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The histopathologic heterogeneity of intraductal papillary mucinous neoplasms (IPMN) complicates the predic-
tion of pancreatic ductal adenocarcinoma (PDAC) risk. Intratumoral regions of pancreaticobiliary (PB), intestinal
(INT), and gastric foveolar (GF) epithelium may occur with either low-grade dysplasia (LGD) or high-grade dys-
plasia (HGD). We used digital spatial RNA profiling of dysplastic epithelium (83 regions) from surgically resected
IPMN tissues (12 patients) to differentiate subtypes and predict genes associated with malignancy. The expres-
sion patterns of PB and GF lesions diverged from INT, suggesting that PB and GF arise from a common lineage.
Transcriptional dysregulation within PB lesions mirrored that of PDAC, whereas INT and GF foci did not. Tumor
necrosis factor/nuclear factor kB (TNF-NFkB) and cell cycle (cycling S and cycling G,-M) programs occurred with
relative prominence in PB and INT subtypes, respectively. Together, this study delineates markers of high-risk

IPMN and insights into malignant progression.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause
of cancer death, predominantly because of the lack of early detec-
tion strategies that enable identification of patients at a potentially
curable stage (I). Intraductal papillary mucinous neoplasms
(IPMN) are cystic lesions of the pancreas that represent a radio-
graphically detectable precursor to pancreatic cancer (2). While
the most IPMN do not progress to malignancy, the ability to accu-
rately differentiate those lesions at low risk for progression [low-
grade dysplasia (LGD)] from those at high risk [high-grade dyspla-
sia (HGD) and early cancer] remains elusive (3). It is widely accept-
ed that operative treatment of HGD is appropriate, whereas
radiographic surveillance is appropriate for those with LGD. Con-
sensus guidelines designed to predict risk of HGD through clinical,
radiographic, laboratory, endoscopic, and cytologic parameters
have an overall accuracy of approximately 60% (4-6). Hence,
there has been intense interest in the development of more accurate
biomarkers for high-risk IPMN.

Pathologic characterization of IPMN demonstrates multiple dys-
plastic histologic epithelial subtypes that often coexist within indi-
vidual specimens. Epithelial subtypes observed histologically
include pancreaticobiliary (PB), intestinal (INT), gastric foveolar
(GF), and an oncocytic variant. The PB and INT subtypes comprise
the overwhelming majority of IPMN with propensity for invasive
cancer, and GF represents an indolent subtype associated with fa-
vorable prognosis. Studies comparing patient outcomes by subtype
suggest that PB histology is more likely to harbor or progress to ma-
lignancy, and patients with invasive lesions from the PB subtype ex-
perience similar outcomes as patients with conventional PDAC (7-
9). Genomic interrogation of IPMN has implicated DNA alterations
in KRAS, GNAS, and RNF43 as the most prevalent events within
neoplasms, but these mutations may coexist and do not reliably
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associate with histologic subtype or grade of dysplasia (10-12). Mu-
tations such as TP53, CDKN2A, SMAD4, and others may be predic-
tors of HGD or invasive carcinoma when present, but their
prevalence is relatively low, and the sensitivity is limited. Numerous
studies have proposed possible mRNA, microRNA, and protein bio-
markers for high-risk IPMN, but to date, none has been incorporat-
ed into clinical use because of prognostic inaccuracies (13-18).

Intralesional heterogeneity further complicates the discovery of
markers for high-risk IPMN. Studies of bulk tissue or cyst fluid con-
volute the mosaic of epithelial subtypes and grades of dysplasia that
occur within individual patients, thereby obfuscating any underly-
ing signal that may be present in disease foci. Microdissection can
isolate and compare regions of dysplastic epithelium, but these ap-
proaches can be technically challenging and disrupt tissue quality
(19, 20). Single-cell RNA sequencing (RNA-seq) of IPMN can char-
acterize unique cell populations within bulk tissues, but do so at the
expense of their spatial relationships, and are thus unable to distin-
guish differences between histologic subtype and pathologic
grade (21).

