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Characterization of regional differences in resting-state
fMRI with a data-driven network model of brain
dynamics
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Viktor Jirsa1*†

Model-based data analysis of whole-brain dynamics links the observed data to model parameters in a network
of neural masses. Recently, studies focused on the role of regional variance of model parameters. Such analyses
however necessarily depend on the properties of preselected neural mass model. We introduce a method to
infer from the functional data both the neural mass model representing the regional dynamics and the
region- and subject-specific parameters while respecting the known network structure. We apply the method
to human resting-state fMRI. We find that the underlying dynamics can be described as noisy fluctuations
around a single fixed point. The method reliably discovers three regional parameters with clear and distinct
role in the dynamics, one of which is strongly correlated with the first principal component of the gene expres-
sion spatial map. The present approach opens a novel way to the analysis of resting-state fMRI with possible
applications for understanding the brain dynamics during aging or neurodegeneration.
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INTRODUCTION
One avenue for analysis of resting-state functional magnetic reso-
nance imaging (fMRI) is the use of computational models of
large-scale brain network dynamics (1, 2). A general goal of this ap-
proach is to relate the observed brain activity to the dynamical rep-
ertoire of the computational model, possibly via identification of
optimal model parameters, leading to a better mechanistic interpre-
tation of the observations. One class of these computational models
is network-based models, where the nodes represent brain regions
and the edges represent the structural connections between them.
These models can be constrained by individual brain imaging
data; typically, the diffusion-weighted imaging data are used to es-
timate the edge weights. The local dynamics of brain regions is rep-
resented by the so-called neural mass models: low-dimensional
models of neuronal population activity.
When linking the models with the observations, until recently,

studies focused only on a small number of parameters because of
the computational costs associated with the exploration of a high-
dimensional parameter space. Typically, these would be the param-
eters affecting the network dynamics globally, such as a parameter
scaling the strength of all connections in the network. In recent
years, however, several works used the whole-brain modeling
framework to explore the role of spatial heterogeneity of model pa-
rameters. Specifically, the studies found that the whole-brain
models can better reproduce the features of resting-state fMRI
when the regional variability is constrained by the MRI-derived es-
timates of intracortical myelin content (3), functional gradient (4),
or gene expression profiles (5), and similar regional variability was
found even without prior restrictions (6).

Neural mass models used in these studies [such as the dynamic
mean field model of conductance-based spiking neural network (7)
or Hopf bifurcation model of neural excitability (8)] are usually
derived through a series of major simplifications to arrive at
simple, low-dimensional models of neural dynamics. It can thus
be questioned to what degree the dynamical structure embodied
in these models is sufficient to capture the essential elements of
the neural dynamics manifesting in the observed data. Would two
different neural mass models lead to the same conclusions, or do the
results strongly depend on the exact model form? Such questions
are not yet sufficiently answered.
The recent advancements in dynamical system identification

open up new possibilities in this direction and raise the question
of whether a data-driven approach can be applied in the context
of whole-brain modeling: Can we learn a dynamical system repre-
senting a neural mass at each node of a large-scale brain network?
Such approach would allow us to side-step the issue of reliance on a
specific neural mass model, which lie at the heart of the large-scale
modeling, and instead extract this model directly from the function-
al data.
Our goal in this work is to learn the model of whole-brain dy-

namics using the framework of network-based models (Fig. 1). That
is, we assume the model form of connected neural masses, with the
connection strengths derived from diffusion-weighted imaging. We
however do not specify the functional form of the neural mass and
instead wish to learn the neural mass model in a data-driven fashion
from the observed dynamics in resting-state fMRI. Using this
model, we want to learn its parameters varying across regions and
subjects, which, together with the individual connectome networks,
give rise to the differences in observed dynamics across regions and
subjects.
Given that this approach avoids the assumptions on the specific

form of the regional dynamics, the desired framework would have a
potential to independently validate the methodologies used in the
traditional approaches with predefined neural mass models (such as
the assumptions on the nature of regional dynamics) and support
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their finding (such as on the role of regional heterogeneity in whole-
brain dynamics). Eventually, such approach might lead to a new
generation of more expressive, data-driven network models of
large-scale brain dynamics.
At the core of this work is the problem of data-driven nonlinear

dynamical system identification. Many approaches have been intro-
duced in recent years and applied in various fields of physical and
life sciences (9–14), including in neuroscience on all scales (15–17).
A wide range of approaches were used for the representation of the
dynamical systems and for the inference methods: Brunton et al. (9)
introduced the sparse identification of nonlinear dynamics (SINDy)
method, which uses sparse regression to find the coefficients for a
predefined library of nonlinear functions, leading to ordinary dif-
ferential equations (ODEs) in human-readable form. Some authors
approximated the nonlinear systems through blending locally linear
dynamics; among those approaches is the switching linear dynam-
ical system trained with message passing algorithm (10, 13) or the
method learning the position of fixed points and the associated Ja-
cobians with variational inference (11). Other approaches include
recurrent neural network with piecewise linear activation trained
with the expectation-maximization algorithm (14, 16). However,
others relied on variational autoencoder architecture, representing
the dynamical system with recurrent neural networks (15) and in-
cluding a hierarchical parameterization of the nonlinear systems
(12). These approaches differ in terms of computational costs,
quality of resulting reconstructions, complexity of the implementa-
tion, and interpretability of the resulting system.
Our problem has several specifics that preclude straightforward

adoption of the existing methods and motivate the development of
the method presented here:
1) We wish to operate within the framework of network-based

models of large-scale brain dynamics, meaning that we wish to in-
corporate the known structural connectivity in the whole-brain

model. The method thus has to allow for this prespecified
network connectivity.
2) We are interested in noise-driven systems, that is, systems de-

scribed by stochastic differential equations rather than deterministic
ODEs. Some of the existing methods focus only on deterministic
ODEs and incorporate only observation noise, but not the noise
in the underlying system.
3) It is the desired parameterization of the neural masses with

regional and subject parameters. When faced with a problem of
system identification for multiple related systems, many of the ex-
isting methods do not provide a way to share the learned dynamics;
rather, the systems are inferred independently. Here, we wish to
infer only one dynamical system with the intersubject and interre-
gional variations represented via the regional and subject parame-
ters only.
4) It is the problem of partial observations. It is sometimes

assumed that all state variables are observed, simplifying the infer-
ence problem greatly. We assume that we have only one-dimension-
al (1D) observation of the regional dynamics available (such as the
regional fMRI time series), meaning that multiple system states are
hidden and need to be inferred as well.
To tackle this problem, we use the framework of amortized var-

iational inference or variational autoencoders (18), inspired, in par-
ticular, by its application for inferring neural population dynamics
(15) and for dynamical systems with hierarchical structure (12).
Briefly, our system is composed of an encoding network,
mapping the observed time series to the subject- and region-specific
parameters and to the trajectory in the source space, a neural
network representing the dynamical system, and the observation
model acting as the decoder from the source to the observation
space. These are jointly trained to maximize the evidence lower
bound (ELBO) so that the predictions of the trained model
closely resemble the original data.

Fig. 1. Conceptual overview of themethod. Themethod allows us to perform a parameter inference for networkmodels of brain dynamics, where the dynamical model
of every node (or brain region) is initially unknown. As input (left), it expects structural connectivity matrices w for cohort of multiple subjects and corresponding ob-
servations of brain activity y (such as parcellated resting-state fMRI). Constrained by the structure of a generic model of regional dynamics (middle), it learns the dynamical
model of node dynamics f and the state-to-observation projection model g. The dynamical model f is shared for all subjects and regions, but it depends on subject-
specific parameters θs and region-specific parameters θr. These, too, are inferred from the data, together with the hidden states of the system x and the subject-specific
external input uext, shared by all regions in a given subject. All of the system states, subject- and region-specific parameters, and the external input are inferred prob-
abilistically as normal distributions, that is, we infer the mean and variance for each parameter.
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In this work, we test our method on two synthetic datasets, gen-
erated with the two models commonly used in large-scale brain
modeling: the mean field model of conductance-based spiking
neural network, or mean field model for short (7), and the Hopf
bifurcation model (8). For both test cases, we use a cohort of
eight subjects with realistic structural connectomes and with
model parameters varying across subjects and brain regions. We
show that the trained generative model can reproduce many fea-
tures of the original dataset and demonstrate that the method can
extract regional and subject-specific parameters strongly related to
the original parameters used for the simulation.
Last, we apply the method to resting-state fMRI data of 100 sub-

jects from the Human Connectome Project (HCP) (19). We find
that the inferred dynamics can be described as noisy fluctuations
around a single fixed point, both on the node and network level.
The method reliably discovers three regional parameters with
clear and distinct function on the dynamics, one of which is strongly
correlated with the first principal component of the gene expression
spatial map. We further find that the functional connectivity (FC) is
reproduced only partly and relies heavily on the external input
shared by all regions and only to a small extent on the network
interactions.

RESULTS
The results section consists of three parts. In the first part, we intro-
duce the general ideas of the developedmethod; its detailed descrip-
tion can be found in Methods. In the second part, we validate the
proposed method on synthetic data, that is, on data generated by
computational models with known parameters. In the third part,
we apply the method on resting-state fMRI data from human sub-
jects and analyze the results.

Amortized variational inference for networks of nonlinear
dynamical systems
We follow the general framework of large-scale brain network mod-
eling and assume that for a specific subject, the observations yj(t) of
a brain region j are generated by a dynamical system

_xjðtÞ ¼ f ½xjðtÞ; θrj ; θ
s; uextðtÞ; ujðtÞ� þ ηjðtÞ ð1Þ

yjðtÞ ¼ g½xjðtÞ� þ νjðtÞ ð2Þ

where xj(t)∈ ℝns is the state at time t and θrj [ Rmr and θs ∈ ℝms are
the region-specific and subject-specific parameters.
The term uext(t) is the external input, shared by all regions of a

single subject, and

ujðtÞ ¼
Xn

i¼1
wjigc½xjðtÞ� ð3Þ

is the network input to region j with fwijgni;j¼1 being the structural
connectome matrix of the network with n nodes. The functions f, g,
and gc are initially unknown, and ηj(t) and νj(t) are the system and
observation noise, respectively (fig. S1A).
From the observed time series of multiple subjects, we wish to

infer both the evolution function f and observation function g,
which are the same for all subjects, as well as region- and subject-
specific parameters θrj and θ

s and the time-dependent external input

uext. To do so, we adopt the general framework of amortized varia-
tional inference (18) with hierarchical structure in parameters (fig.
S1B) (12). We consider the states xj, the parameters θrj and θs, and
the external input uext the latent variables and seek their approxi-
mate posterior distribution represented by multivariate Gaussian
distributions. In the spirit of amortized variational inference, we
do not optimize their parameters directly but through encoder
functions h1, h2, h3, and h4, which transform the data to the latent
variables (system states, regional and subject parameters, and exter-
nal input, respectively).
For reasons of computational tractability, we take a strong as-

sumption that the observation and coupling functions are identical,
g≡ gc. This allows us to effectively decouple the network problem to
uncoupled regions with known network input, so we can consider
the time series of one region of one subject as a single data point.We
return to this choice and its possible implications in light of the
results in Discussion.
We represent the nonlinear function f with a generic artificial

neural network and function g as a linear transformation. The in-
ference problem is ultimately transformed into the optimization of
the cost function, ELBO, which is to be maximized over the weights
of f, g, h1, h2, h3, and h4 and over the variances of the system and
observation noise. After the optimization, we obtain the description
of the dynamical system in terms of functions f and g, probabilistic
representation of the regional and subject parameters θrj and θ

s and
of the external input uext, and projections of the observations in the
state space xj. The inferred parameters θrj and θs will not have a
mechanistic meaning; however, they can provide a measure of
(dis)similarity of the regions and subject and can be interpreted
via the inferred dynamical system f.

