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Physics-based generative model of curvature sensing
peptides; distinguishing sensors from binders
Niek van Hilten1, Jeroen Methorst1, Nino Verwei1, Herre Jelger Risselada1,2,3*

Proteins can specifically bind to curved membranes through curvature-induced hydrophobic lipid packing
defects. The chemical diversity among such curvature “sensors” challenges our understanding of how they
differ from general membrane “binders” that bind without curvature selectivity. Here, we combine an evolution-
ary algorithm with coarse-grained molecular dynamics simulations (Evo-MD) to resolve the peptide sequences
that optimally recognize the curvature of lipid membranes. We subsequently demonstrate how a synergy
between Evo-MD and a neural network (NN) can enhance the identification and discovery of curvature
sensing peptides and proteins. To this aim, we benchmark a physics-trained NN model against experimental
data and show that we can correctly identify known sensors and binders. We illustrate that sensing and
binding are phenomena that lie on the same thermodynamic continuum, with only subtle but explainable dif-
ferences in membrane binding free energy, consistent with the serendipitous discovery of sensors.

Copyright © 2023

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

original U.S. Government

Works. Distributed

under a Creative

Commons Attribution

License 4.0 (CC BY).

INTRODUCTION
The recognition of curved regions of lipid bilayer membranes by
proteins plays a key role in many biological processes, such as vesic-
ular transport, fusion, and fission (1, 2). This preferred binding to
curved membranes is called curvature sensing and is driven by the
outer leaflet of the curved bilayer membrane being stretched, which
causes defects in the packing of the polar lipid head groups. Apolar
amino acids of proteins can complement the now exposed hydro-
phobic tails within these lipid packing defects, negating their ener-
getic penalty and resulting in a thermodynamic driving
force (Fig. 1A).

Besides fundamental biological importance, curvature selectivity
has been proposed as a potential avenue for the development of
broad-spectrum antiviral peptides that leverage the difference in
curvature between the membranes of small enveloped viruses and
the essentially flat host cell membrane (3–6). However, the extreme-
ly serendipitous discovery and resulting rarity of curvature selective
peptides obstruct the utilization of state-of-the-art data science–
driven generative models, like recent work on the discovery of an-
timicrobial peptides (7). Consequently, an efficient computational
strategy for accelerating the discovery of curvature sensing peptides
is still lacking.

Many natural curvature sensing proteins feature an amphipathic
helix (AH). AHs have a polar face that interacts with the solvent and
the lipid head groups and an apolar face that interacts with the hy-
drophobic lipid tails. Beyond this shared structural amphipathicity,
the chemical composition of AHs is highly diverse. For example, the
contrasting compositions of the amphipathic lipid packing sensing
(ALPS)motif of the ArfGAP1 protein (8) and the AH of α-synuclein
(9) (Fig. 1, B and C) suggest that curvature sensing results from a
delicate balance between the amino acid content on the apolar
and polar sides of the helices (10, 11). Moreover, it is important
to note that some AHs (like α-synuclein) have a positive net

charge, providing additional selectivity for anionic liposomes spe-
cifically (12). Together, the structural diversity among curvature
sensors complicates reliable prediction of a given peptide’s
sensing ability simply from sequence-based physicochemical de-
scriptors, like mean hydrophobicity 〈H〉, hydrophobic moment μH
(13), and net charge z.

Molecular dynamics (MD) simulations are a valuable asset in ex-
panding our understanding of curvature sensing, since they can
access the necessary molecular resolution that many experimental
methods lack (14–16). To reduce system size and, consequently,
reduce the computational cost, curved membranes are often repre-
sented as stretched flat membranes inMD simulations (Fig. 1A) (17,
18), such that the lipid packing defects on the surface are similar and
the consequent relative binding free energies correlate (19). This ap-
proximation is valid since biologically relevant bilayer curvatures
are negligible on the length scale of peptides (≈5 nm).

Recently, we developed a highly efficient method that can quan-
tify the relative free energy (ΔΔF) of curvature sensing by surface
peptides (19). By redefining ΔΔF as a mechanical property, we re-
alized that differential binding can be reinterpreted as the reduction
of work required to stretch a membrane leaflet when the peptide is
bound to it. In other words, a peptide that senses leaflet tension/cur-
vature will also tend to induce leaflet tension/curvature, and there-
fore, those properties are two sides of the same coin. In linewith this
notion, many AHs have been shown to bind to flat membranes and
then actively generate positive membrane curvature [e.g., the AHs
of Epsin (20) and the N-BAR domain (21)].