The emergence of multiplex digital spatial profiling addresses
the above challenges in deconvoluting heterogeneous tissues to de-
lineate disease phenotypes (22, 23). This technology offers precise
comparison of gene expression among user-defined disease
regions without the need for cumbersome microdissection. We re-
cently used this technology to explore the composition of immune
cells within the IPMN tumor microenvironment (24). Here, we
report spatial RNA profiling of ductal epithelium across subtypes
to determine markers of dysplasia and identify biological processes
that associate with malignant progression.

RESULTS

Patient characteristics

Digital spatial RNA profiling was performed on formalin-fixed,
paraffin-embedded (FFPE) tissue specimens from 12 patients who
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underwent pancreatectomy for IPMN between 2017 and 2021
(Fig. 1A). Clinicopathologic details of the cohort are summarized
in Table 1. A pancreatic pathologist (C.S.) characterized the speci-
mens and prepared tissue blocks for profiling according to the fol-
lowing criteria: (i) predominantly INT (n = 6) or PB (n = 6)
histology, (ii) presence of at least HGD within the specimen, and
(iii) adequate areas of LGD and HGD within a single tissue block
to facilitate a controlled comparison between grades of dysplasia
(Fig. 1B). Because of the heterogeneity of the tumors, the specimens
also contained numerous regions of GF epithelia with uniformly
LGD. Invasive carcinoma occurred in four of six PB specimens
and none of the INT specimens. To compensate for this potential
bias, we prepared slides from areas of the specimen that entirely
lacked invasive carcinoma.

Targeted spatial transcriptome profiling

We used the Nanostring GeoMx Cancer Transcriptome Atlas
(CTA) platform to profile a total of 98 epithelial areas of interest
(AOIs) (50 HGD and 48 LGD) from all slides (6 to 10 per slide;
table S1). The median nuclei count per AOI was 623 [interquartile
range (IQR) 345 to 864]. High-throughput sequencing yielded a
median of 608,651 aligned deduplicated reads per AOI (IQR
261,088 to 1,162,890). Sequencing yield was correlated with AOI
nuclei count and surface area, suggesting a strong association
with the quantity of in situ RNA (fig. S1, A and B). Of the 98
AOQIs, 83 (84%) met quality control (QC) filtering criteria (fig.

A

S1C). Epithelial regions with HGD tended to contain greater cellu-
lar density than LGD AOIs, leading to increased sequencing counts
and signal-to-noise area under the curve (snAUC) (Materials and
Methods and fig. S1D). Of the epithelial subtypes, INT harbored
the greatest cellular density, followed by PB and finally GF AOIs
(fig. S1E). Sequencing yield and snAUC reflect these trends. The
normalization strategy to account for this potential bias is discussed
below.

A median of 48.3% of probes was expressed above background in
each individual AOI (IQR 42.7 to 55.2%; table S2). Gene filtering
retained 1288 of 1828 (70.4%) genes expressed at detectable levels
above background in at least 20% of AOIs (fig. S2A and table S3).
The raw count density distributions of the AOIs indicate that the
filtered genes were of low abundance (fig. S2B). Background sub-
traction followed by quantile normalization was applied to
account for differences in sequencing yield, enabling biological
comparison of gene expression across AOIs (tables S4 and S5).
The normalized count density distributions across individual
AOIs were grossly similar (fig. S3A), and there was no observable
bias by either pathologic grade or epithelial histology (fig. S3, B
and C).