Validation on synthetic data
Evaluation workflow
We test the proposed method on two synthetic datasets, where the
data are generated by models commonly used in whole-brain mod-
eling. First is the Hopf bifurcationmodel (8), shown in Fig. 2. That is
a two-equation neural mass model, where, depending on the value
of the bifurcation parameter ai, the dynamics is either noise driven
around a stable fixed point (for ai < 0) or oscillatory with frequency
fi (for ai > 0). In the synthetic dataset, these two parameters are ran-
domly varied across regions. The second model is the parametric
mean field model (pMFM) (7), shown in Fig. 3. That is an one-
equation model, and depending on the network input, it can be
pushed into monostable down- or up-state or a bistable regime.
The switching between the states is noise driven, and we vary the
noise strength across brain regions.
Both models are used to generate synthetic data for eight sub-

jects, each with individual structural connectome containing 68
cortical regions of the Desikan-Killiany parcellation (20). The con-
nectome is scaled by the global coupling strength G, which we set to
increase linearly across subjects for the Hopf model or which we set
to the optimal value (in terms of highest produced FC), different for
every subject, with pMFM.
To establish the performance of the described method, we

proceed as follows. First, we simulate the data with the original
model and random values of regional parameters (Figs. 2D and
3D). Next, using the whole dataset of eight subjects, we train the
model, obtaining at the same time the trained generative model
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described by the function f of the dynamical system, as well as the
probabilistic representation of subject- and region-specific param-
eters (Figs. 2E and 3E). Taking random samples from the posterior
distributions of the parameters and using random system and ob-
servation noise, we repeatedly generate new time series using the
trained model (Figs. 2G and 3G).
We evaluate the quality of the trained model on the basis of the

following criteria. First, we establish whether the inferred parame-
ters are related to the original parameters of the model (Figs. 2F, 3F,
and 4, A and E). Second, we wish to evaluate whether the features of
the generated time series resemble those of the original time series,
both on the regional level (Fig. 4, B and F) and on the network level
(Fig. 4, C, D, G, and H). We explicitly note that we evaluate this
similarity using the time series sampled from the posterior predic-
tive distribution (that is, the time series are generated with the in-
ferred parameters θr and θs but using random system and
observation noise) and not from the posterior distribution q(x∣y,
u, c) from Eq. 26.

Inferred parameters correspond to the original model
parameters
The example on Fig. 2F shows how the original regional parameters
are linked to the inferred parameters θr for the Hopf model. The
bifurcation parameter a maps to the inferred parameter θr1 (top),
while the frequency f maps to θr2 (bottom). The latter is however
true only for the regions in the oscillatory regime, i.e., with a >
0. That is not a deficiency of the proposed method: In the fixed-
point regime the activity is mainly noise driven, and the value of
the frequency parameter has small to negligible influence (see the
example C on Fig. 2D). In other words, the parameter is not iden-
tifiable from the data. That is reflected in the inferred parameters.
For the regions with a > 0 (or equivalently with θr1 . 0) the inferred
parameters θr2 have low variance, and their mean maps to the orig-
inal frequency parameter. For the regions with a < 0, however, in-
ferred θr2 have high variance, close to the prior value 1, and
overlapping distributions, indicating that not much information is
stored in θr2 in this regime.

Fig. 2. Hopf model test case: example subject. (A) The training data are simulated using a network model of brain dynamics, where, in each node, a Hopf neural mass
model is placed. (B) The nodes are coupled through a connectome derived from diffusion-weighted imaging scaled by a subject-specific coupling parameter G. (C) The
values of bifurcation parameter ai and intrinsic frequency fi vary across brain regions. (D) Time series generated with the original model with three examples (bottom) and
the calculated FC (right). (E) Inferred regional parameters for all regions (top left; example nodes highlighted) and inferred subject-specific parameter (bottom left; in gray
among parameters for all subjects in the dataset). The span of the crosses/lines corresponds to two SDs of the inferred Gaussian distribution. Bottom: Circles are added for
visual aid because of the small SDs. The inferred dynamics in state space of the three example nodes are on the right. The vector field is evaluated assuming zero network
input and the inferred parameters. Background color, velocity magnitude; yellow lines, exemplary simulated time series of the node activity; Black- and white-faced
circles, stable and unstable fixed points. In the topmost panel, an unstable fixed point and a stable fixed point are visually overlapping. (F) Inferred regional parameters
colored by the ground truth values of the bifurcation parameter ai (top) and frequency fi (bottom). The bifurcation parameter correlates with inferred θ

r
2, while frequency

correlates with θr1, but only for regions in the oscillatory regime, i.e., where ai > 0. (G) One example of the time series generated with the trained model and using the
inferred parameters. Important features of the data are preserved both on the regional level (amplitude and frequency) and on the network level (FC).
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In addition, for the pMFM test case, the noise strength parame-
ter is well identified (Fig. 3F); however, the second dimension of the
region-specific parameter θr2 correlates with the mean of the region-
al time series. Presumably, this is so that the parameter θr2 can com-
pensate for the weaker network coupling, which we discuss later.
For both examples, the subject-specific coupling strength is
mapped to the subject parameter θs (Figs. 2E and 3E, bottom).
The quantitative analysis of the goodness-of-fit is shown on

Fig. 4 (A and E). To evaluate it, for each of the original parameters,
we first identified the direction in the parameter space along which
the parameter is stored by taking a linear regression of the posterior
distributionmeans. Then, we repeatedly took samples from the pos-
terior distributions of the parameters, projected them on the iden-
tified subspace, and calculated the nonlinear Spearman’s correlation
coefficient ρ. For most parameters, the values are close to the
optimal value of 1, indicating that the original parameters are
indeed accurately recovered in the inferred parameters. The excep-
tion is the frequency f due to the above discussed nonidentifiability.
If, however, we restrict the regions only to those where the

bifurcation parameter is positive, then the correlation markedly in-
creases, as expected on the basis of the discussed example. Further
illustration of the parameter correlations and reported statistics is
presented on figs. S2 and S3.
On fig. S4, we further evaluate how the goodness of fit changes

with the increased coupling in the Hopf model. Presumably, as the
coupling increases, the regional time series are more affected by the
activity of the connected regions and less by its internal parameters,
and it is thus more difficult to recover the original parameters from
the data. That is the trend that we observe both for the bifurcation
parameter a and frequency f of the nodes in oscillatory regime.
Trained model reproduces the features of regional time series
A crucial test of the trained model is an evaluation of whether the
generated data resemble those used for the initial training. This re-
semblance should not be understood as reproducing the time series
exactly because they depend on a specific noise instantiation, rather
that the features that we consider meaningful should be preserved.
For both test cases, we evaluate the similarity of the two features. For
theHopf model with its oscillatory dynamics, we evaluate the cosine

Fig. 3. pMFM test case: example subject. Layout is the same as in Fig. 2. (A to C) The training data are simulated using a network of pMFM neural masses. Depending on
the network input, these can be forced into the monostable regime (down- or up-state) or into the bistable regime. The dynamics is noise driven, with noise strength
varying across regions. (D) Time series generated with the original model and the FC. Three examples are shown in the bottom panel, with awindow of 100 s on the right.
(E) Inferred regional parameters (top left) and subject-specific parameter. Circles are added for visual aid because of the small SDs. The inferred dynamics in state space of
the three example nodes are on the right. The vector field is evaluated assuming network input u = 1 and using the inferred parameters. Background color, velocity
magnitude; yellow lines, exemplary simulated time series of the node activity; black- and white-faced circles, stable and unstable fixed points. (F) Inferred regional pa-
rameters colored by the ground truth values of the noise strength parameter (top). The original parameter is stored along the diagonal of the inferred parameter space.
Bottom: Coloring according to the mean of the original time series, which does not represent an original model parameter, rather a data feature. (G) One example of the
time series generated with the trained model and using the inferred parameters. Region-specific features (switching between states and noisiness) are well preserved.
Structure of the regional correlations is also reproduced, but the correlations are weaker compared to the original. Note that even if the regional time series exhibit signs
of bistability (up- and down-state), this bistability may arise at the network level and not necessarily at the regional level, as evidenced by the phase plots in (E).
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similarity of the spectra of the original and generated time series and
the difference between the variance of the time series because the
variance differs greatly between the nodes in oscillatory and
fixed-point regimes (Fig. 4B and fig. S5). For the pMFM, we
compare the time series based on the distribution in the 1D obser-
vation space (that is, taking the samples collapsed across time) using
the Wasserstein distance (also called Earth mover’s distance) of two
distributions. The second feature of the pMFM time series is the
log-scaled number of switches between the up- and down-state,
capturing the temporal aspect of the switching dynamics (Fig. 4F
and fig. S6).
We evaluate the measures for 50 different noise instantiations,

leading to 50 different time series for each region, obtaining a dis-
tribution of goodness-of-fit metrics. The samemetrics are also eval-
uated for three surrogates: First is the original computational model,
run with different noise instantiations. That provides an optimistic
estimate of what can be achieved in terms of goodness of fit, con-
sidering that the features will necessarily depend on the specific
noise instantiation used in the initial simulations. The second sur-
rogate is obtained by randomly reshuffling the original data
between regions and subjects. The third surrogate is simply white
noise with zero mean and variance equal to one (which, because
of the data normalization, is equal to the mean and variance of
the original dataset taken across all subjects and regions).
In most measures, the trained model performs comparably or

slightly worse than the original model and markedly better than
both the reshuffled surrogate and the noise surrogate (Fig. 4, B
and F; numerical values and results of statistical tests are in
table S2). The exception is cosine similarity of the spectra with
the Hopf model. In this measure, the reshuffling surrogate achieves

similar values as the trained model; this is due to the fact that many
of the regions in the coupled networks oscillate on similar frequen-
cies. Therefore, the time series of two randomly selected regions
often reach high scores in cosine similarity of their spectra.
Functional network structure is reproduced but with lowered
strength
Just as the well trained model should be able to reproduce the fea-
tures of the original data on the level of single regions, it should also
be able to reproduce the relevant features on the network level. Spe-
cifically, we evaluate how well the FC is reproduced. In general, FC
quantifies the statistical dependencies between the time series from
brain regions. While there are multiple ways to measure it, the most
ubiquitous is the linear (Pearson’s) correlation of the time series,
which we use here as well. This static FC captures the spatial struc-
ture of statistical similarities; however, it has its limitations. Notably,
it ignores the temporal changes in FC structure (21, 22).
The examples for both investigated models indicate that the FC

structure is well reproduced but with lower strength, particularly in
the case of pMFM example (Figs. 2G and 3G). This is further ana-
lyzed for all subjects on Fig. 4 and visualized on figs. S7 and S8. For
the Hopf model, the coupling coefficient was increased between
subjects. For low coupling values, the FC structure is not repro-
duced (as measured by Pearson correlation between the nondiago-
nal elements of original FC and trained model FC; Fig. 4C). That is
however also true for the original model because of the FC elements
being close to zero and noise dependent. For stronger coupling, the
structure is preserved better, although the trained model plateaus
around values of 0.7 for the correlation between the FC matrices,
even when the correlations between the original model increases
further. The comparison of the mean value of nondiagonal FC

