EC phenotype during devel-
opment that continues to persist in the adult.

Lineage-tracing and time-lapse imaging studies provided evidence that
a subset of primitive ECs, termed hemogenic ECs, give rise to haemato-
poietic stem and progenitor cells (HSPCs) and intra-aortic haemato-
poietic clusters in the later (definitive) wave of haematopoiesis.81,82 It is
less well-defined if hemogenic ECs are responsible for the primitive
wave, where blood cell production occurs in blood islands in the yolk
sac, prior to initial vascular formation. This is largely due to the overlap in
their cell surface marker expression with haematopoietic cells, though
previous studies have shown that the primitive wave can arise from cells
expressing endothelial markers Tie2, VE-cadherin, and Pecam1.83

A pseudotemporal dataset of the developing mouse embryo was gen-
erated through scRNA-seq from nine sequential timepoints, E6.0 to
E8.5.50 This study identified two discrete subsets of hemogenic ECs,
expressing both endothelial and haematopoietic markers. One of the
subpopulations showed a more mature EC phenotype, with a high ex-
pression of classical markers of mature ECs such as Cdh5 and Pecam1. By
incorporating temporal information of each individual cell, this group

was identified as the hemogenic ECs involved in the definitive wave, sug-
gesting that EC maturity is essential to give rise to HSPCs. In addition,
they also observed that these second wave ECs were transcriptionally
heterogeneous, and through clustering analysis, this heterogeneity was
associated with their anatomical origins. This study also reported TAL1
as a transcriptional regulator of the two haematopoietic waves, and
documented that Tal1�/� ECs deviate into an aberrant mesodermal phe-
notype. An additional study using ATAC-seq on single nuclei from 10
mouse embryos at E8.25 identified EC-specific regions of open chroma-
tin.84 Integrative analysis with TAL1 ChIP-seq data from past studies and
validation in transgenic mouse assays revealed that TAL1 binds to both
known (Fli -15 kb and Erg þ86 kb) and novel (Flt1þ 67 kb and
Malm3þ 360 kb) endothelial enhancers. Altogether, important tran-
scriptomic and epigenetic mechanisms direct ECs towards a hemogenic
fate during development.

5. Endothelial heterogeneity in
disease

5.1 EC population shifts in disease
Dimensionality reduction and clustering analysis allowed the comparison
of EC populations in disease samples. First, a change of the relative pro-
portion of ECs compared to other cell types has been noted in some dis-
eases (Figure 3), with for example fewer ECs detected in metastasis
compared to primary tumours,85 while more ECs have been observed in
Alzheimer’s disease vs. control samples.64

Within the EC population, a change in the proportion of EC subtypes
corresponds to a second level of heterogeneity observed in disease
(Figure 3). Expansion of one of the three EC subtypes, probably corre-
sponding to post-capillary venular cells, was observed in human skin
samples from patients with atopic dermatitis or psoriasis.86 In idiopathic
pulmonary fibrosis (IPF), the peribronchial EC population was increased
compared to control or obstructive pulmonary disease conditions and
associated to areas of bronchiolization and fibrosis, showing the distinct
response of this population between two diseases.52 In mouse lungs ex-
posed to hyperoxic conditions, an increase of the aerocytes/Car4þ ECs
population was observed.87

An increase in EC proliferation was previously associated with several
diseases88 and scRNA-seq showed evidence of such an increase after
myocardial infarction (MI)89 or H1N1 influenza lung injury90 in mice. In
the lungs, most vessel-type ECs contribute to the proliferating re-
sponse,90 while, in the MI study, the use of a Platelet Derived Growth
Factor Subunit B (PDGFB)-driven multispectral (Confetti reporter) EC
tracing mouse model confirmed that proliferating ECs originated from
resident cells via clonal expansion.89 This Confetti reporter mouse line
system was previously used to show EC clonal expansion after ischae-
mia-induced neovascularization, and clonally expanded ECs selected by
laser capture microscopy were analysed by bulk transcriptomics without
single-cell resolution.91 scRNA-seq was also used to study EC popula-
tions contributing to liver92 and aorta93 regeneration after injury in mice.
In liver injury, a tissue-resident Cd157þ population contributes to the re-
generation of large vessels expressing only EC-specific genes.92 In the
aorta, regeneration originates from local adjacent ECs; both bulk and
scRNA-seq studies revealed transcriptomic changes, including an in-
crease of the progenitor marker Ly6a/Sca1 and the transcription factor
(TF) Aft3.93

12 L.M. Becker et al.



Figure 3 Endothelial heterogeneity in disease. ECs in a pathological context can differ from those in healthy organs on several levels. Each level of hetero-
geneity highlighted in this figure has been illustrated by a representative example. (1) The relative proportion of ECs (out of all cell types) can change in dis-
ease, for example, with more ECs observed in brain tissues from Alzheimer’s disease patients compared to other cell types. (2) Disease can trigger a change
in the relative proportion of EC subtypes such as an increased abundance of peribronchial ECs (pEC) but not arterial, vein, and capillary ECs (aEC, vEC, and
cEC) in idiopathic pulmonary fibrosis (IPF). (3) Specific EC subpopulations can be specifically observed in control or disease conditions. For instance, ‘acti-
vated’ ECs expressing pro-inflammatory and pro-atherogenic genes were observed in human atherosclerotic plaques. (4) Disease-mediated transcriptional
changes constitute an additional level of heterogeneity. Genes involved in the major histocompatibility complex of class II (MHC-II) are down-regulated in
lung tumour ECs. (5) In diseases, ECs can change their interactions with neighbouring cell types. In atherosclerotic plaques, an increased interaction was ob-
served between myeloid cells and ECs mediated by Platelet Derived Growth Factor (PDGF)/Platelet Derived Growth Factor Receptor b (PDGFRB) and
leading to angiogenesis. (6) ECs can transition to another cell type by losing their EC markers and gain other cell type identity markers. In mouse, the tran-
sient activation of mesenchymal genes has been observed 7 days after myocardial infarction (MI).