Divergence of INT from PB and GF subtypes

An unbiased survey of expression patterns was performed using
principal components analysis. The AOIs formed two groups that
corresponded to histologic subtype, with INT AOIs forming one

Analysis

Surgical

Histologic subtype J

, Digital spatial Data (PB =24, GF =21, INT = 38)
specimens ol RO RNA profiling processing
FFPE (n = 98 epithelial) (1828 genes) and QC
(n=12) Grade of dysplasia
(HGD = 47, LGD = 36)

Fig. 1. Spatial RNA profiling of IPMN. (A) Study overview flow diagram. (B) A representative high-resolution microscopy image from patient slide 6 depicting regions of
HGD (PB) and LGD (GF) cyst epithelium chosen for profiling. ROIs, regions of interest; QC, quality control.
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Table 1. Patient characteristics.

Patients 12

70 (63-77)

Median age: years (IQR)

Gastric foveolar 0 (0%)

group and PB-GF (non-INT type) AOIs forming the second group
(Fig. 2A). The separation of AOIs by grade of dysplasia along the
first two principal components varied among specimens
(Fig. 2B). Of the INT patients, the AOIs from slides 4 and 12
grouped tightly together, suggesting homogeny. Two patients
(slides 1 and 3) that contained a mixture of GF (LGD) and INT
(HGD) epithelium were notable because the GF and INT regions
clustered with their respective histologic subtypes, rather than by
patient. Notable separation between HGD and LGD AOIs occurred
in INT slides 2 and 9. Invasive carcinoma, although excluded from
slides prepared for digital spatial profiling, occurred in four speci-
mens with PB histology (slides 5, 6, 8, and 11) (Fig. 2C). The HGD
AQIs from these four patients grouped closely together, suggesting
the existence of a high-risk phenotype. Of the two PB specimens
lacking invasive carcinoma, one grouped with the other PB AOIs
(slide 7) and other grouped more closely with GF AQOIs (slide 10).

Identification of genes associated with epithelial subtype

DE analysis of PB, INT, and GF AOIs was performed in a pairwise
fashion (PB versus GF, PB versus INT, and INT versus GF) to find
subtype-specific gene expression (table S6). Intersections of the re-
sulting DE genes formed PB-, GF-, and INT-specific signatures (fig.
S3). The union of these sets comprised 127 histologic subtype-
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specific genes (Fig. 3A). Hierarchical clustering of the AOIs pro-
duced distinct clusters corresponding to INT, GF, and PB histology.
Clustering at the gene level further revealed three clusters denoted
as CI-INT, C2-PB, and C3-PB-GF (non-INT). The AOIs from
slides 2 and 10 did not cluster with their respective epithelial sub-
types. Rather, slide 2 clustered with PB AOIs despite having a mix of
INT and GF epithelium, and the PB-HGD AOIs from slide 10 clus-
tered with GF (LGD).

When describing histologic subtype marker genes across the
three subtypes, the presence of known IPMN marker genes served
as external validation for the DE results. Mucin genes, including
MUCI, MUC2, MUC4, MUC6, and MUC5AC, have been proposed
to discriminate between subtypes (14, 15), and the NanoString CTA
probe set contained two of these mucin genes, MUCI and MUC4.
Consistent with prior reports, MUCI was overexpressed in PB-GF
(non-INT) AOIs, and MUC4 was overexpressed in INT AOIs (Fig. 3,
B and C) (14, 15, 25-27). At the RNA level, neither MUCI nor
MUC4 were found to be significantly altered in PB relative to GF
AOIs. Notably, several genes outperformed MUCI and MUC4 as
IPMN subtype marker genes, including clusterin (CLU), retinol
binding protein 4 (RBP4), and keratin 17 (KRT17), which showed
marked overexpression in GF, INT, and PB AOIs, respective-
ly (Fig. 3C).

Identification of genes associated with high-risk IPMN
Differential expression (DE) analysis of HGD versus LGD AOIs
yielded 38 significant genes (30 overexpressed and 8 underex-
pressed) (Fig. 4A and table S6). Semisupervised clustering using
these genes produced two distinct clusters of AOIs: (i) a "high-
risk” cluster containing 33 of 83 AOIs (~40%) from 5 of 6 PB
slides (5, 6, 7, 8, and 11) and 3 of 6 INT slides (1, 2, and 9) and
(ii) a "low-risk” cluster containing all GF AOIs and HGD AOIs
from slides 3, 4, 10, and 12.