Fig. 4. Quantitative evaluation of the synthetic test cases. Top row: Hopf model. Bottom row: pMFM. (A and E) Nonlinear correlation between the original parameters
and the optimal projection of the inferred region-specific parameters (bifurcation parameter a and frequency f for Hopf model and noise strength for pMFM) and subject-
specific parameter (coupling strength G). (B and F) Fit between the regional features of the original time series and those generated by the trained model. We show the
cosine similarity of the time series spectra and the difference in variance for the Hopfmodel andWasserstein distance of the distributions in the observation space and the
difference in logarithm of number of switches for pMFM. These are evaluated for the examples from Figs. 2 and 3, all time series generated by the trained model, and the
surrogates described in the main text. (C and G) Fit between the FC of the original and generated time series. (D and H) Mean value of nondiagonal elements of FC
matrices. For both models, the correlation strength is underestimated, even if the structure is preserved. In all panels, the bars show the (5, 95) percentile interval with the
dot representing the median value. The statistics are computed from 50 samples of the posterior distribution for eight subjects [grouped together in (A), (B), (E), and (F)]
and 68 regions (for region-specific parameters and features). The statistics of the surrogate distributions using the original model are also calculated from 50 samples.
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elements furthermore reveals that the strength of the correlations is
considerably underestimated with the trained model (Fig. 4D). For
the pMFM, the coupling coefficient was set to optimal value (in the
sense of maximal FC), specific to each subject. In addition, there, we
can see a well-reproduced structure of the correlations (Fig. 4G), al-
though with reduced strength as well (Fig. 4H).
These results indicate that while the trained model can discover

the existence of the network coupling, it systematically underesti-
mates its strength. Given that in the pMFM, the strength of the
network input can shift a single neural mass from the monostable
down-state to the bistable regime and to monostable up-state, the
underestimated coupling leads to the necessity of using the regional
parameter to compensate for the missing coupling (Fig. 3F). Spec-
ulatively, this reduction in the network coupling strength contrib-
utes, to some degree, to the less-than-perfect recovery of the
regional parameters because the features of the local dynamics are
affected by the network interactions. For instance, in the Hopf
model networks, the strongly coupled regions synchronize together;
without the network coupling taken into account, the local frequen-
cy parameter might be considerably over- or underestimated.
Large perturbations of the connectome lead to reduced
performance
To assess the influence of the inexact structural connectome on the
goodness of fit, we have trained the model on the pMFM dataset
with perturbed connectomes. That is, instead of the original con-
nectivity matrix W, we have trained the model with Wϵ = W +
ϵA, where A is the matrix with elements drawn from standard
normal distribution and ϵ > 0 is the perturbation magnitude. In ad-
dition, we have also used a log-scaled connectivity matrix.
Figure S9 shows how the indicators of goodness of fit from Fig. 4

are modified by using these surrogate connectomes. High perturba-
tion magnitudes reduce the recovery of regional and subject param-
eters (fig. S9, A and B), as well as the similarity of the generated FC
(fig. S9E). The regional features, on the other hand, are reproduced
similarly well even for large perturbations (fig. S9, C and D). Using
the log-scaled connectome has a similar negative effect, although
less pronounced.

Application on human resting-state fMRI
We applied the developedmethod to human resting-state fMRI data
obtained from the HCP (19). For 100 subjects, we have analyzed
fMRI time series from one session (864 s at 0.72 sampling rate), pro-
cessed with the HCP pipeline, further denoised by Diffuse Cluster
Estimation and Regression (DiCER) method (23), and parcellated
into 68 cortical regions of Desikan-Killiany parcellation (20).
Where not mentioned otherwise, the results presented are obtained
withmodel having state space dimension ns = 3 and regional param-
eter dimension mr = 3 and for the variant with external input and
with standard preprocessing of the structural connectomes (see
Methods for details). We have set the subject parameter dimension
ms to zero because of the observed difficulties with the convergence
of the subject parameters; these are illustrated on fig. S10.
We start this section with an example of the original data and the

inference results for a single subject on Fig. 5. For this subject, the
original time series exhibit moderately strong coupling, with wide-
spread patterns visible in the processed fMRI data (Fig. 5A). We
trained the model using the data from all of the 100 subjects but
with randomly selected 20% of regional time series left out to
assess possible overfitting (fig. S11). Upon the first inspection, the

trained model relies on a single fixed point dynamics on node level
and can reproduce several aspects of the original data well (Fig. 5C):
The noisy nature of the regional time series and the presence or
absence of the low-frequency oscillations are qualitatively similar
to the original data. In addition, the widespread fluctuations are
present and reflected in the FC. We evaluate these and further
aspects in the next paragraphs.
Noisy dynamics around a single fixed point
The example in Fig. 5 shows a noisy dynamics around a single fixed
point for the two example regions. A detailed investigation reveals
that this is a universal trait for all nodes. We consider first the dis-
covered neural mass with all parameters θr, as well as the network
input u and external input uext set to zero (Fig. 6A). Simulating the

Fig. 5. Example of model inference on a single subject from the HCP dataset.
(A) Resting-state fMRI data (top left), corresponding FC (top right), and time series
of two example regions (bottom). (B) Phase plane of the inferred dynamical
system. Each panel shows a 2D projection of a 3D system, with the third variable
set to the position of the fixed point (black dot). The vector field is evaluated as-
suming zero network input and using the inferred region-specific parameters.
Background color represents the velocity magnitude; yellow lines are exemplary
simulated time series of the node activity when embedded in a network. (C)
Data generated by the inferred model. The regional parameters are set to those
inferred, while the system and observation noise is random. The external input
is generated randomly using the inferred parameters. Layout is the same as in (A).
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dynamics from random initial points, we see that in the absence of
noise, the trajectories quickly converge to a single fixed point. All
three eigenvalues of the system at this fixed point are real and neg-
ative; thus, the fixed point is a stable node.
Does the number of fixed points change for different parameter

configurations or different input? To answer, we analyzed the dis-
covered system for 680 inferred configurations of the regional pa-
rameters θr (68 nodes for 10 of 100 subjects; only subset of
subjects was used because of the computational costs) and nine
combinations of u and uext (both set to −1, 0, and 1). For each of
these configurations, we have located the fixed point(s) numerically
by applying nonlinear root finding method to 60 random initial
points chosen randomly from the interval [−2, 2] in each dimension
(see Methods). Furthermore, from each of these initial points, we
simulated the system in the absence of noise to assess whether it
exhibits unsteady dynamic, whether periodic or chaotic. In no con-
figuration was multistability observed, and when simulated without
the system noise, the system always converged to the fixed point,
with no unsteady (periodic or chaotic) behavior (Fig. 6B).
Somewhat unexpectedly, this is mostly also the case when eval-

uating the dynamics of the whole connected network. Analogously
to the previous analysis of a single node, we simulate the dynamics
of the coupled network of a single subject in the absence of noise

when started from random initial points (Fig. 6C). In this setup,
the subject structural connectome is used, all nodes have their in-
ferred parameter values, and external input uext is set to zero. For the
example subject, all trajectories converge to a single fixed point. All
eigenvalues at the fixed point have a negative real part, but unlike for
the isolated node, some eigenvalues are complex, indicating decay-
ing oscillatory dynamics.
We analyzed the dynamical regimes of the coupled network for

all subjects analogously to single nodes (Fig. 6D). For all 100 sub-
jects in the dataset, we have used their structural connectome and
set the parameters to their inferred values. Choosing random initial
conditions, we searched for the fixed points numerically with a
root-finding method and again simulated the dynamics in the
absence of noise to assess the unsteady behavior. For most of the
subjects in the dataset, the state space contains a single stable
fixed point. The system contains multiple stable fixed points only
for 6 of 100 subjects; however, the effect of this multistability on
the generated dynamics is not immediately obvious (fig. S12).
Similar to that for the nodal dynamics, in none of the subjects
was unsteady behavior observed in the absence of system noise.
Three region-specific parameters identified
Next, we turn our attention to the region-specific parameters θr. We
first ask the question how many of the parameters can be identified

Fig. 6. Discovered node and network dynamics. (A) Node dynamics for an uncoupled nodewith θr = 0, u = 0, and uext = 0. The left subpanel shows the trajectories from
random initialization points (triangles) to the stable fixed point (black point). The red trajectory is visualized on the bottom right subpanel; the top right shows the
eigenvalues of the system at the fixed point. (B) Inferred dynamical regimes of the uncoupled nodes. We analyzed the discovered system for 680 inferred parameter
configurations and nine combinations of u and uext (see the main text). (C) Network dynamics for a single subject using the known structural connectome and inferred
regional parameters. The left subpanel shows the trajectories from random initialization points (triangles) converging to the stable fixed point (black point) in the absence
of system noise in three selected dimensions (x2 in three nodes). The red trajectory is visualized on the bottom right subpanel; the top right shows the eigenvalues of the
system at the fixed point. (D) Inferred dynamical regimes of the subjects. We analyzed the network dynamics using the inferred regional parameters and the known
structural connectomes. For each subject, we repeated the analysis four times using different samples from the posterior distribution, with uext = 0. In the chart, we show
the number of subject for which at least one sample of parameters produced multistability.
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using the data. Luckily, the used framework of variational autoen-
coders provides a way to answer this question via the so-called pos-
terior collapse (24, 25). The term refers to a phenomenon when the
generative model learns to ignore some or all of the latent variables,
and the approximate posterior closely matches the prior distribu-
tion along these ignored dimensions. In our case, this means that
the approximate posterior of the regional parameters q(θr∣y, u, c)
would collapse to the prior distribution N(0, 1) along some or all
dimensions. An example of this behavior can be seen on fig. S10.
This phenomenon is sometimes viewed as undesirable, particular-

ly in the extreme case of full collapse along all latent dimensions, as it
prevents the use of the latent space leading to suboptimal reconstruc-
tion. However, a partial collapse for only a subset of latent variables
can be also viewed as a desirable and necessary behavior (25), indicat-
ing the true dimensionality of data; this is the interpretation that we
adopt in this work. Specifically, we expect that as the dimensionality
of the parameter space mr is increased, the necessary dimensionality
of the parameter space will be reached, and further dimensions of the
parameter space will go unused. This is what we see when we train
several models with increasing parameter space dimensionality mr
up to five dimensions (Table 1). Quantifying the collapse phenome-
non with the Kullback-Leibler divergence of the approximate poste-
rior from the prior distribution, we see that no more than three
dimensions of the parameter space are used even as mr is increased.
What is the role of the parameters in the inferred model? We

demonstrate their function by generating new data with the
trained model, varying a single parameter while keeping others
constant and using the same noise instantiation (Fig. 7, A to C).
This exploration indicates that the first parameter θr1 influences
the presence of low-frequency (below 0.1 Hz) oscillations. The
second parameter θr2 seemingly modulates the response to the exter-
nal input: The simulated time series change from being anticorre-
lated with the external input for negative values to correlated for
positive values. Last, the third parameter θr3 changes the response
to the input from the rest of the network, from noncorrelated for
negative values to correlated for positive values.
These claims are supported by the statistical analysis of generat-

ed time series (Fig. 7, D to F, and fig. S13). We repeatedly simulated
the regional dynamics using the trained model and random combi-
nation of the parameters θr and evaluated the hypothesised rela-
tions. For each simulation (n = 1000), the parameters θr were
randomly chosen from the prior distribution N(0, I). The system