13EC heterogeneity at single-cell resolution
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Disease can lead to a third level of heterogeneity in the endothelium,

with the presence of EC subpopulations being almost exclusively re-
stricted to control or disease conditions (Figure 3). After MI in mice, sev-
eral clusters were predominantly composed of cells from disease
samples and were characterized by a higher expression of the plasma-
lemma vesicle-associated protein gene Plvap,89 shown to regulate EC
proliferation in vitro89 and previously involved in EC permeability and an-
giogenesis.94 In human liver cirrhosis, two disease-specific EC popula-
tions restricted to the fibrotic niche were identified and annotated as
scar-associated ECs, in which marker gene analysis revealed the expres-
sion of pre-fibrotic and immune response genes.59 Furthermore, pro-
inflammatory and pro-atherogenic genes characterized EC clusters from
the mouse aorta exposed to disturbed flow.48 Similar pathways seem to
be identified in ECs from human atherosclerotic plaques, in which
atherosclerosis-specific EC populations were described as activated
ECs.49 The term ‘activated ECs’ was also used to describe EC popula-
tions identified in prostate cancer, which express cancer-associated fi-
broblast markers and extracellular matrix (ECM) genes but show a
down-regulation of genes related to immunoregulatory pathways.95

Tip ECs are critical for vessel sprouting, by leading the sprout at the
forefront.96 In both human and mouse lung tumours, tip EC populations
have been detected in scRNA-seq studies, in agreement with the role of
angiogenesis in tumour growth and proliferation.53,65 Proliferating cells
were detected, at substantial rates in mouse tumours, but at negligible
rates in human (lung) tumours.53 Tip cells were also found in scRNA-seq
studies of mouse choroidal neovascularization.65 Common/congruent
tip cell markers, conserved across species (mouse/human), diseases and
tissues (cancer/choroidal neovascularization), and experimental condi-
tions (freshly isolated/cultured) were identified, allowing a better under-
standing of angiogenesis across disease conditions.53,65 Congruent tip
cell markers included genes previously detected in tip cells, such as
APLN, but also novel tip cell TFs TCF4, SOX4, and SMAD1, and novel
genes relevant to the migratory tip EC phenotype.53 Silencing of two
novel markers, LXN (Latexin) and FSCN1 (Fascin), in human umbilical
vein ECs furthermore affected tip cell competitivity in a mosaic spheroid
assay, confirming the tip cell role of these markers.53 In addition to tip
cells, another population of so-called ‘breach’ cells has recently been
identified in murine lung tumours by scRNA-seq. Based on their tran-
scriptional profile breach cells are hypothesized to assist tip cells to lead
the vessel sprout.53 In addition, transitioning populations and pseudo-
time trajectories leading to these tip cells were characterized, revealing a
change in the expression of genes related to metabolic pathways.65 Such
metabolic changes in ECs, key to angiogenesis, were previously reported
in scRNA-seq of all cells from lung cancer.55 Moreover, in mouse cere-
bral cavernous malformations, based on a Pcd10 deletion model, ECs
with tip cell traits have been reported97 but further characterization is
required to confirm if they indeed represent genuine tip cells.

EndMT occurs in many cardiovascular diseases,98 yet with some con-
troversies due to the lack of standard in diagnosing the transition, and
difficulties comparing different time points and/or models.99 Using
scRNA-seq of EC reporter mice, no evidence of EndMT was found in
liver cirrhosis.100 In contrast, EndMT was reported in human calcific
aortic valve disease,101 in human atherosclerosis49 and in mouse athero-
sclerosis induced by disturbed flow48 or the high-cholesterol high-fat
diet in Apoe-/� mice.102 However, these scRNA-seq studies reporting
EndMT did not use an EC tracing system, not allowing the full confirma-
tion of the transition, and relied essentially on trajectory analysis.
Additional analysis, such as RNA velocity might help to define the direc-
tionality of the observed trajectories and the cell population origins.

Recently, activation of ECM genes was observed 7 days after MI in the
mouse, and confirmed in scRNA-seq analysis of an EC lineage tracing
model.103 This study, based on a time course experiment, showed that
EndMT is transient and reversible in MI,103 in contrast to the sustained
EndMT observed in atherosclerosis and likely due to the chronic nature
of the stimuli.48,49,102 The potential transient nature of EndMT might ex-
plain why EndMT was not detected in another MI mouse study89 and
highlights the need to study different stages of disease development in
association with a better EndMT diagnosis.98

5.2 Transcriptomics changes leading to
EC heterogeneity
In addition to a change of the population landscape, scRNA-seq also
revealed EC global and subtype-specific transcriptomics changes in dis-
ease, highlighting a heterogeneity of phenotypes (Figure 3).

Changes in genes related to inflammation have been observed in ECs
in several contexts. In the adult mouse, peripheral lymph nodes, antigenic
stimulation by oxazolone led to an up-regulation of inflammatory genes
such as Sele and Cxcl9 in HEVs.104 In mouse hyperoxic lungs, genes
known to be regulated by inflammation (Ctgf, Fxyd5) were up-regulated
in the aerocyte EC populations.87 In Alzheimer’s diseases, up-regulation
of genes from the MHC class I were observed in ECs,64 while the expres-
sion of the MHC class II genes, part of the capillary gene signature, are
up-regulated in PAH105 and down-regulated in ECs from murine and hu-
man lung tumours.53 Changes in inflammation-related genes were also
reported in atherosclerotic Apoe�/� mice,102 and a recent study of the
mouse aorta during disturbed flow suggested a potential transition of
ECs towards an immune-like phenotype as an additional type of EC
reprogramming.48 All these studies confirm that the endothelium is a tar-
get of the inflammatory process, but likely also acts as an immuno-
regulator, in part by working as semi-professional antigen-presenting
cells. Indeed, the term ‘immunomodulatory ECs’ (IMECs) was recently
coined to describe the immunoregulatory EC phenotype.106

Vessel growth dysregulation contributes to the pathogenesis of many
diseases such as cancer and PAH. In addition to the identification of an-
giogenic tip cells, angiogenesis pathway regulation has also been docu-
mented in several studies. Indeed, down-regulation of genes relevant to
capillarization were observed in ECs in human systemic sclerosis,107

while anti-angiogenic genes were up-regulated in ECs from hyperoxic
lungs.87 In contrast, pro-angiogenic/capillarization genes were activated
in ECs in Alzheimer’s disease64 and cirrhotic mouse liver100 and in one
capillary EC subtype in PAH.105 Interestingly, in cirrhotic liver, the activa-
tion was zonation-dependent and restricted to a specific region of the
liver sinusoidal ECs.100 As most changes of angiogenesis pathway did not
seem to be associated with the detection of a tip cell population, these
regulations might not be linked to sprouting angiogenesis (SA) but might
possibly reflect other vessel formation modes such as splitting angiogen-
esis, not characterized so far by any standard marker expression, or EC
migration. Further studies are needed to understand the contribution of
these different processes to vessel growth or regression.