Given that IPMN with HGD represents PDAC in situ, we postu-
lated that gene expression changes essential to the progression to
HGD should be retained in PDAC (8). To investigate this rationale,
we compared DE genes in HGD versus LGD IPMN with PDAC
gene sets curated from external sources: (i) Clinical Proteomic
Tumor Analysis Consortium (CPTAC) RNA-seq and proteomics
analysis of pancreatic cancer versus normal adjacent tissues, (ii)
the Human Protein Atlas (HPA) analysis of The Cancer Genome
Atlas (TCGA) RNA-seq data predicting prognostic genes in pancre-
atic cancer, (iii) Mao et al. analysis of bulk RNA-seq data from
PDAC versus adjacent benign tissue, and (iv) Griitzmann et al.
meta-analysis of pancreatic cancer microarray experiments (see Ma-
terials and Methods) (28-31). The analyses from CPTAC and HPA
(TCGA) were considered more robust as these were generated by
large consortia using standardized protocols. Of the 30 genes over-
expressed in HGD versus LGD IPMN, 6 were overexpressed in
PDAC (CPTAC RNA-seq) and associated with unfavorable progno-
sis (HPA): FOSL1, AREG, CCL20, SERPINBS, ITGA2, and LAMC2
(fig. S4). Additional genes found to be overexpressed in both IPMN
and PDAC but not associated with prognosis included PLAUR,
ILIR2, KRT17, EPHA2, LIF, CD55, and CARDII.

Gene Set Enrichment Analysis (GSEA) demonstrated significant
enrichment [adjusted P value (P,q;) < 0.05] against all curated gene
sets (fig. S5 and table S7). Statistical significance largely depended
on gene set size, with down-regulated genes exhibiting weaker en-
richment than up-regulated genes. The most significant enrichment
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Fig. 2. Principal components analysis of normalized spatial RNA profiles. Scatterplot of the first two principal components (PC1 and PC2). The shape of AOIs reflects
the grade of dysplasia. (A to C) AOIs colored by (A) histologic subtype, (B) patient/slide ID, and (C) presence of carcinoma elsewhere in the specimen.

was observed with the RNA-seq analysis from CPTAC (Fig. 4B) and
the HPA analysis of prognosis (Fig. 4C).

To search for molecular mechanisms underlying progression of
IPMN, we performed exploratory GSEA against the Molecular Sig-
natures Database (MSigDB) Hallmark gene set collection (Fig. 4D
and table S8) (32). Genes were ranked by log fold change in HGD
versus LGD IPMN. This resulted in 7 of 50 significantly enriched
gene sets (P,gj < 0.01). The gene set with the highest enrichment
score represented genes regulated by nuclear factor kB (NFxB) in
response to tumor necrosis factor (TNF) signaling (TNF-NFkB).
We interpreted this result as supportive of the known link
between inflammatory signaling and progression in IPMN (33—
36). An additional three of seven enriched gene sets pertained to
cell proliferation. Leading edge analysis of the genes enriched in
two or more genes sets yielded two unique clusters (Fig. 4E). The
first cluster included MKI67 and other genes associated with cell
proliferation and division, and the second cluster involved genes as-
sociated with inflammatory signaling, hypoxia, and epithelial-to-
mesenchymal transition.