A still unresolved key question is what physical characteristics
differentiate AHs that specifically bind to curved membranes
(“sensors”) from AHs that bind without curvature specificity
(“binders”). To date, this question has mostly been addressed by
making strategically chosen point mutations in specific example
cases (9, 11, 22–24), but a fundamental thermodynamic under-
standing on how to distinguish sensors from binders among multi-
ple chemically diverse classes of AHs is, to the best of our
knowledge, still lacking. Here, we combine an evolutionary algo-
rithm with coarse-grained MD simulations (Evo-MD) to design
α-helical peptides that optimally recognize the curvature of lipid
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membranes, completely from scratch. Our main goal is to demon-
strate how the unique synergy between Evo-MD and neural net-
works can enable the identification of the two major curvature
sensing protein families (ALPS and α-synuclein) and their known
mutants without using any of the available experimental input data,
i.e., our approach is purely physics-based. Furthermore, we will il-
lustrate that sensing and binding are phenomena that lie on the
same thermodynamic continuum, with only subtle but explainable
differences in membrane binding free energy, consistent with the
serendipitous discovery of curvature sensors.

RESULTS
Designing the optimal curvature sensor
Evo-MD is a physics-based inverse design method that embeds MD
simulations in a genetic algorithm (GA) framework (25). GAs are
inspired byDarwinian evolution and can serve as a powerful tool for
optimization problems in large discrete search spaces, like the 20L
possible peptide sequences (for 20 natural amino acids and peptide
length L). Starting from a, in our case, random, initial subset (“pop-
ulation”), a GA iteratively (i) evaluates the desired property
(“fitness”) of the candidate solutions in the population, (ii) selects
the best candidates as the “parents” for the next generation, and then
(iii) performs genetic operations, like cross-over recombination and
random point mutations to (iv) generate the next population
(Fig. 2A). While evolution proceeds, the population’s average
fitness will increase until it converges to an optimum. To date,
GAs have mainly been applied to peptide optimization problems
that involve protein-peptide interactions and use fitness functions
based on physicochemical descriptors or information from databas-
es (26–29). In contrast, the fitness calculation in Evo-MD is based
on ensemble averaging from (coarse-grained) MD simulation tra-
jectories and is therefore completely data independent. In this
physics-based approach, experimental data contribute to solving
the optimization problem via the parametrization of the force
field that is used in the simulations, the Martini model (30) in
this study. Therefore, the main advantage is that Evo-MD will gen-
erate curvature sensing peptides without requiring any knowledge
of existing curvature sensing peptides, of which too few examples

exist to properly train a data-informed model. In addition, as
opposed to data-trained models, physics-based inverse design
does not tend to generate molecules that are (too) similar to the
input data (31). In contrast, Evo-MD will search for a predefined
thermodynamic optimum of sensing and generate physically
optimal sequences that actually may differ from the biological
optimum due to additional evolutionary constraints imposed by
nature’s complexity (e.g., solubility, protein-protein interactions,
and trafficking).

The direction of simulated evolution by GAs is governed by the
definition of the fitness function (the desired property). For the op-
timization of curvature sensing peptides, we aim to maximize the
magnitude of the curvature sensing free energy ΔΔF that we can ef-
ficiently quantify using aforementioned mechanical free energy
method (19). Our fitness function is the product of the ΔΔF value
and a scaling factor c that equals 1 when located on the membrane
surface and goes to 0 for transmembrane or soluble configurations
(section S1).We emphasize that ΔΔF characterizes the relative affin-
ity for lipid packing defects or equivalently positive leaflet curva-
ture, analogous to the curvature-dependent binding constants
(free energy of partitioning) measured in experimental model lipo-
some assays (11, 22–24, 32–36) and analogous to the measured dif-
ferences in the concentration of peripheral membrane proteins due
to curvature-driven sorting in micropipette aspiration assays
(37, 38).

Since membrane-surface peptides are, in most cases, α-helical
and the Martini force-field is unable to model protein folding
events, we assume and fix helical secondary structure when gener-
ating the starting conformations for our peptides. To this end, and
to reduce the search space, we excluded 10 amino acids with low α-
helical propensities (39) (P, G, D, R, C, T, N, H, V, and I) while en-
suring that every chemical subtype is represented in our final subset
(comprising A, L, M, K, Q, E, W, S, Y, and F). We chose a fixed
peptide length of 24 residues, which is in the typical range for cur-
vature sensing peptides. Consequently, our search space contains
1024 peptide sequences.

In the three independent Evo-MD runs we performed, we ob-
served convergence within 25 iterations with the best candidates
having a ΔΔF of around −32 kJ mol−1 (Fig. 2B). The consensus