and observation noise were generated randomly and uniquely for
each simulation. The external input uext was also generated random-
ly using the learned parameters. Each region was simulated inde-
pendently from the others, and the network input was set to be
the same for all simulations: The network time series u were pre-
computed using the empirical fMRI data, and we chose to use the
time series whose power was at 80 percentile of all data to simulate
the nodal dynamics with non-negligible and realistic network input.
This analysis shows a clear relation between θr1 and the low-frequen-
cy power of the generated time series, as well as between θr2 and the
correlation of the generated time series with the external input uext.
The correlation of the generated time series with the network input
depends on both θr1 and θ

r
3, showing that not every effect is isolated

in a single dimension of the parameter space.
Further insight into these can be obtained by the analysis of the

inferred dynamical system f directly (fig. S14): Analysis of the eigen-
values at the fixed point shows the clear relation of θr1 with the
largest eigenvalue and, thus, the decay time constant. The depen-
dence of the partial derivatives ∂fi/∂uext and ∂fi/∂u on parameters
θr explains the modulation of the response of the system to external
and network input.
Another way of analyzing the roles of region-specific parameter

is to look at their relations with various features of the structural and
functional data. We divide the features into two categories: First,
those derived from the individual data that were used for the
model training and, second, those obtained from external sources
and not specific to the subject in question. Taking the features
and using the inferred parameters for all subjects, we performed a
multivariate linear regression for the different features (Table 2).
The features considered in this analysis were selected partly on
the basis of the understanding gained from the previous analysis
and the features of interest in the related studies (4–6).
With the individual data, we evaluated the link to features of the

structural connectome and the regional fMRI time series. The
results correspond well with the effects of the parameters as estab-
lished above. The first parameter θr1 is strongly linked with the fre-
quency features of the regional fMRI time series, specifically, the
power below 0.1 Hz and number of zero-crossing. The second pa-
rameter θr2 is most importantly linked with the mean fMRI signal
and with the first eigenvector obtained from principal components
analysis (PCA) of the subject fMRI data. That is consistent with the
interpretation that the first principal component corresponds to the

Table 1. Quantification of the posterior collapse phenomenon for the regional variables θr as the dimensionality of the parameter space is increased.
Each column corresponds to a different model with varying numbers of regional parameters mr; each cell shows the mean and the variance of Kullback-Leibler
divergence between the approximate posterior and the prior, KL½qðθrj jy;u; cÞ k Nð0; 1Þ�, for all regions and all subjects. Because the inference process does not
guarantee any specific order of parameter space dimensions, we order each column by the decreasing KL divergence. Values close to zero indicate that the
approximate posterior matches the prior distribution. As the dimensionality is increased above mr = 3, the KL divergences in the first three dimensions remain
stable, while the values close to zero in the additional dimensions indicate that the additional dimensions are effectively unused.

mr 1 2 3 4 5

θr1 3.313 ± 0.268 2.946 ± 0.209 2.846 ± 0.135 2.744 ± 0.230 2.716 ± 0.133

θr2 – 2.266 ± 0.935 2.025 ± 0.786 2.238 ± 0.754 2.048 ± 0.714

θr3 – – 0.917 ± 0.562 0.713 ± 0.601 0.881 ± 0.515

θr4 – – – 0.002 ± 0.002 0.004 ± 0.007

θr5 – – – – 0.001 ± 0.000

Sip et al., Sci. Adv. 9, eabq7547 (2023) 17 March 2023 9 of 22

SC I ENCE ADVANCES | R E S EARCH ART I C L E



external input, the response to which θr2 modulates. The third pa-
rameter θr3 is linked not only to the features of the structural
network, mainly node in-strength, but also to the correlation of
the regional fMRI time series with the network input to the same
region; this network input also depends on the structural network
(Eq. 7). This is also consistent with the modulating effect of θr3 as
established before. The relations between the inferred parameters
and the individual data features are visualized on fig. S15.
With the external data, we compared our inferred parameters

against multiple feature maps used in previous studies on regional
heterogeneity in whole-brain networks (5, 6): neuronal size and
density by Von Economo and Koskinas (26), neuronal density ob-
tained from BigBrain (27), principal gradient of resting-state FC ob-
tained through diffusion embedding (28), T1w/T2w ratio
approximating the myelin content obtained from HCP cohort
data (29), the dominant component of brain-related gene expres-
sions (5), and the excitation-inhibition (EI) map (5) obtained
from the Allen Human Brain Atlas (30). Only the first of our in-
ferred parameters is strongly linked to any of them,most important-
ly to the first component of the gene expression spatial map and, to
a lesser degree, to the neuronal density from both sources, and to
T1w/T2w ratio. The relations between the inferred parameters and
the individual data features are visualized on fig. S16.

Role of the network coupling in the trained model
Figure 5 illustrates that the trained model can generate network dy-
namics with correlation structure resembling the original data.
Evaluated for all subjects, the trained model produces dynamics
that matches the FC of the original data with the mean Pearson cor-
relation coefficient 0.53 (Fig. 8A, leftmost column). While this is
lower than what was obtained in related studies (we will return to
this fact in Discussion) (3–6), it shows that a considerable portion of
functional network structure is captured by the model. We however
note that FC dynamics (FCD), that is, time-varying changes in the
FC, does not match the data (fig. S18).
Considering these results and the presence of the external input,

we can ask what role does the structural connections between the
brain regions play in the model and to what extent is the correlation
structure caused by the external input. We investigate this by com-
paring how well the structure is reproduced with several variations
of the model (Fig. 8). We consider the trained model and generate
new data, assuming that the external input and network input are
either present or artificially set to zero. We also consider the model
that is trained without the external input in the first place.
The results indicate that the generated correlation structure is

mainly caused by the external input, as evidenced by the drop of
FC similarity when the external input is absent, irrespective of
whether the model was trained with or without it. The same

Fig. 7. Effect of the regional parameters on the generated data. (A to C) With the trained model, we simulate the time series of a single region while varying one
regional parameter. In each panel, we systematically vary one of the region-specific parameters while keeping others set to zero. The system and observation noise are
generated randomly from standard normal distributions but kept the same for all simulations. In (A), the external input and network input are set to zero. In (B), the
external input is set to a sine wave with frequency of 0.014 Hz and the network input is set to zero. In (C), the external input is set to zero and the network input is set to a
sine wave with frequency of 0.014 Hz. (D to F) Statistical analysis of the parameter effects illustrated in (A) to (C). We repeatedly (n = 1000) simulated the dynamics of a
single region with randomly selected θr (seemain text). (D) Relation of the low-frequency power (below 0.1 Hz) and θr1. (E) Relation of the Pearson correlation coefficient of
the generated time series with the network input uext and θ

r
2. (F) Relation of the Pearson correlation coefficient of the generated time series with the network input u and

the linear combination of θr1 and θ
r
3 identified by a multivariate regression (fig. S13).
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applies for the overall strength of the simulated FC. Nevertheless,
the role of the network connectivity is not negligible, and it im-
proves the performance. Only a minor improvement is achieved if
the model is trained without the external input in the first place, and
thus, we cannot rely on it for the correlation structure.

In the analysis performed up to now, we have used the structural
connectome as estimated from diffusion imaging tractography via
streamline counting. In studies focused on large-scale brain dynam-
ics, several variants of the structural connectome preprocessing
were proposed; these modifications can increase the fit of the

Table 2. Results of the multivariate linear regression between the means of the inferred regional parameters θr and regional features on the individual
or population level. Shown are the coefficient of determination R2 and the regression weights. For visual orientation, the values where R2 > 0.3 and the absolute
value of weight >0.2 are highlighted with an asterisk (*). The weights with P > 2.22 × 10−5 are marked with a dagger (†) (two-sided t test, threshold of 0.001
corrected for 45 comparisons with Bonferroni method). The individual features are calculated from the structural connectivity (SC) or from the processed and
parcellated fMRI. External data include average neuronal size and neuronal density, principal gradient of resting state FC, T1w/T2w ratio, first principal component
of the gene expression spatial map, and EI map. The analysis was performed using n = 6800 data points (100 subjects, 68 regions each). Visualization of the data
can be found on figs. S15 and S16. RSFC, resting-state FC.

Feature R2 Weights

θr1 θr2 θr3

Individual data SC: Node in-strength 0.55* −0.60* 0.03† −0.57*

SC: Node centrality 0.35* −0.41* 0.17 −0.48*

fMRI: First PCA eigenvector 0.44* −0.00† 0.86* 0.05

fMRI: Second PCA eigenvector 0.01 0.05 0.09 0.04†
fMRI: Correlation with mean signal 0.58* 0.10 1.00* 0.15

fMRI: Correlation with network input 0.52* −0.43* 0.62* 0.51*

fMRI: Number of zero-crossings 0.96* 0.99* 0.02 −0.01

fMRI: Power below 0.1 Hz 0.93* −0.97* −0.04 0.04

External data Neuronal size (Von Economo) 0.17 0.38 0.20 −0.14

Neuronal density (Von Economo) 0.25 −0.46 −0.22 0.20

Neuronal density (BigBrain) 0.19 −0.42 −0.24 0.02†
RSFC principal gradient 0.07 0.27 0.07 0.03†

T1w/T2w ratio 0.19 −0.40 −0.09 0.22

Gene expression map (first PC) 0.47* −0.69* −0.15 0.11

EI map 0.14 −0.33 −0.23 −0.18

Fig. 8. The role of the network connectivity and external input in reproducing the correlation structure. For all 100 subjects in the dataset, we generate new data
using the learned regional parameters θr, but with randomly drawn system and observation noise. We use two models: one trained with the external input and one
trained without it. We then generate new data with both external input and network input present (Ext & net), with only the external input present and network con-
nectivity set to zero (Only ext), with only the network input and external input set to zero (Only net), and with neither (None). For each subject, we perform 20 simulations
with different noise instantiations. (A) Pearson correlation of the nondiagonal elements of the FC in the original and generated data for the different variants of the
models. Each boxplot is constructed from n = 2000 data points. The box extends from the first quartile to the third quartile of the data, with a solid line at the median and
dashed line at the mean. The whiskers extend from the box by 1.5× the interquartile range. Fliers are not shown. The differences between all means are statistically
significant (two-sided t test, P < 1 × 10−10) except between the two variants without either input. (B) Mean of the nondiagonal elements of the original and simulated FC.
Each dot corresponds to the single subject; the FC mean was averaged over the 20 simulations.
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simulated and original FC (31). How large of an influence do these
preprocessing choices have here? We compare four preprocessing
variants (with or without log scaling and with or without added ho-
motopic connections; fig. S17) and conclude that it is relatively
minor. The differences when using the model with external input
are small (mean FC correlation between 0.529 and 0.560 for all var-
iants), likely because the external input dominates. More interesting
differences can be seen for the model without the external input; we
particularly note the positive effect of strengthening the homotopic
connections (mean FC correlation of 0.178 to 0.237 for linear
scaling and 0.177 to 0.211 for log scaling).