Genes that differentiate high-grade PB from INT IPMN

We next investigated neoplastic progression in PB and INT-pre-
dominant tumors. IPMN specimens were partitioned by their pre-
dominant histology subtype across the entire specimen.
Accordingly, the AOIs formed four subgroups: PB-HGD
(N =23), PB-LGD (N = 18), INT-HGD (N = 24), and INT-LGD
(N = 23). The PB-LGD subgroup included GF AOIs (N = 17) and
a single low-grade PB AOI. There were 50 DE genes (34 overex-
pressed and 16 underexpressed) specific to the PB-HGD versus
PB-LGD analysis, and 6 genes (5 overexpressed and 1 underex-
pressed) specific to the INT-HGD versus INT-LGD analysis
(Fig. 5A, fig. S6, and table S6). Carcinoembryonic antigen-related
cellular adhesion molecule 6 (CEACAMS6), which has been reported
as a possible biomarker in IPMN and cholangiocarcinoma, was

lyer et al., Sci. Adv. 9, eade4582 (2023) 17 March 2023

highly up-regulated in PB but not INT IPMN (Fig. 5B) (21, 37).
In addition, laminin subunit beta-3 (LAMB3) and POU class 5 ho-
meobox 1 (POU5FI) were specific to PB-HGD but not INT-HGD
AOIs. Early growth response-1 (EGRI) was more specific to INT,
although met significance thresholds in the grouped analysis of
HGD versus LGD dysplasia.

Association of IPMN subtypes with PDAC

Subgroup DE analysis was performed on pairwise combinations of
histopathologic groups (six comparisons), and the resulting ranked
gene lists were tested against the curated PDAC gene sets (table S7).
The PB-HGD versus PB-LGD analysis had the greatest absolute
normalized enrichment score (NES) in 8 of 10 gene sets and outper-
formed analyses involving INT-HGD regions for every gene set
(Fig. 5C). Of particular significance was the stark difference in
NES for the HPA Prognosis gene sets. All comparisons involving
PB-HGD AOIs were highly enriched, whereas none of the INT-
HGD comparisons showed significant enrichment. This suggests
that PB-HGD IPMN most closely resembles invasive carcinoma
and may represent a direct precursor to malignancy in the dysplastic
progression of IPMN.

Up-regulation of inflammatory signaling and cell
proliferation during dysplastic progression

Exploratory GSEA against MSigDB Hallmark gene sets was replicat-
ed for each of the six pairs of histopathologic groups (Fig. 5D and
table S8). Cell proliferation programs (S and G,-M phases) were up-
regulated in INT-LGD relative to PB-LGD (GF) AOIs. This was
concordant with the greater cell density observed within INT
regions on microscopic examination and reflected in the initial
QC analysis (figs. S1E and S8). By contrast, the TNF-NF«B tran-
scriptional program was up-regulated in PB-LGD relative to INT-
LGD AOIs. Both PB-HGD and INT-HGD regions overexpressed
both TNF-NFkB and proliferation pathways relative to their LGD
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Fig. 5. Comparison of epithelial subtypes by grade of dysplasia. (A) Scatterplot showing log, fold change of PB-HGD versus PB-LGD (x axis) and INT-HGD versus INT-
LGD (y axis). Significant DE genes are colored by histopathologic subgroup. Top 10 DE genes from each analysis are labeled. (B) Boxplots showing the log-normalized
gene expression of histopathologic marker genes. (C) Barplots depicting GSEA normalized enrichment score obtained from testing of histopathologic groups against
several external PDAC gene sets. Bar colors depict the P,q; of each test. Gray bars are not statistically significant (P,q; > 0.05). (D) Volcano plots of MSigDB Hallmark gene
sets associated with each histopathologic subgroup (relative to its counterparts), with statistical significance plotted on the x axis and normalized enrichment score
plotted on the y axis. Significant enrichment results (P,g; < 0.01) are shown with text labels.
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counterparts. Together, these results suggest that INT may arise as a
primarily proliferative lesion before acquiring the TNF-NFkB
program and progressing to HGD. By contrast, PB-LGD (GF)
may arise in the setting of inflammatory signaling and acquire the
capacity to proliferate during progression to HGD. No significant
hallmark pathways distinguished PB-HGD from INT-HGD, sug-
gesting that transcriptional programs not encompassed by
MSigDB Hallmark gene sets must account for the marked differenc-
es between PB-HGD and INT-HGD.