Fig. 1. Graphical introduction to curvature sensing peptides. (A) A peptide (in black) can have an enhanced affinity (thicker arrows) toward a curved or stretched
membrane (in red) as opposed to a flat tensionless membrane (in orange), due to hydrophobic lipid packing defects between the lipid head groups. (B and C) Helical
wheel representations (26) of ALPS1 from ArfGAP1 (8) and α-synuclein (9). Yellow, hydrophobic; gray, small; pink/purple, polar; blue, positively charged; red, negative-
ly charged.
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sequence logos (40) of the final generations show a strong enrich-
ment of bulky hydrophobic residues, mainly F andW (Fig. 2, C to E,
and movies S1 to S3). We can understand this result by returning to
our earlier statement that “a peptide that senses tension/curvature
will also tend to induce tension/curvature.” Such induction of
tension and concomitant membrane curvature in a membrane
leaflet occurs via shallow insertions within the hydrophobic interior
of the lipid membrane, i.e., the region directly below the head
groups. We observe that the optimal sequences—the point of
maximum leaflet tension generation with respect to the helix’s
central axis—is characterized by an insertion of 1.69 ± 0.05 nm
from the bilayer center in a tensionless membrane (dmem in
Fig. 2I) or, alternatively, 0.24 ± 0.05 nm below the average position
of the phosphate groups (dPO4 in Fig. 2I). This is in quantitative
agreement with predictions from membrane elastic theory, which
suggest an optimal insertion of about 1.7 nm from the membrane
center plane (41). Furthermore, the bulkier the peptide is, and thus
the larger its excluded volume and effective helical radius, the more
pronounced the induced leaflet tension will be.

Besides the abundant hydrophobic residues, we observed that
the solutions of all three Evo-MD runs feature two charged residues
(E or K; see Fig. 2, C to E). This numerical conservation of two
charged amino acids suggests that this is the bare minimum of
polar content that is necessary to maintain a surface orientation
for such hydrophobic peptides (i.e., scaling factor c → 1). The
sign of the charge appears to be irrelevant for the zwitterionic phos-
phatidylcholine (POPC) membranes we used here. Also, the exact
position of these residues seems arbitrary, as long as the two
charged residues end up on the same side of the helix in the
folded conformation (Fig. 2, F to H).

The fact that all three randomly initiated Evo-MD runs produced
peptide sequences with identical physical characteristics within the
same number of iterations strongly suggests that this is indeed the
global and not a local optimum. To probe the effect of only using
the 10 most helix-prone amino acids, we performed an additional
Evo-MD run with all 20 natural residues included. This, again,
yielded peptides with the same physical characteristics but
showed slower convergence (40 iterations) and higher diversity
due to the vastly increased search space (fig. S3).

Fig. 2. Evo-MD–optimized curvature sensors. (A) Schematic representation of the Evo-MD process. Figurewas adapted from previous work (19). (B) Three independent
replica Evo-MD runs show convergence within 25 iterations, as evident by the population best (solid lines) and population average (dashed lines). For comparison, the
ΔΔF values for two known curvature sensing motifs [ALPS1 of ArfGAP1 (8) and α-synuclein (9)] are shown in green. We inverted the y axis to emphasize that we maximize
the magnitude of ΔΔFwhile retaining the physically relevant minus sign. (C to E) Consensus sequence logos (51) for the best 36 sequences of the final population. Black,
hydrophobic; blue, positively charged; red, negatively charged. (F to H) The respective helical wheel representations (26) of the consensus sequences are shown in (C) to
(E). Yellow, hydrophobic; blue, positively charged; red, negatively charged. (I) Simulation snapshot of a consensus peptide (Fig. 2, C and F) bound to a tensionless POPC
membrane. Hydrophobic residues (F, W, and L) are shown in yellow; E is shown in red. Phosphate (PO4) and choline (NC3) beads are shown in orange and blue, respec-
tively. dmem is the z component of the center-of-mass distance between themembrane and the peptide. dPO4 is the z component of the center-of-mass distance between
the PO4 groups and the peptide.
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What this simulated evolution shows is that the GA has success-
fully selected a key aspect in curvature sensing, insertion of hydro-
phobic residues (22, 36), which is then maximally amplified and
exploited until the fitness converges. To such extent even, that the
optimal “sensor” is so hydrophobic that it would likely stick to any
membrane, regardless of curvature, thus being classified as a
“binder” instead. What is immediately clear is that our optimized
peptides strongly differ from the naturally evolved optima (e.g.,
the ALPS motif and α-synuclein), both in terms of ΔΔF (Fig. 2B)
and in their chemical compositions (e.g., compare Fig. 1, B and
C, with Fig. 2, F to H). Thus, our physics-based inverse design in-
dicates that the distinction between curvature sensors and mem-
brane binders can be considered as a continuum with a soft,
subtle threshold at a relative binding free energy that is much
lower than the theoretical optimum.

Biologically, the differences between the simulated optimum and
naturally evolved peptides can be explained by considering the
many boundary conditions imposed by the complex environment
of in vivo systems. One of the most obvious and fundamental re-
quirements is that proteins should be soluble in physiological
buffer. The extremely hydrophobic GA-generated optima clearly
fail this criterion and will readily aggregate and precipitate out of
the solution. Our finding that curvature sensing is a hydrophobi-
cally driven process indicates that natural curvature sensing
helical motifs have likely evolved from a trade-off betweenmaximiz-
ing hydrophobic insertion (with one face of the helix) while remain-
ing generally water soluble (the other face of the helix), giving rise to
their amphipathic character. Also, since curvature sensing implies
tension generation, peptides with a high ∣ΔΔF∣ could harm the in-
tegrity or shape of the membranes they adhere to. To demonstrate
this, we performed additional simulations that show that the hydro-
phobic Evo-MD optimum is sufficiently tension inducing to gener-
ate positive curvature in a flat POPC membrane (fig. S4). To
circumvent such disruptive effects, an evolutionary pressure to
limit this potency must exist.