DISCUSSION
Main results
The main contribution of this work is a method for analysis of
whole-brain dynamics based on a data-driven model of networked
dynamical systems. Using the structure of the network and the func-
tional data, the method allows us to infer both the unknown gener-
ative dynamical system and the parameters varying across regions
and subjects. It allows us to analyze the large-scale brain dynamics
and the regional heterogeneity without strong assumptions on the
underlying dynamical system and thus provides a way for model-
based analysis of brain dynamics.
We have tested the method on two synthetic datasets, one gen-

erated by a network model composed of nodes with a Hopf model
(Fig. 2) and one generated by a network model with a pMFM
(Fig. 3). Detailed analysis of the results has shown that the proposed
method can recover the original parameters and reproduce the im-
portant features of the original data both on the single-region level
and on the network level (Fig. 4). However, the strength of the FC
was underestimated for both test cases.
We then applied the method on human resting-state fMRI for

100 subjects from HCP. This application and the detailed analysis
led to several interesting results. First, the discovered dynamics both
on the node level and on the network level can be mainly character-
ized as noise-driven fluctuations around a single fixed point (Fig. 6).
Second, the method was able to reliably recover three, and only
three, regional parameters with clear and distinct effects on the gen-
erated dynamics (Fig. 7), one of which is strongly correlated with
the first principal component of the gene expression spatial map
(Table 2). Third, the learned model was able to partially reproduce
the correlation structure of the original functional data, although to
a lesser extent than what was achieved in previous works. To do this,
it strongly relied on the external input and only weakly on the
network connectivity (Fig. 8).We discuss these results in the follow-
ing paragraphs.

Discovered dynamics on the node and network level
Applied to the resting-state fMRI data, our trained model was able
to reproduce the correlation structure of the original data to a large
degree. Unlike many previous computational studies linking the
structural and the FC (2), our data-driven model relied strongly
on the external input to explain the correlation structure, and the
network coupling played only a secondary role (Fig. 8). Further-
more, the trained model was not able to produce realistic time-de-
pendent variations of the FC. The discovered dynamical regime of a
single node level can be characterized as noisy fluctuations around a
single stable fixed point. The nodes are weakly coupled together in

the network, leading to noisy dynamics around a single fixed point
also on the network level for most of the subjects. This inferred dy-
namical system mostly resembles the Hopf bifurcation network
model (8), with all nodes in the subcritical regime and with weak
network coupling but with the added external input that compen-
sates for the weak coupling and forces the desired correlation
structure.
Our results, to some extent, conflict with the previous literature,

which demonstrated that a notable better match of FC matrices and
better similarity of FCD can be obtained with heterogeneous
network-based models. Moreover, previous models achieved the
better fit without the use of external input (3–6). Furthermore,
the model fitting of such network-based models often indicated
that the local dynamics relies on nonlinear phenomena, such as
stable oscillatory dynamics, multistability, and multiple distinct dy-
namical regimes in the plausible parameter range. While it was
demonstrated that good match of static FC can be achieved even
with relatively simple models with single fixed-point dynamics
(32), nonlinear dynamics is crucial in generating rich temporal be-
havior matching that of the observed data (33). Considering that our
method was able to discover only a single fixed-point dynamics, it is
thus expected that the model produced only unsatisfactory match of
the time-varying FC. Together, we view these aspects of our results
as a reflection of possible shortcomings of the inference algorithm
rather than a strong statement on the nature of brain dynamics. We
consider several factors that might have contributed to these results:
the optimization target, the used method for system identification,
fMRI preprocessing, fixed structural connectivity, and assumption
on the coupling via the observed variable.
Optimization target
First, let us comment on the methodological differences between
previous network-based modeling studies and system identification
approach that we have adopted here. Previous works demonstrated
that better match of static FC and of FCD can be achieved with
network-based models of large-scale brain dynamics (3–6). These
works started with a well-constrained model (in terms of node dy-
namics and network structure) and tuned the model parameters so
a specified feature, such as FC or FCD, was matched as closely as
possible. This was achieved through parameter optimization using
the similarity of the specified features as the cost function. Notably,
the generated time series were not required to resemble the original
data in any other aspect than the specified feature.
In contrast, our goal here is to learn the generative model of the

observed neural activity, that is, a model that generates data resem-
bling those observed in all aspects, as much as possible given its ar-
chitectural constraints. Because we are assuming that the studied
system is noise driven, there is a limit to this similarity: We
should not expect the generated time series to match the training
data any more than a new observation of the system would. Thus,
the exact time series might differ, but ideally, the features that would
be (at least partially) preserved in a new observation, such as FC,
time-independent features of FCD, or energy and frequency
spectra of individual time series, should be preserved in the simu-
lated signals too, to the same extent as with the repeated
observation.
We achieve this objective using the variational autoencoder

framework. Under this framework, the cost function is composed
of the reconstruction quality term (Eq. 13), which quantifies the
similarity of the time series when the system states are drawn
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from a posterior distribution and of the posterior regularization
terms (Eqs. 14 and 15). If the architecture is sufficiently expressive
and can be well trained, then the aggregated posterior distribution
[q�ðxÞ ¼ 1

N
PN

i¼1qðx jyi; ui; ciÞ], with i indexing over all regions and
subjects) (34) covers the prior distribution due to the influence of
the regularization term. This, in turn, means that a simulation with
noise drawn from the prior distribution will produce time series re-
sembling those in the training data.
To summarize, with our approach, the match of the observed

and simulated FC is desirable and can be used as a measure of the
quality of the trainedmodel, but because it is not directly optimized,
it is of little surprise that other methods that target it directly can
achieve better results. What we are getting instead is a generative
model that strives to mimic the original data in all aspects,
without specifying which data features should be targeted.
Method of system identification
Undoubtedly, the choice of the parameterization of the function f in
the dynamical system and the learning algorithm used affects the
nature of the dynamics that can be and is learned from the data.
Our method led to the discovery of a system that mainly relied on
a single fixed point dynamics, of which one consequence is that the
trained system was not able to reproduce the complex time-varying
FC of the resting-state fMRI. Therefore, a desirable goal for the
future studies is a stronger inference method that can overcome
this shortcoming. Such goal requires that the parameterization of
function f is sufficiently expressive that it can well represent a
wide range of nonlinear dynamics, and at the same time, the
optimal parameter configuration is reachable with the chosen opti-
mization algorithm. Specifically for our problem, this has to hold
when the neural mass model to be learned is embedded in the
network; we return to this coupling issue in the later paragraph.
Fortunately, existing work offers many variations of system iden-

tification methods, and although they were not applied in a net-
worked setting, that can be explored when searching for a method
with improved convergence properties: For instance, Duncker et al.
(11) relied on Gaussian processes conditioned on a set of fixed
points to learn the system dynamics and demonstrated its efficacy
on multistable dynamical systems. Nassar et al. (13) used a tree
structure to partition the state space and approximate the system
in each partition with linear dynamics. Koppe et al. (16) used piece-
wise linear recurrent neural network to analyze fMRI data. Schmidt
et al. (14) later expanded on this work, introducing an approach for
better approximation of systems with multiple time scales through
the creation of slow manifolds in the state space using a regulariza-
tion scheme of the dynamical system.
It is worth emphasizing that it is not just the parameterization of

the function f that needs to be considered but the whole training
framework: In an extensive benchmark of their architecture for dy-
namical system identification, Brenner et al. (35) have shown
notable performance differences for the same architecture trained
as a deterministic system by backpropagation with teacher forcing
or a stochastic system trained by variational inference method.
fMRI preprocessing
It is well established that fMRI data contain a variety of structured
spatial and temporal artifacts of non-neuronal origins. It is however
debated how to distinguish and remove the widespread deflections
of non-neuronal origin (which are implied to be irrelevant for un-
derstanding the brain dynamics) while retaining the spatially

structured signal caused by the neuronal sources (23, 36, 37). In
the context of large-scale brain modeling, leaving the widespread
signal deflections can lead to fitting irrelevant artifacts. On the
other hand, removing them with methods such as global mean re-
gression risks removing relevant information and introducing arti-
ficial anticorrelations.
An illustrative example of the dangers of preprocessing was re-

cently provided by Aquino and colleagues (38). In their study, the
authors examined three approaches toward removing widespread
deflection in the fMRI data: without correction, using the DiCER
method (23) for diffuse cluster estimation and regression, and
with global mean regression. They demonstrated that the results
of the model fitting, that is, the estimated model parameters,
depend strongly on the chosen method for fMRI preprocessing.
In this study, we have used the DiCERmethod (23), designed for

a removal of widespread deflections, which is more fine-grained
than global mean regression. Still, considerable widespread fluctu-
ations remained, which explains the strong role of external input in
our trained model and why the model was able to match the FC
relatively well even without the network connectivity. For future
studies, we urge that the effects of the fMRI preprocessing are care-
fully considered and tested. A flexible way toward dealing with the
issue can be, instead of preprocessing, integrating the suspected
neuronal and non-neuronal sources into the model directly. This
way, the relevant and irrelevant sources of signal can be investigated
in one framework; however, the more complex model would make
the model fitting even more challenging.
Fixed structural connectivity
Ourmethod assumes that the structural connectome through which
the local dynamics is coupled is known. What we can obtain,
however, is only an estimate from diffusion tractography, suffering
from a range of biases (39, 40). Our results indicate that while the
method can handle small perturbations of the connectome, larger
perturbations or different scaling can considerably degrade its per-
formance (fig. S9). Conversely, correcting the structural connec-
tome for known biases can improve the model fit, as
demonstrated by the better performance of the model on HCP
data when homotopic connections are strengthened (fig. S17).
Further handmade corrections to the structural connections can

be considered, but an alternate approach can be also pursued: one
that would use the estimated structural connectome not as hard data
but only as a soft prior for the effective connectivity of the model.
Such approach was described for whole-brain dynamics generated
by the multivariate Ornstein-Uhlenbeck process, using the thresh-
olded structural connectivity as a topological mask for the inferred
effective connectivity (41, 42). The model connectivity may be in-
ferred even without any prior anatomical constraints, as demon-
strated by the Mesoscale Individualized Neurodynamics (MINDy)
method that relies on a simple one-equation neural mass
model (17).
Coupling via the observed variable
One of the more debatable choices that we have made in designing
our method is the assumption that the regions are coupled via the
observed variable, that is, that gc ≡ g in Eqs. 4 to 6. This assumption
was motivated purely by pragmatical reasons, as it allows us to de-
couple the networked problem: With the assumption, the network
input of each region can be calculated beforehand and stays fixed
during the optimization. Effectively, this means that we are per-
forming the inference for n uncoupled regions instead of one
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network with n nodes, reducing the computational resourc-
es needed.
We justify the choice by two simple facts: (i) It leads to a problem

that can be efficiently solved, and (ii) the designed method is shown
to perform reasonably well on the synthetic test cases, even if the
assumption is clearly invalid. For instance, in the original Hopf
model, the regions are coupled via both variables, yet the trained
model produces dynamics with similar correlation structure. At
the same time, we note that the network coupling was reduced in
both synthetic test cases, and this assumption is a plausible expla-
nation of this reduction. Similarly, it might have been part of the
reason why we have not been able to reproduce the FC with the
human fMRI data to the same degree as similar computational
studies. The design of a computationally efficient method for
system identification of fully coupled systems is thus an important
direction for future studies.
Related works on system identification from fMRI signals
Diversity of the results on the dynamical nature of large-scale fMRI
signals highlights the importance of the modeling choices, particu-
larly that of the underlying dynamical model and the optimization
cost function. Nozari and colleagues (43) compared several classes
of dynamical models for their capacity to model whole-brain
resting-state fMRI dynamics, from linear models to nonlinear
neural mass models to deep neural network models. They conclude
that the best performance is achieved by linear autoregressive
models, and more complex models lead to reduction in perfor-
mance and increase in computational costs. However, it is worth
noting that the models are trained for and evaluated on the one-
step prediction capacity, and it is unclear how well the tested
models would perform with other criteria such as the static or
time-varying FC or frequency spectra.
Piccinini and colleagues (44) used the framework of network-