Unsupervised network analysis to delineate gene clusters
associated with progression to carcinoma

To determine whether gene expression patterns could infer biolog-
ical pathway activity and cancer risk without reliance on patholog-
ical annotation, we performed coexpression network analysis
(Materials and Methods). This resulted in a network containing
300 genes connected by 791 edges (Fig. 6A and tables S9 and
$10). Unsupervised clustering partitioned the network into 29 clus-
ters of coexpressed genes. We discarded clusters with <10 genes (23
of 29) for which enrichment testing would be underpowered,
leaving 6 communities for further investigation.

Hypergeometric enrichment testing was used to associate clus-
ters with gene sets from the MSigDB Hallmark database and Gene
Ontology Biological Processes (GO:BP; table S11) (38). After con-
solidating redundant biological processes, we selected the most stat-
istically significant gene sets to represent each cluster (Fig. 6A). We
then projected the standardized mean gene expression across PB-
HGD and INT-HGD AOIs onto the network using color gradient
overlays (Fig. 6B). To relate network clusters with PDAC, we per-
formed enrichment testing against PDAC gene sets and visualized
the CPTAC RNA-seq DE genes as a third network overlay (Fig. 6C).

Clusters C4 and C7 warranted consideration as contributors to
malignant progression based on significant enrichment for CPTAC
RNA-seq PDAC genes (C4 22 of 46 genes, Pyg; = 3.7 X 1075 C7 25 of
37 genes, P,g; = 8.3 x 107'%). Cluster C4 was significantly enriched
for TNF-NF«B signaling (17 of 46 genes, P,q; = 4.4 X 107°) and con-
tained 15 of 30 genes overexpressed in HGD versus LGD IPMN.
Genes within C4 tended to be expressed at higher levels in PB rel-
ative to INT IPMN. Accordingly, C4 harbored 15 genes overex-
pressed in PB-HGD versus PB-LGD AOIs, compared to only 6
genes overexpressed in INT-HGD versus INT-LGD AOIs. Cluster
C7 was significantly enriched for cell cycle genes (28 of 37 genes,
Py = 2.1 x 107'®). Genes within C7 tended to be expressed at
higher levels in INT relative to PB IPMN and contained more
genes up-regulated in INT versus GF AOIs (22 of 37 genes) than
PB versus GF AOIs (6 of 37 genes). In contrast to C4, C7 contained
none of the DE genes in HGD versus LGD IPMN. Together, these
results implicate C4 (TNF-NFkB) as a prominent transcriptional
program in PB IPMN and C7 (cell cycle) as a prominent program
in INT IPMN.

DISCUSSION

Management of patients with IPMN presents an opportunity to
prevent pancreatic cancer; however, current management strategies
are limited in their ability to provide accurate recommendations
because our ability to predict timing of progression is limited. Cy-
tologic or pathologic confirmation of disease subtype and/or grade
of dysplasia is difficult without operative resection, and resection is
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associated with substantial morbidity and even mortality. Asymp-
tomatic patients who present without high-risk radiographic stig-
mata of carcinoma represent a clinical conundrum for which no
accurate diagnostic modalities currently exist. For this patient pop-
ulation, the concept of a prognostic molecular assay holds great
promise, but despite considerable investigation, no such assay has
gained clinical traction.