A neural network model to predict curvature sensing
As a valuable byproduct of the iterative optimization process by
Evo-MD, we obtained a large database of ≈54,000 unique sequences
(all 24 residues long) and their respective sensing free energies
(ΔΔF) as calculated by MD simulations. With this wealth of data,
we set out to train a convolutional neural network (CNN) that is
able to predict curvature sensing ability from peptide sequence in-
formation only.

To enable the model to handle peptides shorter than 24 amino
acids as well, we split the sequences in the original dataset at a
random position, such that the resulting two fragments were at
least seven residues long. Next, since ΔΔF depends linearly on
length (fig. S5), we interpolated the ΔΔF values for the split se-
quences, hereby tripling the dataset to ≈138,000 sequences (after
discarding duplicate fragments). We refrained from extrapolating
to sequences longer than 24 residues, since this would require ad-
ditional assumptions on amino acid composition and potentially
involve more complex tertiary structures that are inaccurately
modeled by the Martini force field. A detailed description of the
final training data is included in section S6.

As described previously in the context of activity prediction of
helical antimicrobial peptides (42), we used one-hot encoded and
zero-padded representations for the input sequences. These are

then fed to two consecutive convolutional layers with max
pooling, followed by a fully connected layer and a single output
neuron to translate the connection weights into a float value: the
predicted ΔΔF (Fig. 3A; see section S7 for details on the optimiza-
tion of the architecture and hyperparameters).

During the CNN training, minimization of the mean square
error (MSE) converged after 18 epochs (table S3) to a MSE of
1.84 kJ2 mol−2 for the validation set (25% random sample from
the full data). For this validation set, we achieved excellent correla-
tion (R2 = 0.97) between the predicted and MD-calculated ΔΔFs
(Fig. 3B). However, because sequences from the late iterations of
the same Evo-MD run can be highly similar, the validation and
training sets are arguably not fully independent. Therefore, to ulti-
mately test our model, we predicted ΔΔF for 988 randomly gener-
ated sequences (between 7 and 24 residues long) that were not part
of the training data and obtained a MSE of 2.92 kJ2 mol−2 and a R2

value of 0.66 when comparing the predicted values to ΔΔF calculat-
ed by MD simulations (Fig. 3C).

The trained neural network and all datasets are accessible at
github.com/nvanhilten/CNN_curvature_sensing. Please note that
the model should only be used for sequences between 7 and 24
amino acids long and that it assumes α-helical folding (as we did
in the training data). On the basis of the performance of our
model on the randomly generated test set, the root MSE of its pre-
dictions is

ffiffiffiffiffiffiffiffiffiffi
MSE
p

¼ 1:71 kJ mol−1, which is comparable to the
typical errors obtained when calculating ΔΔF by MD simulation
(e.g., compare the error bars in Fig. 4B).

Distinguishing sensing from binding
Now, with the MD quantification and CNN tools in hand, we can
return to the key question posed in Introduction, namely, which, if
any, characteristics can help us distinguish curvature sensors from
binders, and what can relative binding free energies, like ΔΔF, teach
us in this regard? To address this question, we composed a bench-
mark set of natural curvature sensing peptides (table S4), also in-
cluding mutated variants that were empirically categorized as
“nonbinders” (i.e., no affinity for any membrane) or binders (i.e.,
binding to membranes without curvature specificity). We should
acknowledge the expert help of B. Antonny and R. Gautier in com-
posing this list. In the following section, we will show that these
benchmark peptides can be reliably categorized into separate
regimes (see Fig. 4A) within a thermodynamic continuum, that is,
of a continuous scale in terms of membrane binding free energies
(ΔF) but features a sharp switch-like transition in terms of mem-
brane partitioning behavior.

To fairly compare the sequences, we propose two correction
factors to obtain an adjusted relative binding free energy ΔΔFadj.
First, we linearly extrapolate the ΔΔF values of shorter peptides to
their corresponding free energies if they were 24 residues long
(ΔΔFL=24, see section S5). Second, we realized that many of the pep-
tides are cationic to improve interaction with (curved) anionic
membranes that are abundant in nature. Since our MD simulations
were performed with neutral POPC membranes, we hypothesized
that the relative binding free energies would, in these cases, be un-
derestimated and thus require a correction term czz to account for
this

ΔΔFadj ¼ ΔΔFL¼24 þ czz ð1Þ
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To determine the magnitude of cz (the relative free energy con-
tribution per unit charge z), we performed additional MD simula-
tions with anionic membranes [75% POPC and 25% 16:0–18:1
phosphatidylglycerol (POPG)] and found elevated relative binding
free energies (∣ΔΔFL=24∣), especially for the cationic peptides (table
S5). From the average difference between the ΔΔFs calculated on the
different membranes, we obtained cz = −0.93 ± 0.89 kJ mol−1 per
unit charge.