Several studies reported the up-regulation of ECM genes in ECs in dis-
ease conditions, probably reflecting structural EC changes. In prostate
cancer, activated ECs were characterized by an up-regulation of ECM
genes,95 while the transient mesenchymal gene activation in MI also in-
cluded ECM gene changes. In addition, ECM gene up-regulation was ob-
served in liver cirrhosis,100 lung cancer53 and in systemic sclerosis.107

Additional transcriptome regulations in ECs have also been described.
Down-regulation of several members of the Notch signalling pathway

14 L.M. Becker et al.
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occurs in ECs in pulmonary fibrosis.57 In atopic dermatitis and psoriasis,
ECs activate foetal genes,86 while in oxygen-induced retinopathy, the
peak of neovascularization was associated with expression of senes-
cence genes.108 Further investigation is required to define the functional
effect of these changes and their relevance across diseases.

To understand the regulation leading to these transcriptomics
changes, some scRNA-seq studies were performed together with single-
cell ATAC-seq, confirming chromatin accessibility changes in correlation
with the transcriptomics changes and reporting disease-induced peaks
such as in mouse MI.47 As TFs play a key role in shaping the transcrip-
tome, motif enrichment analysis in scATAC-seq data of mouse carotid
artery in different flow conditions identified KLF2/KLF4 motifs in stable
flow, while motifs for RELA, AP1, STAT1, and TEAD1 were enriched in
accessible regions from disturbed flow conditions.48 Approaches devel-
oped for TF target and/or regulon-based analysis of scRNA-seq
data109,110 revealed the possible role of FLI1 and TEAD1 in tumour
ECs,55 and of SOX18 in human PAH.51

5.3 Contribution of the microenvironment
to EC heterogeneity in disease
ECs plastically adapt to the physiological needs of different tissues.
Unsurprisingly therefore, signals in the microenvironment shape the EC
subtype landscape.111 ECs acquire a specialized role depending on their
location and status in physiological conditions that can make them more
or less responsive to certain stimuli in disease. For instance, in cerebral
cavernous malformation, venous capillary ECs are the main contributor
of the lesion, as arterial ECs remain non-responsive to the transforma-
tion.97 Furthermore, HEVs in lymph nodes possess an activated pheno-
type that is lost upon changes to the microenvironment such as
inhibition of lymphotoxin-b receptor signalling.104

Complex communicative circuits between ECs and other cell types
play a key role in disease pathogenesis (Figure 3). For example, tumour
aggressiveness is regulated through a crosstalk of ECs with cancer cells
or tumour-associated macrophages in the microenvironment, regulating
(among others) induction of metastasis and tumour angiogenesis.112,113

Moreover, interactions between ECs and cardiomyocytes are key during
development and cardiac homeostasis, and become dysregulated in car-
diovascular disease.114,115

Cell–cell communication and interaction can be assessed in scRNA-
seq data by an unbiased analysis of receptor–ligand interaction (RLI) pairs
using popular tools such as CellPhoneDB116 or more recent and com-
prehensive tools including CellChat117 and NicheNet,118 detailed hereaf-
ter in the ‘Recent Advances & Future Perspectives’ section of this review.
Increased interactions of ECs with other cells were detected in the heart
of postnatal Day 8 mice 3 days after MI47 but also in human atheroscle-
rotic plaques.49 In the murine regenerative heart, R-Spondin was identi-
fied as an EC ligand expressed by epithelial cells with a pro-angiogenic
effect to ECs in vitro.47 ECs appear to receive communication from fibro-
blasts in the murine hyperoxic lung, with the ligand and receptor Bmp5
and Bmpr2 expressed by fibroblast and ECs, respectively.87 In atheroscle-
rosis, the PDGF/PDGFRB interaction between myeloid cells and ECs led
to the hypothesis of a myeloid-driven angiogenic contribution to plaque
destabilization.49 In the heart, evidence of communication between fibro-
blasts and ECs was detected in both healthy and injured conditions using
scRNA-seq and the proximity between fibroblasts and ECs was con-
firmed by immunofluorescence.119 As mentioned previously, a study of
the murine ageing heart revealed the deterioration of this paracrine
crosstalk, with in vitro experiments showing a reduced angiogenic

property of the conditioned medium from heart-derived aged fibro-
blasts.73 In contrast, ECs might communicate with mesenchymal cells in
human cirrhotic liver, where the scar-associated ECs express the non-
canonical Notch ligand JAG1, JAG2, and DLL4, whereas the NOTCH3 re-
ceptor is expressed by scar-associated mesenchymal cells.59 Co-culture
experiments, using primary human hepatic stellate cells (HPCs) and ECs
from cirrhotic livers, validated that this interaction promotes fibrillar col-
lagen production by HPCs, which could be inhibited by perturbation of
NOTCH3 expression,59 highlighting the translational potential of findings
identified through scRNA-seq and interactome analyses.

RLI analysis also highlighted cell–cell interactions in physiological con-
ditions, with potential implication for development and disease. In the
lung, the epithelium was identified as a key hub for spatially-restricted
regulation of EC morphogenesis, by means of their preferential expres-
sion of semaphorins and VEGF family members, a phenomenon that is
conserved across multiple species.66 Lastly, and in line with their well-
appreciated immunoregulatory role, interactome analyses revealed
novel interactions between pulmonary ECs and immune cells, including
possible recruitment of CX3CR1þ non-classical monocytes to ECs
(CX3CL1þ), and attraction of CCR1þ dendritic cells to veins (CCL23þ),
bronchial vessels (CCL14þ), and lymphocytes (CCL5þ),69 highlighting in-
teresting avenues for future research in light of lung cancer and/or
inflammatory disease.

Overall, a high level of EC heterogeneity has been observed across
developmental, physiological and pathological conditions. Further inves-
tigation into this heterogeneity may help understand therapy resistance
mechanisms and should be factored into future EC-focused therapeutic
development.