Available retrospective evidence suggests an association between
histopathology and clinical outcomes in patients with IPMN. Spe-
cifically, PB histologic subtype portends poor prognosis relative to
INT, GF appears to represent an indolent entity, and the presence of
HGD forecasts the development of invasive cancer (7, 8, 39-41).
Numerous efforts have failed to translate these retrospective patho-
logic observations into predictive biomarkers for technical and
disease-related reasons. The major caveat with “bulk” studies of
IPMN tissue rests in the assignment of a single grade and subtype
annotation to a specimen, effectively homogenizing the disease
morphologies and degrees of dysplasia that occur within the affect-
ed pancreas. In an unsupervised clustering analysis of single-cell
RNA-seq data from patients with IPMN, Bernard et al. (21)
found subpopulations of cells from tissues designated LGD within
clusters of HGD and carcinoma cells, corroborating histopathologic
evidence that IPMN harbor a mixture of cells along a dysplastic
spectrum. Ultimately, our understanding of the neoplastic progres-
sion of IPMN hinges upon the ability to characterize these tissues in
a more granular fashion.

Until now, attempts to isolate neoplastic ductal epithelium re-
quired technically challenging tissue handling. Jury et al. (20) com-
bined laser capture microdissection with microarray technology to
study gene expression changes associated with IPMN progression.
The investigators reported markers of pancreatic islet cells, includ-
ing the hormones insulin, glucagon, and somatostatin, among the
most significantly differentially expressed genes in their dataset,
raising doubt that the microdissection procedure precisely isolated
neoplastic epithelium. Sato et al. (19) used selective microdissection
paired with microarrays to compare gene expression between
normal ductal epithelia, noninvasive IPMN, and invasive IPMN.
The authors reported several genes also found by our study, includ-
ing serpin family B member 5 (SERPINB5), CD55 molecule
(Cromer Blood Group) (CD55), and integrin subunit alpha 2
(ITGA2). However, the study exclusively examined regions of carci-
noma in situ (HGD) and lacked classification by epithelial subtype,
limiting its clinical translational potential. As an alternative to tissue
isolation, IPMN cyst fluid—rich in DNA, RNA, and protein—can
be obtained with minimally invasive fine needle aspiration.
However, the acquired material constitutes a convolution of secret-
ed molecules and sloughed off debris from normal and neoplastic
pancreatic tissue. Therefore, biomarker identification from either
cyst fluid or bulk tissue present similar challenges.

In the current study, we leveraged digital spatial RNA profiling
using a targeted gene panel to characterize precise regions of IPMN
histopathology across tissue slides and produce robust gene expres-
sion patterns by epithelial subtype and grade. Unsupervised dimen-
sionality reduction analysis demonstrated distinct groups of INT
and non-INT (PB-GF) AOIs. INT and GF AOIs clustered apart
even when derived from the same patient and in the same tissue
section. By contrast, the intimate association of PB and GF AOIs
suggests that GF and PB share a common neoplastic cell lineage dis-
tinct from INT lesions. Given that GF regions are almost universally
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Fig. 6. Coexpression network analysis. Gene coexpression network was produced by correlation analysis of all epithelial AOls, where nodes represent individual genes
and edges connect highly correlated gene pairs. Node size reflects the fold change in expression between HGD and LGD AOIs. (A) Unsupervised clustering of network
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deemed as low grade, we suggest that GF can essentially be consid-
ered a precursor to PB epithelium.

Now, mucin genes serve as a generally accepted differential
marker of epithelial subtype. The two mucin genes (MUCI and
MUC4) included in the CTA panel showed significant association
with PB-GF and INT subtypes, respectively. However, despite the
intended use of MUCI as a specific marker of PB IPMN, it did
not discriminate between PB and GF AOIs in this dataset. Rather,
CLU, RBP4, KRT17, and other candidate marker genes nominated
by this analysis displayed superior potential to classify epithelial
subtypes.

Comparison of gene expression by grade of dysplasia identified
gene expression alterations that mirrored those reported in PDAC.
Evaluation of gene expression enrichment against independent da-
tasets also served as validation of the spatial profiling platform and
our data analysis approach. Clustering the AOIs on the set of 38
genes dysregulated in HGD versus LGD partitioned the specimens
into high-risk and low-risk groups. Eight of the 12 slides, including
the 4 slides from patients with invasive carcinoma, harbored one or
more high-risk AOIs. We envision that a gene expression classifier
derived from this gene signature could serve as a risk stratification
tool for patients with IPMN.