We calculated ΔΔFadj for the benchmark peptides with the CNN
model and MD simulations (Fig. 4B). When ranking the peptides
accordingly, we find that we can roughly reproduce the empirical
qualification of nonbinders at the lower end and binders at the
higher end of the ranking, as well as sensors in the middle. We
find that the CNN-predicted ranking is in better agreement with
the experimental trends than the results from MD simulations.
We speculate that this is likely due to a smoothening effect, i.e., pre-
dictions of theMD simulations for individual peptide sequences are
fully independent, whereas the CNN introduces effective correla-
tions between sequences. Because the CNN is trained on the ensem-
ble averaged values from many thousands of independent MD
trajectories for different peptide sequences, we argue that distur-
bances (“noise”) in chemical space (point mutations) and in the
MD itself (limited sampling) are therefore smoothened out to
such extent that the experimental trends are more robustly repro-
duced. Hence, we use the CNN-predicted ΔΔFadj values for the re-
mainder of this paper.

Thermodynamicmodel of the sensing → binding transition
Along the lines of our current definitions, every peptide undergoing
hydrophobically driven membrane binding is able to sense positive
membrane curvature due to the increase in surface hydrophobicity
upon bending. In other words, positive curvature enhances hydro-
phobically driven membrane binding. Empirically, however, a
peptide is only classified as a curvature sensor if it only binds to
membranes characterized by a high positive curvature. In this
section, we will argue that the empirical classification of sensors
versus binders can be intuitively understood from the population
statistics of a two-state partition function.

Here, we define the following two states: (i) statem: The peptide
is bound to the membrane; (ii) state s: the peptide is in the solution.
We define the partitioning free energy difference between the two
states as ΔFsm: the free energy of membrane binding minus the free
energy of solvation with respect to the peptide in the gas phase.
Using thermodynamic integration, we calculated ΔFsm for a non-
binder, a sensor, a binder, and the extremely hydrophobic Evo-
MD optimum (Fig. 2, D and G) binding to a flat tensionless mem-
brane (R = ∞; see section S10) and found that it linearly relates to
ΔΔFadj (Fig. 4C). The reason for this linear correlation is that both
membrane binding (ΔFsm) and curvature sensing (ΔΔFadj) are
driven by hydrophobic interactions. Since we are interested in pep-
tides that bind to curved membranes (10 ≤ R ≤ 100), we generalize
ΔFsm to a vesicle radius–dependent form ΔFsm(R) (full derivation in
section S10) and take a typical radius of R = 50 nm for the following
calculations.

Fig. 3. CNN model for curvature sensing prediction. (A) Architecture of the CNN model. (B and C) Correlation between the CNN-predicted and MD-calculated ΔΔF
values for the validation set after the final training (B) and for a random test set (C).
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At thermal equilibrium, the relative probability for a peptide to
bind to amembrane Pm is Boltzmann distributed. Consequently, Pm
is given by

Pm ¼
1

1þ Ns
Nm

eΔFsm
ð2Þ

Here, Ns represents the number of realizations within the acces-
sible solvent, and Nm represents the number of membrane binding
realizations. The mathematical form of Eq. 2 resembles that of a so-
called Fermi-Dirac function. If Ns

Nm
¼ 1, this function features a

sharp but continuous transition at ΔFsm = 0 (dashed curve in
Fig. 4E), i.e., the point where membrane binding and peptide solu-
bility are precisely in balance (Pm = 0.5). However, the number of
realizations in solution is expected to be much larger than the
number of realizations associated with membrane binding,
Ns
Nm
� 1, at typical lipid concentrations. Consequently, the transition

point shifts to the right, i.e., peptide-membrane binding is favored
over peptide solvation at the transition point Pm = 0.5. The steep
nature of this “switch function” notably explains why empirically
classified sensing behavior for one peptide switches to binding

Fig. 4. Distinguishing sensors from binders. (A) Nonbinders do not bind to membranes; sensors only bind to curved membranes; binders bind to any membrane,
independent of curvature. (B) ΔΔFadj for 19 benchmark peptides (table S4) predicted with the CNN model (top) and calculated from MD simulations (bottom). (C) Linear
correlation between CNN-predicted ΔΔFadj and the flat membrane binding free energy ΔFsm(R = ∞). Circles indicate peptides for which ΔFsm(R = ∞) was calculated by
thermodynamic integration (section S10). The Evo-MD optimum (black) is the sequence in Fig. 2D. For the remaining peptides (crosses), ΔFsm was derived from the linear
fit ΔFsm = 3.83 × ΔΔFadj + 12.27. (D) Highlighted ΔΔFadj values for ALPS GMAP-210 variants. (E) The membrane binding probability Pm as a function of the membrane
binding free energy ΔFsm (section S10 and Eq. 2), at a vesicle radius R = 50. In (D) and (E), the orange area indicates the likely regime (0.05≤ Pm ≤ 0.95) where peptides are
empirically classified as sensors. (F) Membrane binding probability Pm as a function of the vesicle radius R for a range of sensing free energies ΔΔF (section S10).
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behavior for another, possibly highly similar, peptide based on only
subtle differences in (relative) membrane binding free energy, like
we observed in this work (Fig. 4B).