6. Therapeutic implications

6.1 Anti-angiogenic therapies in
cancer-targets and resistance
As angiogenesis is critical for a variety of diseases, therapies have been de-
vised to either promote or inhibit angiogenesis.120 While pro-angiogenic
efforts promise to offer novel therapeutic opportunities for cardiovascu-
lar disease and diabetes, here we focus on anti-angiogenic therapies
(AATs). Cancer presents one of the main pathologies for which AAT is
used, due to the critical role of angiogenesis in cancer progression and
metastasis.121 Currently approved AATs centre around blocking the key
pro-angiogenic target VEGF, though other targets are emerging
(Figure 4). While initially designed to prune the tumour vasculature,122–

124 current clinical trials explore whether VEGF-blockade can improve
immunotherapy by normalizing the tumour vasculature.125 The success
of VEGF-blockade therapy is however tampered by insufficient efficacy
and resistance.126,127 Several resistance mechanisms have been pro-
posed, ranging from alternative growth factor signalling to other modes
of tumour vascularization, such as vessel co-option,128,129 but only recent
studies explored additional mechanisms at the single EC level.53,130

In a mouse lung cancer model, tip cells and breach cells (putatively
assisting tip cells to lead the vessel sprout53) represent the EC subtypes
most sensitive to VEGF blockade,53 whereas other EC subtypes were
less or differentially sensitive. In fact, post-capillary vein ECs increased in
abundance upon anti-VEGF treatment.53 Whether the increases in capil-
lary and post-capillary vein ECs is a consequence of switching from SA to
vessel co-option (a known escape mechanism to AAT therapy131)
remains to be determined. This may explain, at least in part, the limited
success and therapeutic immunity towards AAT.

15EC heterogeneity at single-cell resolution
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..In addition, the various distinct EC types identified by single-cell tran-
scriptomic studies might also contribute to a better understanding of
AAT resistance.53,132 Tip cells, which are the presumed key targets of
AAT, amount to fewer than 10% of all ECs within lung tumours,53 thus
the majority of ECs is in fact not targeted by AAT (Figure 4). Differences
in the composition of different EC subtypes in tumours from distinct
patients53 might furthermore explain why some patients respond better
than others to AAT. Moreover, venous ECs in tumours contain a subset
of so-called resident endothelial stem cells (rESCs).53 rESCs were also
identified in large vessels of multiple murine organs and showed self-
renewal capacity as well as contributed to vessel regeneration in differ-
ent models of vessel injury.65,92,93 As venous ECs expand upon AAT,53 it
raises the question whether these rESCs might reconstitute vessels
upon AAT, thereby contributing to therapy resistance. Endothelial pro-
genitor cells were identified in human metastatic lung adenocarci-
noma.133 Moreover, aldehyde dehydrogenase (ALDH)-positive ECs
with stem-like properties were found in melanoma (xenograft models)
and human renal cell carcinomas. These ALDH-positive stem-like ECs
display pro-angiogenic properties, and resisted to chemotherapy treat-
ment.134,135 How such progenitor-like ECs are impacted by AAT
remains to be determined. Future studies will determine whether such
cells are present in other tumour types, and contribute to AAT resis-
tance by induction of neoangiogenesis upon treatment. Interestingly, ‘Myc
targets’ was amongst the top up-regulated pathways in tumour ECs in a

single-cell analysis of human non-small cell lung cancer (NSCLC).55 Myc
has been identified as a driver of the endothelial regeneration process,93

thereby raising the question whether progenitor-like ECs might arise in
tumours, and if so, whether they harbour additional heterogeneity in
terms of their transcriptome or their response to anti-cancer therapy/
AAT. Of note, while several scRNA-seq studies identified EC populations
with stem- or progenitor-like potential, future studies are needed to care-
fully assess potentially distinct vascular progenitors, which might be tissue
and/or disease specific. Thus far, there is not yet a consensus definition of
EC stem- and/or progenitor cells available based on scRNA-seq.

Alternative mechanisms of blood vessel growth, in addition to SA,
which is the most studied form of angiogenesis, also need to be consid-
ered in the context of EC heterogeneity and its impact on cancer pro-
gression and therapy response. In fact, VEGF inhibition can induce
substitute mechanisms of vessel growth, such as intussusceptive angio-
genesis (IA)136 and vessel co-option.131 Also, vascular mimicry and vas-
culogenesis were identified as potential alternate processes that
promote AAT resistance.137,138 However, single-cell studies investigating
phenotypical and functional EC heterogeneity in these processes remain
elusive. Such studies would be critical to identify novel targets to enable
the control of pathologic angiogenesis by simultaneously attacking sev-
eral aspects of vessel growth.

Importantly, the combination of AAT with other anti-cancer thera-
pies, such as chemotherapy or immunotherapy has shown promising

Figure 4 Anti-angiogenic therapies in tumours. Traditional AAT: Traditional AAT therapies target angiogenic growth factors, such as VEGF. VEGF-inhibi-
tion leads to inhibition of <10% of all ECs (including tip cells). Targeting EC metabolism: A potential alternative approach to inhibit angiogenesis in tumouri-
genesis presents targeting EC metabolism. Here inhibition of the glycolytic activator PFKFB3 has led to decreased tumour angiogenesis and impaired
tumour growth in animal models. However, unlike traditional AAT, this approach has not yet been established in the clinical setting.

16 L.M. Becker et al.
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results not only in pre-clinical models but also in the clinic. In fact, several
AAT agents (e.g. bevacizumab, aflibercept, sorafenib, sunitinib), apart from
being approved as single-agent therapy, have reached approval in combi-
nation with chemotherapy, or as second-line therapy after patients pro-
gressed on chemotherapy.139 Moreover, the combination of interferon-
alpha (IFN-a) treatment with anti-VEGF therapy has been approved by
the FDA for treatment of metastatic renal cell carcinoma.140 With the ad-
vent of novel immunotherapies, such as immune checkpoint blockade,
there are many new promising anti-cancer therapeutic opportunities.139

New insights into distinct EC phenotypes could help to develop more
precise treatments tailored to target specific EC populations, which might
create a favourable environment, in particular for immunotherapy to
work. IMECs or other specialized EC phenotypes might offer such oppor-
tunities. For instance, HEVs are involved in the recruitment of different im-
mune cells,141 thus promoting HEV growth is expected to be beneficial
for enhancing the anti-cancer effect of immunotherapy. This concept to
‘tune rather than only prune’ is a novel strategy for future AAT.