based model of whole-brain dynamics combined with SINDy-like
approach (9). They represented the 2D neural mass model with flex-
ible polynomial form and optimized its coefficients, targeting the
best match of simulated and empirical FC. Their best models exhib-
ited a range of local dynamics, most of them having a single fixed
point with either a stable fixed point or a limit cycle, but configura-
tions with three or five fixed points were also common. From the
reported results, it is however difficult to establish how well the
models match the original data in other aspects than the evaluated
FC criteria.
It is also illuminating to compare our results with those of Koppe

and colleagues (16), who, despite using a conceptually similar meth-
odology of system identification from fMRI time series, arrived at
considerably different results regarding the nature of the underlying
dynamical system. Using piecewise-linear recurrent neural net-
works, the authors reconstructed dynamical systems generating
the fMRI time series. They investigated task-based fMRI and ana-
lyzed each region of interest independently from the others. They
discovered rich nonlinear dynamics in the inferred systems, includ-
ing limit cycles on several time scales, multistability, or chaotic at-
tractors, a stark contrast to our single fixed point systems.
We speculate that there are three principal reasons behind this

difference. First is the source of the data itself: task-based fMRI
compared to our resting-state fMRI. Unlike resting-state fMRI,
the task setting introduces changes in the brain dynamics on the
task time scale, which we presume are then reflected in the organi-
zation of the state space and the dynamical structures on the task

time scale. The second reason is the used fMRI preprocessing:
Unlike us, Koppe and colleagues (16) smoothened the fMRI
signal used for the system identification. It is seemingly a minor dif-
ference yet introduces predictability on the short time scales of the
smoothing window, which might lead to preference for explanation
via complex deterministic dynamics rather than noisy fluctuations.
Put differently, not smoothing the time series leave ourmethodwith
the need to model one additional source of noise, and because that
can be done also on the level of system noise, this preprocessing
choice might lead to widening of the basis of attraction of the
noisy fixed-point dynamics in the cost function landscape, leaving
the more complex dynamical regimes harder to discover. Last, the
differencesmay be caused by subtle priors (intentional or not) of the
system identification method. Consider sufficiently complex ob-
served dynamics, fitted by a model of a high-dimensional determin-
istic system and a low-dimensional stochastic system.While the first
one might try to explain the observed dynamics with complex
chaotic dynamics, the second might rely on the noisy dynamics,
having nothing else at its disposal. A model of high-dimensional
stochastic system, however, might fit the data with either the deter-
ministic chaotic dynamics or stochastic noise, or anything in
between, depending on the intentional and unintentional priors
of the method. What matters, ultimately, is the quality of the recon-
struction of the original signal, requiring careful benchmarks of the
inferred models.
Cortical gradients in large-scale brain modeling
Gradients of structure, connectivity, gene expression, and function
across the human cortex raised considerable interest in recent years
(45, 46), and several modeling studies investigated their role in the
large-scale brain dynamics (3–6). Our approach shares with them
the basic principles of large-scale brain modeling based on the
structural connectome but differs in three key points: First, we do
not rely on any particular neural mass model; rather, the model is
derived from data. Second, the regional parameter that we infer are
not constrained by any particular parameterization. Third, via the
cost function, we are fitting the time series directly and not any
derived feature such as static or dynamical FC.
How do our results compare to those of previous studies in terms

of the regional heterogeneity of the parameters? Demirtaş et al. (3)
used a two-population neural mass model embedded in the whole-
brain network. They parameterized the neural mass parameters
with the T1w/T2w ratio approximating the myelin content and op-
timized the model parameter to obtain best FC fit. They found that
the heterogeneity following the T1w/T2w gradient improves the fit
compared to the homogeneous model or random surrogates. Wang
et al. (6) used a one-equation neural mass model in the network,
whose parameters were optimized freely to, again, fit the FC
matrix. They found that the optimal parameters are correlated
with the first principal gradient of resting-state FC (RSFC) and
with the T1w/T2w map. Furthermore, the optimal strength of re-
current connection was correlated with the neuronal density map.
Expanding the work, Kong et al. (4) parameterized the same model
with the T1w/T2w map and RSFC gradient to fit not only the static
but also the dynamical FC. For this goal, parameterization with both
maps was necessary. These conclusions are in general agreement
with our results: The first inferred parameter is correlated with
the T1w/T2w map, RSFC gradient, and neuronal density, although
the relation is not as strong, particularly for the RSFC gradient (R2 =
0.07 in our case).
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Kong et al. (4) however also noted that their optimal regional
parameters are strongly linked with the gene expression gradients,
particularly with the first principal component of expression maps
of 2413 brain-specific genes. This is a relation that our study
strongly supports, as the first inferred parameter was strongly
linked to the first principal component of the gene expression
spatial map (R2 = 0.47). In addition, Deco et al. (5) investigated
the role of gene expression in whole-brain dynamics. They com-
pared the goodness of fit when the neural mass model was param-
eterized with EI ratio (E:I) obtained from gene expression, as well as
with first principal component of gene expression and T1w/T2w
ratio or using a homogeneous model. The fit was best in the E:I
case, followed by the other heterogeneous models and then the ho-
mogeneous one. This result is not supported by this study, as the EI
map was correlated to the inferred parameters only weakly.
We have chosen to perform the analysis using the Desikan-Kill-

iany cortical parcellation (20), mainly for consistency with related
studies (4–6). It is well recognized that the choice of brain atlas
can affect the results of neuroscientific studies (47). Future applica-
tions of the proposed framework might thus benefit from analyses
on not only anatomy-based parcellations such as Desikan-Killiany
but also multimodal (29) or cytoarchitectonic (48) parcellations,
which should better reflect the underlying structural organization.
Inferring subject-specific parameters
The application of our proposed method on the resting-state fMRI
data revealed convergence issues for the subject-specific parameters
(fig. S10); for this reason, we have used only the region-specific pa-
rameters in the main analysis. The precise reason of this failure is
not fully clear; however, there are several options that might
improve the behavior in future works.
In the framework of variational autoencoders (VAE), one option

would be increasing the Kullback-Leibler divergence penalty
between the prior and the approximate posterior in the cost func-
tion following the so-called β-VAE approach. Proposed for the un-
supervised discovery of disentangled representations, β-VAEs (49)
constrain the capacity of the latent space via an adjustable hyper-
parameter β and encourage tighter adherence to the prior at the
expense of reconstruction quality. Since its proposal, the perfor-
mance of the approach and the precise definition of disentangle-
ment have been questioned (50, 51). In our case, however, it
provides a straightforward way toward better-behaved approximate
posterior distributions, although at the expense of an additional pa-
rameter that needs to be tuned heuristically.
Another option arises from the conjecture that the failure is

caused by imposing a particular structure of the latent space in
the generative model, which is not appropriately reflected in the in-
ference model. Here, the inspiration can be taken from the literature
on hierarchical VAEs (52–54). In these works, a particular structure
of the latent space is introduced by partitioning the latent space z =
{z1, …, zn} and factorizing the approximate posterior for data x as
q(z∣x) = ∏iq(zi∣z<i, x), leading to increased flexibility of the
model. Modification of our inference model along similar lines
could rectify the observed issues.
Outlook on the role of dynamically relevant parameters
Large-scale brain dynamics during resting-state is altered in neuro-
degenerative diseases (55) and in normal aging (56). Myriads of re-
gionally varying parameters that can plausibly influence the large-
scale dynamics can be measured either in vivo or post mortem, such
as cell density, cell type composition, local connectivity structure,

connectivity to subcortical structures, or receptor densities, to
name just a few. But which ones are in fact relevant for large-scale
brain dynamics, and how do they influence it? Construction of
bottom-up mechanistic models that would include all possible pa-
rameters and allow us to investigate their role is unfeasible because
of the complexity of human brain with its dynamics spanning mul-
tiple temporal and spatial scales, even if the parameters were accu-
rately measured (57).
Our approach instead pursues this understanding from the op-

posite direction.We use the amortized inference framework to learn
the dynamical system driving the dynamics and, with it, also the pa-
rameters varying across regions and subjects. Because these param-
eters are inferred from the functional data in an unsupervised
fashion, they are, by construction, the parameters relevant for the
large-scale dynamics. That is in contrast to mechanistic models,
whose parameters. while present in the model formulation, might
not necessarily affect the observed large-scale dynamics and are
thus nonidentifiable from the functional data. Given the abstract
nature of the inferred model, the mechanistic meaning of these dy-
namically relevant parameters is not self-evident, yet they still
provide a measure of similarity of brain regions and different sub-
jects, and their effect on the dynamics can be investigated through
the trained model. Furthermore, given a large enough dataset, the
dynamically relevant parameters may be linked to the measured
quantities (or their combinations). Such link may provide insights
into the origin of neurodegenerative diseases if the dynamically rel-
evant parameters differ between the disease stages.
The link between dynamically relevant parameters and the mea-

surable quantities can be estimated from a preexisting patient
cohort and then only applied to a single subject. That is advanta-
geous if the measurement is difficult, costly, or impossible to
perform in clinical setting (such as for cell type composition esti-
mated from post mortem studies); in such cases, the dynamically
relevant parameters may instead be estimated from easy-to-obtain
resting-state fMRI and then mapped using the known link. This ap-
proach thus opens new possibilities for exploitation of large-scale
neuroimaging databases such as HCP (19) or UK Biobank (58)
on one hand and detailed cytoarchitectonic (27, 48) or genetic
(30) brain atlases on the other.

METHODS
Structural connectomes
The structural connectomes used for the application on empirical
data, as well as for the generation of synthetic datasets, were
derived from the neuroimaging data from HCP (19). The Washing-
ton University–University of Minnesota (WU-Minn HCP) Consor-
tium obtained full informed consent from all participants, and
research procedures and ethical guidelines were followed in accor-
dance with Washington University institutional review board ap-
proval (Mapping the Human Connectome: Structure, Function
and Heritability; IRB #201204036).
Specifically, we used the 100 Unrelated Subjects group from the

HCP 1200 Subjects cohort. For those, Structural Preprocessed and
Diffusion Preprocessed packages were downloaded (59). Next, the
structural connectomes were built for the cortical regions of
Desikan-Killiany parcellation (20) using MRtrix 3.0 (60). To do
so, first the response function for spherical deconvolution was esti-
mated using the dhollander algorithm (61). Next, fiber orientation
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distribution was estimated using multi-shell, multi-tissue con-
strained spherical deconvolution (62). Then, 10 million tracks
were generated using the probabilistic iFOD2 (second-order inte-
gration over fiber orientation distributions) algorithm (63). These
were then filtered using the Spherical-deconvolution Informed Fil-
tering of Tractograms (SIFT) algorithm (64). Last, the connectome
were built by counting the tracks connecting all pairs of brain
regions in the parcellation.
Four variants of the structural connectomes were used for the

application on empirical data: The standard variant corresponds
to the description above. The log-scaled connectome was calculated
as Wlog ¼ log10ðW þ 10

qÞ, with q = −3 and W being the original
connectome. Both the standard and log-scaled connectomes were
also modified by strengthening the homotopic connections, that
is, those connecting corresponding regions in the opposite hemi-
spheres. For this, the strength of all homotopic connections was
set to 97 percentile of all values in the structural connectome. The
perturbed connectomes were constructed by taking the original
connectome W and adding a matrix with elements from random
normal distribution, scaled by the perturbation magnitude ϵ, i.e.,
Wϵ =W + ϵA. For each value of perturbation magnitude, four dif-
ferent perturbed connectomes were built. In all cases, the connec-
tome matrices were normalized so that the largest element in each
was equal to one.