To finalize our model, we estimate the prefactor Ns
Nm
.

The accessible membrane area in 1 liter of solution isA ¼ 1
2 cNAAlip,

with c being the lipid concentration, NA being the Avogadro cons-
tant, andAlip being the area per lipid. The characteristic surface area
of a helical peptide is roughly Ap = 5 × 1 nm2, and, equivalently, its
volume in solution isVp = 5 × 1 × 1 nm3. Taking c = 1mM [a typical
value in the concentration range used in experiments (11, 22–24,
32–36)] and Alip = 0.64 nm2, we obtain Ns

Nm
¼

V=Vp
A=Ap
¼ 5:2� 103.

When we plug this number into Eq. 2, we find that the free
energy of membrane binding outperforms the free energy of solva-
tion by −21.2 kJ mol−1 at the transition point Pm = 0.5 (Fig. 4E), i.e.,
the transition point is associated with favorable but relatively weak
membrane binding. Because of the sharp transition behavior,
sensors are envisioned as peptides with a ΔFsm value near the tran-
sition point (0.05 ≤ Pm ≤ 0.95; the orange area in Fig. 4E). Accord-
ing to our model, a peptide with Pm < 0.05 would be classified as a
“nonbinder,” and a peptide with Pm > 0.95 would be deemed a
binder. When overlaying the values for the 19 benchmark peptides
we introduced earlier (vertical lines in Fig. 4E and table S6) and con-
sidering a typical vesicle radius R = 50 nm, we find that 3 of 3 non-
binders, 8 of 12 sensors, and 3 of 4 binders are classified correctly,
i.e., in agreement with the original experiments. Such categorization
would have been impossible with crude physicochemical descrip-
tors like mean hydrophobicity 〈H〉 or hydrophobic moment μH
despite them (weakly) correlating with ΔFsm (section S12).

We defined the sensing regime rather generously (0.05 ≤ Pm ≤
0.95) to accommodate for the fact that both the empirical classifica-
tion and the positioning of the Fermi-Dirac curve are sensitive to
the lipid concentration c, which can greatly vary between experi-
ments. Moreover, imperfect helical folding and differing lipid com-
positions, cell systems, and read-out types can complicate the direct
comparison between empirical classifications and our computa-
tional models. In terms of the curved membrane binding free
energy ΔFsm(R = 50), the lower and upper boundaries of sensing
(0.05 ≤ Pm ≤ 0.95) correspond to −13.9 and −28.5 kJ mol−1, respec-
tively (orange area in Fig. 4E). In other words, when the work re-
quired to pull a peptide from the membrane of a vesicle with radius
R = 50 is between those values, it can be classified as a sensor. In
terms of the length- and charge-adjusted relative binding free
energy (ΔΔFadj), i.e., the preference for highly curved membranes
[vesicles with radius R = 12.5 nm (19)], sensors fall between −6.4
and −10.0 kJ mol−1 (orange area in Fig. 4D).

As an example, we highlighted four variants of ALPS GMAP-210
(23, 24) for which the relative differences in experimental sensing/
binding behavior were correctly captured (Fig. 4D). This is a notable
example because the sequences are similar: The only difference
between the original sensor ALPS GMAP-210 and the nonbinding
variant ALPS GMAP-210 (L12D) is a single point mutation (L → D)
that disturbs the peptide’s hydrophobic face. As can be expected,
and in line with the experimental findings, the inverse sequence
ALPS GMAP-210 (inv) scores the same as the original peptide
and is thus categorized as a sensor as well. Last, the condensed
version ALPS GMAP-210 (cond) was correctly identified as a
binder. With this highlighted example, we demonstrate that our
method and thermodynamic model can (i) pick out features as

subtle as single point mutations, (ii) resolve the resulting differences
in relative free energy, and (iii) correctly categorize the consequent
sensing behavior.

We also included the antiviral peptide hepatitis C virus (HCV)
AH, which specifically ruptures vesicles with a high curvature (e.g.,
small enveloped viruses) (3, 4) (black dotted line in Fig. 4E). To
date, HCVAH is the only example of a clinically relevant curvature
selective antiviral peptide (5). When we plug in the previously cal-
culated free energy value (19) for HCVAH, we find that this peptide
falls into the binder regime. This is consistent with evidence that the
vesicle size specificity of this peptide is due to curvature-specific
pore formation and not to curvature-specific binding (i.e., curvature
sensing) (43). After all, subtle binding may not be optimal for pore
formation, since the subsequent induction of tension should be suf-
ficient to rupture the membrane.