6.2 EC metabolism as alternative target to
modulate angiogenesis
More than a decade ago, ECs were shown to undergo metabolic changes
to execute their various functions. This metabolic reprogramming is
driven in part by different signalling cascades, for instance growth factor
signalling (e.g. VEGF can induce glycolysis) or Notch signalling (Notch sup-
presses glycolysis in stalk cells).142 However, it is now clear that EC me-
tabolism is not only necessary but also sufficient (independent of growth
factors or other stimuli) to control EC function.143 Several metabolic
pathways have been implicated in distinct functions. Single-cell studies
alongside metabolomic investigations have uncovered several metaboli-
cally distinct EC subtypes. For instance, during SA, tip cells up-regulate gly-
colysis and amino acid metabolism to support migration.142–144 These
metabolic pathways are also used by stalk cells (however, at lower levels),
where they support proliferation and biomass production.143 Stalk cells as
well as phalanx cells also rely on fatty acid oxidation (FAO).145 In quies-
cent phalanx ECs, FAO contributes to maintainence of their quiescent
phenotype146 (Figure 4). It has also been recognized that different EC sub-
sets display distinct metabolic signatures, in a tissue-specific manner.41 For
instance, different metabolic transporters are most highly expressed in
brain ECs, spleen ECs are enriched in cholesterol metabolism, while car-
diac and muscle ECs show elevated fatty acid metabolism.41 For a detailed
review of EC metabolism, and metabolic heterogeneity in different EC
types, we refer to recent excellent reviews.143,147,148

When comparing ECs from healthy tissues to those in disease, differ-
ent metabolic gene signatures were observed as well. For instance, com-
pared to their respective controls, ECs from choroidal
neovascularization or murine lung tumour models displayed an increase
in gene expression related to several metabolic pathways, such as glycol-
ysis, tricarboxylic acid cycle, oxidative phosphorylation (OXPHOS),
one-carbon metabolism, and nucleotide synthesis.65 In line with these
findings, single-cell analysis of colorectal, lung and ovarian cancer
revealed that tip ECs in all three cancer types up-regulate glycolysis and
OXPHOS gene signatures.56 Moreover, EC subtypes in human lung can-
cer also presented with metabolic gene adaptations compared to their
healthy counterparts, with an up-regulation of genes involved in lipid me-
tabolism in capillary tumour ECs, and increased prostaglandin metabo-
lism in venous tumour ECs.53 Compared to ECs from early stage ground
glass nodules adenocarcinoma, ECs from late stage solid lung adenocar-
cinoma were also enriched in metabolic gene processes,149 and

circulating ECs from metastatic prostate cancer patients showed
enriched metabolic gene expression compared to circulating ECs from
healthy controls.150

The findings of EC metabolism as critical propeller to EC function,
along with the observed metabolic changes in tumour ECs, led to the hy-
pothesis that metabolic targeting of ECs might offer new therapeutic op-
portunities to keep tumour angiogenesis at bay (Figure 4). The glycolytic
enzyme PFKFB3 regulates tip and stalk cell phenotypes, and associates
with actin remodelling.142 Genetic silencing of PFKFB3 inhibited tip cell
function and resulted in acquisition of a quiescent phenotype.142

Pharmacological inhibition of PFKFB3 with the inhibitor 3PO (3-(3-pyri-
dinyl)-1-(4-pyridinyl)-2-propen-1-one) impeded vessel sprouting in
models of retinal angiogenesis and vascular development in zebrafish.144

Notably, pathological angiogenesis in different disease models (age-re-
lated macular degeneration, retinopathy of prematurity, skin psoriasis, in-
flammatory bowel disease, and cancer) was also suppressed by 3PO
treatment144,151 (Figure 4). Importantly, while pharmacological PFKFB3
inhibition impedes angiogenesis in pre-clinical models, the efficacy of the
treatment in clinical settings remains to be tested (Figure 4). Moreover,
blocking of FAO hampers pathological angiogenesis. Etomoxir, which
inhibits the FAO enzyme Carnitine Palmitoyltransferase 1A (CPT1A)
reduces pathological angiogenesis in a model of retinopathy of prematu-
rity.145 Tip and stalk cells also rely on fatty acid synthesis.143 In fact, phar-
macological inhibition of the fatty acid synthase (FASN) using Orlistat,
reduces EC proliferation and angiogenesis in pathological ocular neovas-
cularization and melanoma animal models.152,153 Thus far, no apparent
off-target effects were discovered in preclinical models; however, it is
critical to note that targeting metabolic pathways affects not specifically
ECs, but all cell types. Therefore, the suitability of metabolic targets to
specifically inhibit EC functions in patients remains to be investigated.
However, as discussed in the following paragraph, recent developments
in precision medicine might allow targeting of EC-specific metabolic
pathways. In summary, these promising results demonstrate the need for
future studies on the metabolic heterogeneity of ECs to identify addi-
tional metabolic targets.

6.3 Novel targets from single-cell
studies—prioritization and targeting
Whilst the unravelling of EC heterogeneity at single-cell resolution has
led to the discovery of exciting novel and specialized EC subtypes with a
presumable key role in disease, the prioritization of functionally impor-
tant candidate (metabolic) genes that are most reflective of these EC
subtypes remains a formidable challenge. It demands the development of
efficient means to transcend the atlas-like descriptive listing of EC-
subtype specific marker genes into the most promising functionally rele-
vant and therapeutically targetable candidates, and various in silico meth-
ods have been developed and reported in the recent years to aid in this
challenge. For instance, the use of an integrated (meta-)analysis of candi-
date gene expression across species, diseases and models identified
PLOD1 and PLOD2 as novel angiogenic candidates.53 Silencing or inhibi-
tion of both genes furthermore impaired in vitro and in vivo vessel sprout-
ing, validating the therapeutic potential of these genes.53 Moreover, a
similar meta-analysis approach, yet combined with scRNA-seq data-tai-
lored genome-scale metabolic models (GEMs), proved an efficient
method for prioritization of SQLE and ALDH18 as promising new meta-
bolic targets for AAT65 (Figure 5). Again, in vitro and in vivo perturbation
experiments confirmed the functional relevance of both genes for angio-
genesis, stressing their translational potential.65

17EC heterogeneity at single-cell resolution
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.Querying of cell types enriched for trait-relevant genes based on
genome-wide association studies (GWAS)154,155 represents another in-
triguing strategy for the identification of EC-specific genes associated
with a particular disease or condition. For instance, a GWAS-based
analysis of genes associated with cardiovascular disease was performed
in a scRNA-seq study of human atherosclerotic plaques.49 Eight of such
genes (SHE, KCNN3, VAMP5, SEMA3F, HDAC9, GIMAP1, NOS3, and
DOCK6) showed an EC-enriched expression pattern, supporting EC
contribution to the disease and providing crucial information for future
functional characterizations.49 Furthermore, in scRNA-seq data of two
rat models of PAH, relevance to the human disease was investigated by
analysing the expression of genes implicated in PAH based on
DisGeNET and the Comparative Toxicogenomics Database,156 and in a
human PAH scRNA-seq study, differential expression of genes associ-
ated with hereditary PAH (e.g. BMPR2, ENG, SMAD9) was confirmed in
several cell types, including ECs.51 Interestingly, the rat PAH scRNA-seq
study also assessed the therapeutic potential of existing drugs in PAH, by
means of in silico drug screening.156 This screening relied on the
‘Connectivity Map’ resource, which allows the comparison of scRNA-
seq transcriptional signatures with a reference collection of drug-
induced gene expression profiles from cultured human cells157 (Figure 5).