Resting-state fMRI data
The resting-state fMRI data were obtained from the HCP for the
same subjects as the structural data. We have used the resting-
state data preprocessed by the HCP functional pipeline and ICA-
FIX pipeline (Resting State fMRI FIX-Denoised package). These
were further processed by the DiCER method (23) with default pa-
rameters. The DiCER method was designed to remove widespread
deflection from the fMRI data, and provide a better alternative to
global signal regression. Afterward, the processed data were parcel-
lated into 68 regions of Desikan-Killiany parcellation (20), and each
time series was normalized to zero mean and unit variance. The
DiCER preprocessing was performed for all four sessions
(REST1_LR, REST1_RL, REST2_LR, and REST2_RL) concatenat-
ed. However, only the results from the first session (REST1_LR)
were used in the study. The time series were thus 14.4 min long
(1200 samples with 0.72-Hz sampling frequency).

Amortized variational inference for networks of nonlinear
dynamical systems
Generative dynamical system
As outlined above, we assume that the observed activity yj(t) of a
brain region j is generated by a dynamical system

_xjðtÞ ¼ f ½xjðtÞ; θrj ; θ
s; uextðtÞ; ujðtÞ� þ ηjðtÞ ð4Þ

yjðtÞ ¼ g½xjðtÞ� þ νjðtÞ ð5Þ

where xj(t) ∈ ℝns is the state at time t, θrj [ Rmr and θs ∈ ℝms are the
region-specific and subject-specific parameters, and uext(t) is the ex-
ternal input, shared by all regions of a single subject

ujðtÞ ¼
Xn

i¼1
wjigc½xjðtÞ� ð6Þ

is the network input to region j with fwijgni;j¼1 being the structural
connectome matrix of the network with n nodes.
To make the inference problem more tractable, we simplify the

problem and assume that the nodes are coupled through the observed
variable yj. More precisely, we assume that in Eqs. 4 to 6, g ≡ gc and
that the observation noise term νj is small enough that it can be in-
cluded in the coupling. Then, the network input has the form

ujðtÞ ¼
Xn

i¼1
wjiyiðtÞ ð7Þ

This form has the advantage that the network input is indepen-
dent of any hidden variables and can be computed directly from the
known observations yj. This effectively decouples the time series in
different nodes so that they can be processed separately, as de-
scribed below.
For the purpose of the inference, we use the time-discretized

form of Eqs. 4 and 5 using the Euler method

xj;kþ1 ¼ xj;k þ Δtf ðxj;k; θrj ; θ
s; uext;k; uj;kÞ þ ηj;k ð8Þ

yj;k ¼ gðxj;kÞ þ νj;k ð9Þ

where we denote the time step with the index k.
Evidence lower bound
As usual in variational inference, we aim to maximize the ELBO
and, by doing so at the same time, minimize the Kullback-Leibler
divergence between the true posterior and the approximate posteri-
or q. In the following text, we consider only a single data point from
one subject and one region and omit the region indexing for brevity.
A single data point {y, u, c} representing the data from a one

region is composed of the observed time series y ∈ ℝnt, network
input time series u ∈ ℝnt, and one-hot vector c ∈ ℝnsub, that is, a
vector with zeros everywhere except i-th position with value one,
encoding the identity of subject i. For this data point, the ELBO
can be expressed as follows. (For details see the Supplementary Ma-
terials.)

L ¼ Eq½log pðy jx; θr; θs;uext;uÞ� ð10Þ

þ Eq½log pðx jθr; θs; uext; uÞ� þ Eq½log pðθrÞ�

þ
1
n
Eq½log pðθsÞ� þ

1
n
Eq½log pðuextÞ� ð11Þ

� Eq½log qðxjy;u;cÞ� � Eq½log qðθr jy;u;cÞ� �
1
n
Eq½log qðθs

jcÞ� �
1
n
Eq½log qðuext jcÞ� ð12Þ

Here, the first line represents the decoder loss; second line rep-
resents the priors for states x, region- and subject-specific parame-
ters θr and θs, and the external input uext, and the third line
represents the approximate posteriors again for states, region- and
subject-specific parameters, and the external input. Alternatively,
the second and third line above can be rewritten using the

Sip et al., Sci. Adv. 9, eabq7547 (2023) 17 March 2023 16 of 22

SC I ENCE ADVANCES | R E S EARCH ART I C L E



Kullback-Leibler divergences of the posterior and prior distribu-
tions

L ¼ Eq½log pðy jx; θr; θs;uext; uÞ� ð13Þ

� KL½qðx jy;u; cÞ k pðx jθr; θs;uext;uÞ� � KL½qðθr

jy;u; cÞ k pðθrÞ� ð14Þ

�
1
n
KL½qðθs jcÞ k pðθsÞ� �

1
n
KL½qðuext jcÞ k pðuextÞ� ð15Þ

Decoder or the observation model
We assume that the observation model can be modeled as a linear
transformation of the system state with Gaussian noise, y = g(x) + ν
= a · x + b + ν. This forward projection essentially represents the
decoder part of the encoder-decoder system, so the likelihood in
Eq. 10 can be expanded over time as

pðy jx; θr; θs;uext; uÞ ¼
Ynt

k¼1
pðyk j xkÞ ¼

Ynt

k¼1
Nðyk

ja� xk þ b; σ2oÞ ð16Þ

where N(y∣μ, σ2) stands for normal distribution with mean μ and
variance σ2. The parameters of the observation model, which are
to be optimized, are the coefficients of the linear projection a and
b, together with the observation noise variance σ2o.
Prior on the system states
The first term in Eq. 11 represents the prior function on the system
states x given the network input u, external input uext, and the pa-
rameters θr and θs. It is herewhere the dynamical system f appears in
the ELBO. This term can be expanded over time as

pðx jθr; θs;uext;uÞ ¼ pðx0Þ
Ynt

k¼1
pðxkþ1 jxk; θr; θs; uext;k; ukÞ

¼ Nðx0 j0; IÞ
Ynt

k¼1
N½xkþ1 jxk þ Δtf

� ðxk; θr; θs; uext;k; ukÞ; diagðσ2s Þ�

ð17Þ

Here, we use the standard normal distribution as a prior for the
initial state x0 and then evolve the system over time according to the
function f. We represent the function f as a two-layer neural
network, with a rectified linear unit (ReLU) activation function in
the hidden layer. That is, with x≏ ¼ ðxk; θr; θs; uext;k; ukÞ [ Rni de-
noting the concatenation of the system state, regional parameters,
subject parameters, external input, and network input with size ni
= ns + mr + ms + 2, function f : ℝni → ℝns is given as

f ðx≏Þ ¼W2ϕðW1 x
≏
þb1Þ þ b2 ð18Þ

with W1 ∈ ℝnh×ni, W2 ∈ ℝns×nh, b1 ∈ ℝnh, and b2 ∈ ℝns being the
weights and biases, nh being the number of hidden units, and
ϕ(x) = max (0, x) being the ReLU rectifier. The weights and
biases of the network are to be optimized, together with the
system noise SD σs. The number of hidden units is given in the
table S1.

Prior on the parameters
For the region- and subject-specific parameters, we use the standard
normal distribution as a prior, as is often used in variational autoen-
coders. The priors in the second and the third term in Eq. 11 can
thus be written as p(θr) = N(θr∣0, I) and p(θs) = N(θs∣0, I).
Prior on the external input
We set the prior for the external input to an autoregressive process
with time scale τ and variance σ2. Then, the prior reads

pðuextÞ ¼ pðuext;0Þ
Ynt

k¼1
pðuext;kþ1 juext;kÞ ð19Þ

¼ Nðuext;0 j0; σ2Þ
Ynt

k¼1
Nðuext;kþ1 jαuext;k; σ2Þ ð20Þ

with α = e−1/τ. The variance is fixed to σ = 1 because any scaling can
be done inside the function f, and the time scale is optimized togeth-
er with the other parameters and neural network weights in the op-
timization process.
Approximate posteriors
We follow the standard approach and use multivariate normal dis-
tributions for the approximate posteriors in Eq. 12. For the states x
and region-specific parameters θr, we use the idea of amortized var-
iational inference, and instead of representing the parameters di-
rectly, we train a recurrent neural network to extract the means
and the variances from the time series of the observations y, time
series of the network input u, and the one-hot vector c encoding
the subject identity

ðμx; log σ2xÞ ¼ h1ðy; u; cÞ ð21Þ

qðx jy;u; cÞ ¼ N½x jμx; diagðσ
2
xÞ� ð22Þ

and

ðμr; log σ2r Þ ¼ h2ðy; u; cÞ ð23Þ

qðθr jy;u; cÞ ¼ N½θr jμr; diagðσ
2
r Þ� ð24Þ

Specifically, we use long short-term memory (LSTM) networks
for both functions h1 and h2. The input to the networks at step k is
the concatenated observation yk and the network input uk, to which
the time-independent one-hot vector c is also appended.
In other words, the trained LSTM networks map the time series

of observations y, time series of the network input u, and identity
vector c to the parameters of multivariate normal distributions with
diagonal covariance, which define the approximate posterior distri-
butions of the state time series x and regional parameters θr.
The subject-specific parameters θs and the external input uext

depend only on the subject identity encoded in the one-hot
vector c. Their means and variances are stored directly in the ma-
trices of means (M1 ∈ ℝms×nsub for θs andM2 ∈ ℝnt×nsub for uext) and
matrices of log-variances (V1 ∈ ℝms×nsub and V2 ∈ ℝnt×nsub). For a
specific subject, the relevant values are extracted through the
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product with the one-hot vector c

ðμs; log σ2s Þ ¼ h3ðcÞ ¼ ðM1� c;V1� cÞ ð25Þ

qðθs jcÞ ¼ N½θs jμs; diagðσ
2
s Þ� ð26Þ

and

ðμu; log σ2uÞ ¼ h4ðcÞ ¼ ðM2� c;V2� cÞ ð27Þ

qðuext jcÞ ¼ N½uext jμu; diagðσ
2
uÞ� ð28Þ

Optimization
The optimization target is the negative dataset ELBO

Ldataset ¼
Xnsub

i¼1

Xn

j¼1
Lij ð29Þ

where Lij is the ELBO associated with a subject i and region j,
defined by Eqs. 10 to 12. We minimize the cost function over the
weights of the LSTM networks h1, h2, weights of the neural
network f, means and variances of the subject-specific parameters
and of the external input time series M1, M2, V1, and V2; external
input time scale τ, system; and observation noise variances σ2s and
σ2o (in log scale), and forward projection parameters A and b.
Themethod is implemented in Keras 2.4 (65). The parameters of

the method and of optimization procedure are given in table S1. For
optimization, we use the Adam algorithm (66) while relying on the
reparameterization trick (67) for backpropagation through the
random node of the variational autoencoder. The expectations in
Eqs. 10 to 12 are approximated using samples drawn from the ap-
proximate posterior distribution. For the validation on the synthetic
data, the optimization is run for 2000 epochs with learning rate of
0.003 and then for additional 1000 epochs with learning rate of
0.001 with batch size of 16. For the application on resting-state
fMRI data, the optimization is run for 1000 epochs with learning
rate of 0.001 and batch size of 64. To make the optimization more
stable, we use gradient clipping with limits (−1000 and 1000). To
better guide the optimization procedure, we follow the previous
works (15) with initial ELBO relaxation: The terms corresponding
to the priors and approximate posteriors for states x and parameters
θr and θs (Eqs. 11 and 12) are scaled by a coefficient β, which linearly
increases from 0 to 1 between the 1st and 500th epoch.
Two regularization terms are added to the cost function. First is

an L2 regularization on the kernel weight biases and of the neural
network representing function f, αf ½

Pnw
i¼1ðw

f
i Þ
2
þ
Pnb

i¼1ðb
f
i Þ
2
�,

where nw and nb is the number of kernel weights w
f
i and bias coef-

ficients bfi , respectively. Second is on the states x, αx
Pns

i¼1
Pns

k¼1x
2
k;i.