Following the evaluation of HCV AH in this regard, we argue
that the most promising range to find potent curvature-specific an-
tiviral agents is therefore near the transition zone between sensing
and binding (i.e., Pm → 1), since these peptides (i) may still benefit
from some “curvature sensing” (predominant binding to higher
curvatures) and (ii) pack a larger punch than biological sensors in
terms of meeting the tension induction threshold necessary to
deform/perforate viral membranes but are (iii) not so potent that
they also rupture the host cell membrane. The latter is helped by
the fact that the host membrane is likely more resilient to the dis-
ruptive actions of peptides than the viral membrane due to mem-
brane-stabilizing proteins and active feedback mechanisms. This
means that a considerable part of the selectivity of membrane-tar-
geting drugs is likely due to a difference in drug resistance (mem-
brane resilience) rather than actual differential binding.

Last, we plotted the membrane binding probability Pm as a func-
tion of vesicle radius R for different ΔΔF values (Fig. 4F) and find
that this is precisely in line with the cartoon in Fig. 4A. For non-
binders (ΔΔF > −6.4 kJ mol−1), membrane binding is rare (low
Pm) for biologically relevant vesicle sizes (10 ≤ R ≤ 100). Converse-
ly, binders (ΔΔF < −10.0 kJ mol−1) have a high membrane binding
probability (Pm → 1) regardless of the vesicle radius. It is exactly the
sensor region in between that defines the area where peptides can
display curvature selectivity, i.e., a wide range of probabilities for a
wide range of vesicle radii.

DISCUSSION
We have illustrated the utility of a physics-based generative model
(Evo-MD) to explore and simultaneously rationalize the mecha-
nisms of how peptides sense membrane curvature. Initially, we set
out to optimize curvature sensing by resolving the sequence that
maximizes the relative affinity for lipid packing defects. Instead,
we ended up with the optimal binder. This finding led to the impor-
tant realization that curvature sensing and membrane binding are
phenomena that lie on the same thermodynamic continu-
um (Fig. 4E).

Naturally evolved curvature sensors, such as the ALPS motif and
α-synuclein, are chemically diverse but turn out to be remarkably
similar in terms of partitioning free energies, which explains their
functional similarities. In this work, we described the thermody-
namic regime that defines the curvature sensing behavior of pep-
tides. Given how narrow this energetic “sensing window” is, it is
expected that the discovery and design of curvature sensors has,
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to date, been rather serendipitous. Having identified this “window
of opportunity” in terms of relative binding free energy can facilitate
the discovery of previously unidentified curvature sensing peptides
since we now know where to look for them.

The existence of the here-resolved thermodynamic sensing
regime can also be intuitively understood from an evolutionary bi-
ological perspective. Curvature sensing motifs within naturally
evolved proteins must fulfill the following two criteria: They
should (i) predominantly bind to curved membranes and (ii) con-
serve the structural integrity of the membranes they adhere to. The
here-observed linear correlation between sensing and overall mem-
brane binding (Fig. 4C) dictates that these criteria are only met in
the weak binding regime. These arguments are all in full agreement
with the earlier hypothesis that curvature sensing in nature is a
subtle balance between overall membrane binding and specific cur-
vature recognition (2). Also, in this weak binding regime, the small
leaflet strain induced by peptides is able to facilitate a largely inert
and thus biologically functional sensing phenotype that does not
easily lead to membrane rupture/deformation.

We demonstrated a fruitful synergy between a physics-based
generative model (Evo-MD) and a CNN, which not only markedly
accelerated the high-throughput evaluation of peptide sequences
but also improved the accuracy of prediction compared to the orig-
inal molecular simulations. It is important to stress the key role of
Evo-MD, in that it yields sequences over the whole range of ΔΔF by
gradually maximizing the relevant chemical property in a well-
spaced manner, in our example, even up to the thermodynamic
optimum. Using these data to train a neural network model has
the important advantage that it encompasses the full thermody-
namic range of possibilities over a vast search space of 2024 sequenc-
es, whereas a dataset of natural peptides (if available in the first
place) would be strongly constrained to a certain biologically feasi-
ble regime that only comprises peptides with highly similar physi-
cochemical characteristics. We argue that training data generated
with Evo-MD can therefore substantially improve both the applica-
bility domain and the accuracy of neural network models, despite
many of the generated sequences not being necessarily biologically
relevant. This principle is equivalent to fitting an unknown function
to data points that are well spaced over the whole range of the ap-
plicability domain versus data points that are only clustered within a
narrow window. In particular, precise knowledge of the maxima
(and minima) of a function—which a physics-based optimization
resolves—will benefit the quality of a fit or model, also within the
biologically relevant domain of the search space. We postulate that a
subsequent restriction of the search space within or near the here-
resolved sensing regime can enhance the discovery of curvature
sensing motifs in natural proteins, as well as their de novo
generation.