Another recent method, Augur, allows prioritization of cellular subtypes
most responsive to a biological perturbation,158 in lieu of the traditional
prioritization based on differential gene expression. This enables the iden-
tification of the individual contributions of distinct cell types to a condition
or their discrete responses to different treatments, thereby deciphering
the roles of distinct cell subtypes on a broader scale.158 The in silico con-
struction of multicellular disease models (MCDMs)159 is yet an additional
method for target prioritization. This systems-level approach uses
scRNA-seq data to construct models of disease-associated cell types, their
expression profiles, and predicted cell-cell interactions. By integrating this
method with disease context-specific genetic and epigenetic data, the pos-
sibility of identifying the most (therapeutically) relevant cell types was
showcased in single-cell datasets of human and mouse rheumatoid arthri-
tis.159 These novel approaches all showcased the ability of cell type and
target prioritization from complex scRNA-seq datasets, and their applica-
tion to EC-specific OMICs data promises to unveil important insights into
vascular subtypes and marker genes most relevant for follow-up in a dis-
ease or condition-specific context (Figure 5).

While identifying the EC subtype and associated marker(s) most likely
to be of therapeutic interest already poses a challenge, subsequent spe-
cific targeting of the prioritized vascular subset may present an even

Figure 5 EC-specific target discovery and prioritization for therapy. Meta-analyses using different platforms (for instance scRNAseq, Cytof, Bulk prote-
omics/transcriptomics, epigenetic analyses etc.) and comparing data between different species (mouse, rat, human. . .) can narrow down candidate cell
types and genes with important biological functions in a pathological setting. This approach focuses on genes/proteins repetitively up- or down-regulated
in the pathological setting independent of the method used and congruently changed between different species. Drug and toxicity databases can then
be exploited to identify potential drugs/drug classes to reverse the determined genes/gene signatures. The availability of FDA/EMA-approved drugs
potentially capable of targeting certain genes can also help in target prioritization.

18 L.M. Becker et al.
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.bigger hurdle. Developments in the selective targeting of an EC subtype,
recently coined ‘precision angioscience’,160 will therefore be instrumental
in translating EC-derived scRNA-seq data into clinically interesting and fea-
sible follow-up studies. Selective delivery of small interfering RNAs
(siRNAs), single-guide RNAs (sgRNAs), messenger RNAs (mRNAs), small
molecules, and therapeutic proteins represents another strategy for spe-
cific targeting of the endothelium, and has thus far been experimentally
achieved through the use of targeting ligands (for instance monoclonal anti-
bodies), directed against EC-specific adhesion molecules or other surface
markers. Vascular cell adhesion molecule-1 (VCAM1)-targeted nanopar-
ticles have shown promising results in light of imaging inflamed or ischaemic
tissues in the mouse.161–164 Furthermore, enzyme-antibody conjugates and
nanoparticle formulation aimed at specific targeting of the pulmonary165,166

or splenic167 murine vasculature have been reported so far, often with neg-
ligible alterations in non-vascular cell types or other tissues.

Although promising, in vivo gene delivery to a particular EC subtype
identified by scRNA-seq has thus far not been achieved but may harbour
benefits over pan-EC targeted strategies in terms of toxicity to other
parts of the vascular bed within and outside of the tissue of interest. One
major reason why targeting of specific EC subtypes identified by scRNA-
seq studies has not yet been achieved, is the lack of consensus marker
genes for distinct EC subpopulations. Future scRNA-seq analyses might
provide further insights into construction of specific promoters for inclu-
sion into gene therapy vectors in order to selectively target specific EC
populations. This strategy however depends on the mutual exclusivity of
EC subtype specific marker genes, and may be more challenging in case
of tissues, where EC expression signatures exhibit spatial zonation, as for
instance shown in the hepatic vasculature.168

7. Recent advances and future
perspectives

7.1 A compendium of all publicly available
single ECs
Despite the vast amount of scRNA-seq studies published to date, the
abundance of the vascular compartment within individual studies is often

relatively low, precluding a detailed and all-encompassing interrogation
of its heterogeneity. Increasing the magnitude of EC-derived single-cell
datasets, by performing a joint analysis across all publicly available stud-
ies, could offer a solution to this problem. Although seemingly straight-
forward, this strategy nevertheless faces multiple challenges, including
the need for effective batch effect correction, lack of standardization in
EC isolation protocols, and variation in single-cell data analysis, subclus-
tering and annotation strategies (see Box 3).

The latter issue is expected to improve in the coming years with the
advancement of automated cell type annotation tools, which are rising in
number and user-friendliness,169–172 but even more so with the develop-
ment of tools like Azimuth,173 providing rapid and automated mapping,
visualization and annotation of single-cell datasets through an online web
application. Yet, these tools often provide reference datasets represent-
ing major cellular lineages in various tissues/organs but preclude annota-
tion of different EC subtypes within a particular tissue or vascular bed.
There is thus a need for the generation of tissue-specific ‘gold standard’
vascular atlases, to both improve and progress standardization of EC
OMICs annotations. A recent integration of 6 lung scRNA-seq datasets
resulted in joint profiling of over 15 000 ECs from 73 individuals,174 and
although not covering the full spectrum of published (healthy/normal)
lung single EC RNA-seq data, this study provided one of the first in-
depth reference atlases of healthy/normal lung ECs and is likely to aid an-
notation of future pulmonary EC studies in health and disease. When
such efforts will be combined with automated cell type mapping tools
and standardized whole tissue/EC isolation protocols, harmonized EC
annotation across laboratories, tissues and experimental setups should
be feasible in the foreseeable future.