We set αf = 0.01 and αx = 0.01.
The initial conditions for the optimization are set as follows. The

log variances of the system noise are set to −2, and the log variances
of the observation noise are set to 0. The projection vector a is ini-
tialized randomly drawing from normal distribution (mean, 0; SD,
0.3), and the projection bias b is set to zero. Matrices for subject-
specific parameters and for external input M1, M2, V1, and V2 are
initialized randomly drawing from a normal distribution (mean,
0; SD, 0.01). All layers of used neural networks use the default ini-
tialization provided by Keras.

To assess possible overfitting in the inference and generative net-
works, we adopt the following procedurewhen applying themethod
to resting-state fMRI data.We divide the time series from all regions
and all subjects into the training set (80% of regions) and test set
(20% of regions), and the optimization is then performed using
the ELBO calculated from the training set only (fig. S11). We note
that split is performed between the regional time series and not
between subjects, that is, the regional time series in the test set
come from the same subjects as the regional time series used for
the training. This is a limitation of the present architecture, as it
cannot be readily applied to new subjects because of the direct op-
timization of the external input uext and subject parameters θs and
the encoding of the identity of the subject in one-hot vector c.
Therefore, this procedure should not be understood as testing any
predictive power for new dataset (we are making no claims in that
regard), but rather evaluating if the generative model f is memoriz-
ing specific time series.

Whole-brain network models for simulated datasets
Hopf bifurcation model
The Hopf model of large-scale brain dynamics (8) is built by placing
a neural mass near supercritical Hopf bifurcation at each node of a
brain network. Each neural mass i is described by two parameters:
bifurcation parameter ai and intrinsic frequency fi. For ai < 0, the
uncoupled neural mass has one stable fixed point, and for ai > 0,
the neural mass has a stable limit cycle indicating sustained oscilla-
tions with frequency fi. The bifurcation exists at the critical value ai
= 0. The dynamics of each node in the network are given by a set of
two coupled nonlinear stochastic differential equations

_xi ¼ ðai � x2i � y
2
i Þxi � ωiyi þ G

Xn

j¼1
wijðxj � xiÞ þ βηxi ðtÞ ð30Þ

_yi ¼ ðai � x
2
i � y

2
i Þyi þ ωixi þ G

Xn

j¼1
wijðyj � yiÞ þ βη

y
i ðtÞ ð31Þ

where ωi = 2πfi, G > 0 is the scaling of the coupling, wij is the weight
of connection from node j to node i. Additive Gaussian noise η is
included in the equations, with SD β.
To generate the synthetic dataset, we use the structural connec-

tome matrices of the first eight subjects from the group described
above. We simulate eight subjects, with increasing coupling coeffi-
cient G spaced linearly between 0 and 0.7. The intrinsic frequency fi
of all nodes is sampled randomly from uniform distribution on
[0.03, 0.07] Hz. The bifurcation parameter a is sampled randomly
from uniform distribution [−1, 1]. The initial conditions of the
system for all subjects and both variables are chosen randomly
from normal distributionN(0, 0.3), and the system is then simulated
for 205 s. The first 25 s are then discarded to avoid the influence of
the initial conditions, leaving 180 s of data. The system is simulated
with Euler method with time step Δt = 0.02 s. As the observed var-
iable, we take the first of the two variables in each node (i.e., xi),
downsampled to 1 Hz; therefore, every time series contain 180
time points. The data are normalized to zero mean and variance
equal to one (calculated across the whole dataset).
Parametric mean field model
The pMFM was derived as a reduction from a spiking neural model
(7). The resulting model is described by one nonlinear stochastic
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differential equation in each node of the brain network

_Si ¼ �
Si
τs
þ ð1 � SiÞγHðxiÞ þ σηiðtÞ ð32Þ

HðxiÞ ¼
axi � b

1 � exp ½� dðaxi � bÞ�
ð33Þ

xi ¼ riJSi þ Io þ In ð34Þ

where xi is the total input current,H(xi) is the population firing rate,
and Si is the average synaptic gating variable. The total input current
depends on the recurrent connection strength ri, synaptic coupling
strength J = 0.2609 nA, excitatory subcortical input Io = 0.295 nA,
and the regional coupling In ¼ G

Pn
j¼1wijSj, scaled by the global

scaling coefficient G. The strength of the coupling between region
j and i is proportional to the structural connection strength wij. The
kinetic parameters of the models are the decay time constant τs =
100 ms and γ = 0.641/1000. Values for the input-output function
H(xi) are a = 270nC−1, b = 108 Hz, and d = 0.154 s. Depending
on the parameter values and the strength of the network coupling,
the system can be either in monostable downstate regime at low
firing rate values, bistable regime with two stable fixed points, or
monostable upstate regime at high firing-rate values. The stochastic
transitions between states are driven by the additive Gaussian noise
ηi with SD σ.
The initial conditions for Siwere chosen randomly from uniform

distribution on [0.2, 0.8]. The system was simulated for eight sub-
jects with connectome matrices described above. For each subject, a
specific value of coupling coefficient G producing the strongest FC
was used. This was determined by performing 4-min-long simula-
tions with subject-specific connectome and fixed regionally hetero-
geneous parameters, repeated for 31 values of G between 0.17 and
0.22 (where optimal valuewas expected to lie), and picking the value
where the mean of FC from the last 2 min was the highest. With this
value of G, the activity of each subject was simulated for 16.4 min,
first two of which were discarded to avoid the influence of the initial
conditions. The Euler method with time step Δt = 10 ms was used
for the simulation. The resulting time series of Si were temporally
averaged over windows of size 0.72 s, leaving 1200 time points in
every time series. The data are normalized to zero mean and vari-
ance equal to one (calculated across the whole dataset).

Relation of regional parameters and regional features from
individual and external data
To analyze the role of the regional parameters inferred from human
resting-state fMRI data, we compare the inferred parameters to
several regional features obtained on the individual level or on a
population level from previous literature. All features are represent-
ed by a vector of 68 elements, corresponding to the cortical regions
of Desikan-Killiany parcellation.
Features from individual data
The individual-level features are derived from the data used in the
model fitting: structural connectivity and parcellated resting-state
fMRI. For structural connectivity, it is node in-strength and eigen-
vector centrality. For fMRI data, it is the first and second spatial ei-
genvector obtained from PCA, vector of correlation coefficients of
regional time series with the mean signal of resting-state fMRI,
vector of correlation coefficients of regional time series with the

network input time series (Eq. 7), number of zero-crossings of
the regional signals, and the power below 0.1 Hz. We note that
the signals are all normalized, so the total power is constant.
Features from external data
We further consider several regional features derived from other
sources unrelated to the modeling data. First, it is the neuronal
density and neuronal size derived from the pioneering work of
Von Economo and Koskinas (26). These data were mapped to
Desikan-Killiany atlas (68) and used previously in related large-
scale brain modeling study (6). Our inspection of these remapped
data however indicated possible error in the mapping, as it con-
tained density values that would be obtained by summing across
cortical sublayers instead of averaging. Therefore, we opted to
redo the mapping using the tabular data given in the recent trans-
lation of the original work (69). We followed the procedure as de-
scribed in (68), only taking an average of neuronal densities and
sizes where multiple sublayers were given.
In addition, we have used neuronal density estimated from the

BigBrain model (27). The BigBrain model is a 3D-reconstructed
dataset with a spatial resolution of 20 μm isotropic, i.e., nearly cel-
lular. The regional cell densities were estimated by randomly sam-
pling at least 15 3D chunks per region from the cortex of the
BigBrain model. For each region in the parcellation map, between
15 and 140 random coordinates were drawn in the ICBM 2009c
nonlinear asymmetric space depending on the size of each region
(70). Each coordinate was transformed to the BigBrain histological
space using a nonlinear transformation guided by sulcal constraints
(71) and then shifted to the closest position around the cortical mid-
surface, as defined by the BigBrain layer segmentation (72). A
square cube extending across the full cortical depth was sampled
at each mid-surface location, and layer-specific histograms of Big-
Brain gray values were extracted from each cube. The gray values are
8-bit integers in the range of 0…255, where dark values indicate the
presence of cell bodies due to the silver staining that was applied to
the BigBrain tissue sections. To convert gray values into actual
density estimates, a collection of 120 BigBrain cortical image
patches scanned at 1-μm resolution [e.g., (73); full list of data refer-
ences in data S1] with explicit layer-specific density estimates in
numbers of segmented cell bodies (74) per 0.1 mm3 was used to
compute an individual calibration function per layer. These calibra-
tion functions were applied to the mean gray value per layer in each
sampled cube. From the resulting layerwise densities in each
sampled cube, average cortical cell densities were determined by
weighting each layer density with its relative volume. The final
cell density estimate for each parcellation region was determined
as the average cortical density across all cubes sampled from it.
Next, the RSFC principal gradient (28) was obtained from

resting-state fMRI of large cohort of healthy adults by means of dif-
fusion embedding, a nonlinear projection technique. It was pro-
posed as a proxy measure for processing hierarchy. We use the
numerical values provided by Kong et al. (4). The T1w/T2w ratio
is used as a measure of myelin content. We use the map in
Desikan-Killiany parcellation (4) obtained from the HCP dataset
of 1200 healthy adults (29). Last, we consider two features derived
from gene expression profiles (5) from the AllenHuman Brain Atlas
(30): First is the first principal component of 1926 brain-relevant
genes. Second is the EI map, estimated from the expressions of
genes coding for the excitatory AMPA and N-methyl-D-aspartate
receptors and inhibitory GABAA receptors.
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Multivariate linear regression
All features were normalized before performing the linear regres-
sion. As the regional parameters θr were estimated probabilistically,
that is, the mean and variance of a normal distribution were in-
ferred, we performed the linear regression on 100 samples from
these inferred distributions.

Analysis of the inferred dynamical systems
To find the fixed points of the inferred dynamical systems we used
the “hybr” root-finding method in SciPy package. We used multiple
random initialization for each parameter configuration (60 for
node-level analysis and 100 for network-level analysis), sampled
uniformly from [−2, 2] in each dimension. The root-finding
method used the system Jacobian calculated by TensorFlow’s auto-
matic differentiation. Stopping tolerance was set to 1 × 10−6.
To assess whether the system supports unsteady dynamics (limit

cycles or chaotic dynamics), we simulate the systems from the same
random initializations for 288 s in the absence of system noise. After
that, we evaluate whether the system has converged to a fixed point
by criteria of the last 72 s being in the vicinity of the last final state
(threshold 1 × 10−3 in L2 distance). If not, then we simulate the
system further to 1200 s and evaluate again with the same criteria,
and if the system has not converged, then it is marked as unsteady.
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