Last, we envision an important potential application in the com-
putational design of peptide sensors that recognize membranes with
other aberrant characteristics, such as a distinct lipid composition
(e.g., bacteria and cancer cells). Since (selective) membrane binding
results in the generation of leaflet tension, membrane binding pep-
tides have an inherent membrane-destabilizing propensity and the
ability to lower the energetic cost of the highly curved interface of
toroidal pores. This is particularly the case for the hydrophobically
driven membrane binding peptides we discussed in this work. The
simultaneous encoding of selective membrane binding and an
active drug mode, such as the induction of membrane lysis, is

therefore a realistic avenue to explore further. An important advan-
tage of physics-based generative models over existing data science–
based generative models here is their unique ability to systematically
explore the drug therapeutic potential of distinct relative binding
(ΔΔF) regimes by restricting the generation of peptide sequences
within predefined boundary values of ΔΔF, for example, via the
straightforward introduction of a bias/constraint to the fitness func-
tion. This can enable the targeted exploration of different “windows
of opportunity” similar to aiming a gun at different targets.

MATERIALS AND METHODS
Evo-MD
The Evo-MD code was adapted from previous work (25) to include
the preparation, production, and fitness evaluationmodules that are
specific to the curvature sensing problem. The code is available at
github.com/nvanhilten/Evo-MD_curvature_sensing.

Every candidate solution is evaluated by a fitness function that is
based on a free energy calculation from coarse-grained MD simu-
lations, using theMartini 3 force field (30). The relative binding free
energy (ΔΔF) is calculated from two POPC membrane simulations
at a constant area: one at tensionless conditions [σ(A0)] and one at
stretched conditions [σ(A*)] with a relative strain of
ε ¼ A�� A0

A0
¼ 0:165, such that the outer leaflet bares lipid packing

defects similar to the outside of a highly curved liposome (radius
R = 12.5 nm). This method is described in detail in previous
work (19) and in section S1.

To focus the optimization toward surface peptides, we applied a
cosine scaling factor c (Eq. 3 and section S1) that is 1 when the
peptide is at the membrane surface (dmem = b) and 0 when the
peptide is in solution (dmem ≥ 2b) or fully adopts an intermembrane
or transmembrane configuration (dmem ≤ 0). The reference values
for b are based on the monolayer thickness of a tensionless POPC
membrane [b = 1.90 nm for σ(A0)] and a stretched POPC mem-
brane [b = 1.79 nm for σ(A*)] (19) within the Martini 3 force
field. The lowest value for c (tensionless or stretched condition) is
used in the fitness scaling

Fitness ¼ c �ΔΔF ¼
1
2

1 � cos
πdmem

b

� �

�ΔΔF ð3Þ

Evo-MD production runs were performed with a population size
of 144 peptides, from which a parent pool of the “fittest” 36 se-
quences was selected. Details on tuning these settings are described
in section S2. From the parent pool, two parents were selected ran-
domly and combined through one-point crossover recombination:
The two parent sequences are split at the same random position i
and the tail ends (i → 24 − i) are swapped. Next, for every position
in the resulting two “children” peptides, random point mutation is
applied with the probability Pmut ¼

1
L, with sequence length L = 24,

such that every sequence bares, on average, one point mutation.
To retain highly scoring peptides, the best candidate solution of

every generation (“fitness elite”) was copied to the next. In addition,
sequences that were rerun more than three times already were also
retained (“rerun elites”). The fitness values for these elite sequences
were updated after every rerun with the average value of the fitness
values from all individual iterations. In this way, highly scoring pep-
tides get increasingly better sampling throughout the evolution.
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Simulation details
All MD simulations were performed with GROMACS 2019.3 (44)
with fixed x- and y-dimensions (constant area), such that the “low
tension” membrane was tensionless (ϵ = 0, A = A0), and the “high
tension” was at a 16.5% relative strain (ϵ = 0.165, A = A*) (19). Be-
rendsen pressure coupling (45) was applied only in the z-dimension
(1-bar reference pressure with a 4.5 × 10−5 bar−1 compressibility, τP
= 6 ps). A constant temperature of 310 K was maintained by the
velocity rescaling thermostat (46) (τT = 1 ps).

We used the coarse-grained Martini force field, version 3.0.0
(30), at a 30-fs time step. Van derWaals interactions were calculated
with the shifted Verlet cutoff scheme (47), and reaction-field elec-
trostatics (48) describe the coulomb potentials, both with a 1.1-nm
cutoff. The neighbor list was updated every 20 steps.

Within Evo-MD, the system setup was automated as described in
previous work (19). Systems comprise 128 Martini 16:0 to 18:1
POPC lipids and 1800 Martini water beads. Atomistic helical
peptide models were generated using PeptideBuilder (49) and
then coarse-grained by martinize2, VerMoUTH (50). They were
then inserted into the two preequilibrated membrane systems at
dmem = 1.5 nm from the membrane center plane. For charged pep-
tides, systems were neutralized by adding Na+ and Cl− counter ions.
Steepest descent minimization with soft-core potentials (0.75 cou-
pling for the Van der Waals interactions) was performed to solve
clashes. Within Evo-MD, a total run time of 400 ns was used for
each simulation. All non–Evo-MD simulations (Figs. 3C and 4B,
fig. S5, and table S5) were run for at least 800 ns.
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Figs. S1 to S8
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