Another obstacle in integrated analysis of EC OMICs data is repre-
sented by the inconsistent formats in which raw data is deposited, and
the (sometimes) severe lack of detail regarding sample origin information
and data processing parameters. The availability of processed counts and
annotated metadata is furthermore limited, yet inevitable to ensure re-
producibility of the data across labs of different expertise. Data-sharing
methods also become increasingly variable, complicating uniform meth-
ods of dataset curation. While lab-hosted servers, offering virtual explo-
ration and downloading of data, are rising in popularity and enable non-
bioinformatics focused labs an affordable and reliable method of data

Box 3 Challenges of integrating multiple single EC datasets
An integrated analysis of ECs extracted from multiple, publicly available single-cell datasets would provide a solution to the problem of overall low num-
bers of high-quality ECs in most individual (whole tissue) studies. However, this strategy faces multiple challenges:

• Unavoidable ‘batches’ across single-cell datasets arise when they are generated in different labs, and/or comprise different experimental models,
sample cohorts, library preparation methods, or sequencing platforms. If not properly accounted for, these batch effects could severely bias
conclusions drawn from comparative and/or integrated analyses. Despite the rapid development, optimization, and benchmarking of user-friendly
data integration or batch correction methods for single-cell datasets,211–214 their use is limited to only certain aspects of downstream data analyses,
and finding a proper balance between aligning multiple datasets while preserving key biological variation remains challenging. Not surprisingly, batch
correction is recognized as one of the major challenges in the single-cell OMICs community.215

• With the increasing number of published single-cell studies, insufficient standardization of tissue isolation, as well as inconsistencies in annotation of EC
subtypes are arising as a major hurdle in the vascular single-cell field. Usage of different isolation protocols inevitably leads to variation in the overall yield of
cellular lineages, and the vascular compartment is no exception.216 Standardized protocols for EC isolation from various mouse tissues are rising,217–219 and
optimized pipelines for pan-cell type isolation of single cells or nuclei from human tumour samples are also being developed.216 The continuation of such
developments in additional tissues, conditions and species are expected to reduce discrepancies in overall EC/EC subtype yields across studies.

• The categorization of ECs into transcriptomically distinct phenotypes or subgroups within the identified vascular compartments, which by itself is not
a trivial pursuit, varies substantially across studies. Whereas this variability can likely be attributed to differences in the overall EC yield across these
studies (indeed, studies analysing enriched EC populations generally report a higher number of transcriptomically distinct EC subtypes as compared
to whole-tissue analyses41,53,55,65,133), differences in the applied subclustering parameters and annotation strategies may also play a role.

19EC heterogeneity at single-cell resolution



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..exploration, a more centralized storage platform would greatly enhance
our ability to study vascular OMICs in a streamlined and comprehensive
manner. Various recent efforts aimed at offering solace, either by genera-
tion of free-of-charge portals harbouring curated and harmonized proc-
essed datasets, or frequently updated overviews of published scRNA-
seq datasets.175–178 Specialized databases, like JingleBells179 for immune
cells, cancerSEA180 for cancer cell states, The Human Cell Atlas portal for
all tissues and cell types of the human body,181 or the NIH Human
Biomolecular Atlas Program (HuBMAP),182 furthermore provide tempting
field-specific opportunities in terms of scRNA-seq data exploration and
analysis. Yet, none of these portals/efforts capture the complete spec-
trum of published datasets, and their usefulness relies on continuous
data curation and updates.

If we are to make progress in deciphering vascular heterogeneity
across species, tissues and conditions, a dedicated portal housing all pub-
licly available vascular-centred single OMICs data appears to become a
key milestone waiting to be accomplished. However, as the ever-
increasing number of single-cell datasets published is becoming difficult

to curate, a demand for artificial intelligence (AI)-based data-mining
approaches is likely to arise in parallel to realize such an effort in an all-
encompassing manner. Implementation of natural language processing
strategies and recent developments in their specific moulding towards
biomedical sciences appear promising.183,184 Amidst the current single-
cell OMICs ‘tsunami’ of data, tailoring of text-mining tools towards iden-
tifying OMICs publications harbouring a particular cell type of interest (in
this case, ECs) has the potential to greatly enhance their identification
and prioritization, accelerating the generation of comprehensive single
EC OMICs repositories and furthering data-driven research in the (vas-
cular) biology field (Figure 6).

7.2 ECs never work alone-interactomes
and spatial resolution
As described above, intricate cellular communication between ECs and
their neighbouring cells are of vital importance for maintaining vascular
homeostasis and remodelling, and recent advances in the development

Figure 6 A single-cell vascular database. Single-cell OMICs studies generate vast amounts of data. The challenge is to identify biologically relevant EC
phenotypes and disease-specific changes in ECs. Here, text-mining tools can be tailored to identify OMICs publications including ECs, to aid in the genera-
tion of an all-encompassing repository of EC OMICs data. Such a database will facilitate automated and consistent EC annotation, as well as the compari-
son of ECs between different tissues, species and conditions, advancing and harmonizing data-driven research in vascular biology.

20 L.M. Becker et al.
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..of interactome prediction tools for single-cell data revealed intriguing
findings regarding the interplay of ECs and other cell types.47,49,59,87

Although fascinating, it must be noted that the findings and interactions
resulting from RLI analysis represent predictions, requiring functional

validation. Recently developed tools provide more comprehensive solu-
tions, including CellChat,117 taking into account interactions between
ligands, receptors and their co-factors, or NicheNet,118 aimed at diving
deeper into the intracellular response of cell types on the ‘receiving end’

Figure 7 Extension and validation of RLIs predicted from single-cell data. An overview of methods for further exploration and validation of predicted
RLIs from scRNA-seq data, either on the transcriptome level (upper panel) or protein level (lower panel). (A) Computational tools can be used to re-
trieve information regarding interactions between ligands, receptors and their co-factors (CellChat), or the intracellular response of cell types on the ‘re-
ceiving end’ of predicted RLIs (NicheNet). (B) RLIs can also be placed in a spatial context by implementation of computational tools allowing the
integration of (i) scRNA-seq data with reference in situ hybridization data (Perler), or (ii) scRNA-seq data and its predicted RLI landscape (CSOmap).
Spatial information can also be reconstructed de novo using scRNA-seq data (novoSpaRc), or by means of mapping untargeted scRNA-seq data to smaller,
targeted spatial transcriptomics datasets (SpaGE, SpaOTsc). (C) Protein level exploration of RLIs can be achieved by applying established methods aimed
at generating a dual transcriptome and protein read-out in scRNA-seq experiments (CITE-seq, REAP-seq, INs-seq), or by using mass-spectometry based
methods [cytometry by time of flight (CyTOF), Nativeomics].
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of these predicted interactions (Figure 7A). Ultimately, however, RLIs can
be more accurately investigated when positional information is pre-
served. Advances in spatial transcriptomics, crowned as ‘Method of the
year 2020’ by Nature Methods,185 presumably hold great promise for fu-
ture enhancements in studying the interplay between ECs and their envi-
ronment in a tissue architecture-dependent context (Figure 7B).
Interestingly, several computational tools have been recently developed
with the aim to provide a more cost-effective alternative to spatial tran-
scriptomics, either by integration of scRNA-seq data with reference in
situ hybridization data (Perler186) prediction of cellular coordinates in a
three-dimensional pseudo-space based on input scRNA-seq data and
known ligand-receptor interactions (CSOmap187) de novo spatial recon-
struction of single-cell gene expression (novoSpaRc188) or prediction of
whole-transcriptome expressions in their spatial configuration by map-
ping of untargeted scRNA-seq data to smaller, targeted spatial transcrip-
tomics datasets (SpaGE,189 SpaOTsc190) (Figure 7B).

Finally, translation of cellular cross-talk predictions to the protein
level, for instance by applying established methods including CITE-
seq,191 REAP-seq,192 or cytometry by time of flight (CyTOF),193 or the
more newly developed Nativeomics194 (allowing detection of intact li-
gand–receptor assemblies using mass spectrometry), INs-seq195 (allow-
ing more accurate exploration of TFs, active signalling networks and
metabolic activity by parallel transcriptome and intracellular proteomic
profiling at single-cell resolution), or single-cell proteomics196 will be es-
sential to complement and finetune EC-interactomes predicted from
scRNA-seq data (Figure 7C). Lastly, as spatial juxtaposition of an EC and
another cell type does not automatically imply their active communica-
tion, the abovementioned tools will undoubtedly help prioritize the
interactions that are most promising for further functional validation.

8. Conclusion

Collectively, EC OMICs studies have opened up a staggering amount of
data readily available for analysis, of which we have currently only
scratched the surface. Nevertheless, the single endothelial landscape un-
covered thus far has revealed an intriguing degree of transcriptional het-
erogeneity and has already propelled the vascular biology field at
unprecedented speed. Further efforts aimed at unravelling the associated
biological and functional relevance of this heterogeneity will undoubtedly
help forward our understanding of the molecular drivers by leaps and
bounds, and reveal the translational potential of exploiting EC heteroge-
neity for the development of novel AAT or endothelial-targeted
therapies.
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SCA, Asselbergs FW, de Borst GJ, Aavik E, Lönnberg T, Lutgens E, Glass CK, den
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Treps L, Cantelmo AR, Dubois C, de Zeeuw P, Goveia J, Zecchin A, Taverna F,
Morales-Rodriguez F, Brajic A, Conradi L-C, Schoors S, Harjes U, Vriens K, Pilz G-
A, Chen R, Cubbon R, Thienpont B, Cruys B, Wong BW, Ghesquière B, Dewerchin
M, De Bock K, Sagaert X, Jessberger S, Jones EAV, Gallez B, Lambrechts D,
Mazzone M, Eelen G, Li X, Fendt S-M, Carmeliet P. Quiescent endothelial cells
upregulate fatty acid beta-oxidation for vasculoprotection via redox homeostasis.
Cell Metab 2018;28:881–894.e13.

147. Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial cell
metabolism. Physiol Rev 2018;98:3–58.

148. Teuwen LA, Geldhof V, Carmeliet P. How glucose, glutamine and fatty acid metabo-
lism shape blood and lymph vessel development. Dev Biol 2019;447:90–102.

2022;118:2519–2534.

25EC heterogeneity at single-cell resolution



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
149. Lu T, Yang X, Shi Y, Zhao M, Bi G, Liang J, Chen Z, Huang Y, Jiang W, Lin Z, Xi J,

Wang S, Yang Y, Zhan C, Wang Q, Tan L. Single-cell transcriptome atlas of lung ad-
enocarcinoma featured with ground glass nodules. Cell Discov 2020;6:69.

150. Rivello F, Matuła K, Piruska A, Smits M, Mehra N, Huck WTS. Probing single-cell
metabolism reveals prognostic value of highly metabolically active circulating stro-
mal cells in prostate cancer. Sci Adv 2020;6:eaaz3849.

151. Cantelmo AR, Conradi L-C, Brajic A, Goveia J, Kalucka J, Pircher A, Chaturvedi P,
Hol J, Thienpont B, Teuwen L-A, Schoors S, Boeckx B, Vriens J, Kuchnio A, Veys K,
Cruys B, Finotto L, Treps L, Stav-Noraas TE, Bifari F, Stapor P, Decimo I, Kampen
K, De Bock K, Haraldsen G, Schoonjans L, Rabelink T, Eelen G, Ghesquière B,
Rehman J, Lambrechts D, Malik AB, Dewerchin M, Carmeliet P. Inhibition of the gly-
colytic activator PFKFB3 in endothelium induces tumor vessel normalization,
impairs metastasis, and improves chemotherapy. Cancer Cell 2016;30:968–985.

152. Bruning U, Morales-Rodriguez F, Kalucka J, Goveia J, Taverna F, Queiroz KCS,
Dubois C, Cantelmo AR, Chen R, Loroch S, Timmerman E, Caixeta V, Bloch K,
Conradi L-C, Treps L, Staes A, Gevaert K, Tee A, Dewerchin M, Semenkovich CF,
Impens F, Schilling B, Verdin E, Swinnen JV, Meier JL, Kulkarni RA, Sickmann A,
Ghesquière B, Schoonjans L, Li X, Mazzone M, Carmeliet P. Impairment of angio-
genesis by fatty acid synthase inhibition involves mTOR malonylation. Cell Metab
2018;28:866–880.e15.

153. Seguin F, Carvalho MA, Bastos DC, Agostini M, Zecchin KG, Alvarez-Flores MP,
Chudzinski-Tavassi AM, Coletta RD, Graner E. The fatty acid synthase inhibitor orli-
stat reduces experimental metastases and angiogenesis in B16-F10 melanomas. Br J
Cancer 2012;107:977–987.

154. Calderon D, Bhaskar A, Knowles DA, Golan D, Raj T, Fu AQ, Pritchard JK. Inferring
relevant cell types for complex traits by using single-cell gene expression. Am J Hum
Genet 2017;101:686–699.

155. Sierksma A, Lu A, Mancuso R, Fattorelli N, Thrupp N, Salta E, Zoco J, Blum D,
Bu�ee L, De Strooper B, Fiers M. Novel Alzheimer risk genes determine the micro-
glia response to amyloid-b but not to TAU pathology. EMBO Mol Med 2020;12:
e10606.

156. Hong J, Arneson D, Umar S, Ruffenach G, Cunningham CM, Ahn IS, Diamante G,
Bhetraratana M, Park JF, Said E, Huynh C, Le T, Medzikovic L, Humbert M, Soubrier
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