This study also corroborates evidence for individual candidate
biomarkers of high-risk IPMN, including CD55, laminin subunit
gamma 2 (LAMC2), amphiregulin (AREG), and others. As noted
above, CD55 was previously reported as a biomarker for IPMN by
gene expression microarray experiments and was found to be asso-
ciated with disease progression in a proteomic profiling study of
IPMN cyst fluid (19, 42). An enzyme-linked immunosorbent
assay of LAMC2 in plasma of patients with PDAC augmented the
accuracy of the widely used PDAC biomarker CA-19-9 (43).
LAMC?2 has also been detected in pancreatic duct fluid exosomes
in patients with IPMN and PDAC (44). AREG was found to be pre-
dictive of high-risk IPMN in a serum biomarker panel based on an-
tibody microarray technology and has also been detected in
pancreatic cyst fluid (45, 46). Validation studies using these and
other candidate genes in pancreatic cyst fluid are warranted.

To explore the biological underpinnings of IPMN, we performed
a combination of supervised and unsupervised analyses. The super-
vised analysis leveraged annotation of AOIs by a pancreatic pathol-
ogist, DE testing, and GSEA to find biological associations. The
unsupervised analysis used gene expression correlation information
to construct a coexpression network and a community detection al-
gorithm to partition the network into clusters of highly correlated
genes. Clusters were then assessed for biological significance
through hypergeometric enrichment testing. Ultimately, the two
analysis approaches led to similar conclusions. Two transcriptional
programs appear to be driving neoplastic progression in IPMN: in-
flammatory signaling (TNF-NFkB) and cell proliferation (S and G-
M phases). Activation of cell proliferation was more prominent in
INT relative to PB lesions, whereas inflammatory signaling was
more pronounced in PB than INT. Malignant potential, assessed
by enrichment of gene alterations shared with PDAC datasets,
was predominantly associated with PB epithelium. The unsuper-
vised network analysis corroborated these findings, yielding a 46-
gene cluster associated with the constellation of PB epithelium, in-
flammatory signaling, and PDAC genes, without a priori knowledge
of pathologic annotations. Measurement of the transcriptional ac-
tivity of this gene signature could transcend the histopathologic
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designations that currently serve as surrogate measures of malig-
nancy risk.

This study has several important limitations. First, the CTA
probe panel used in this study measures only ~10% of human
protein coding genes. A targeted panel reduces the power of
GSEA and hypergeometric testing alike to detect significant biolog-
ical pathway enrichment. Genes not measured by the CTA panel
may outperform the marker genes nominated by this study or
provide evidence of other transcriptional programs with relevance
in IPMN. Incorporation of a more comprehensive panel will be im-
portant in future studies.

Second, our modest cohort size of 12 specimens may not
embody the breadth of disease biology across the common epithelial
subtypes (PB, GF, and INT) and omits rare entities such as onco-
cytic IPMN. In addition, the co-occurrence of invasive carcinoma in
most of the PB cohort and none of the INT cohort confounds our
comparison of the two subtypes. Our attempt to mitigate this con-
founder by requiring all tissue slides to be devoid of invasive carci-
noma may or may not be compensatory. Certainly, the available
clinical outcome data support our findings: Patients with invasive
carcinoma derived from INT fare far better than patients with
PB-derived carcinomas (7). Expanded profiling that includes spec-
imens with and without invasive carcinoma from both subtypes will
be needed to fully resolve this issue.

A third and related limitation of the cohort design was the re-
quirement that every specimen in the study has regions of HGD.
It is conceivable that regions of LGD from specimens lacking
HGD/invasive carcinoma could be different from areas of LGD
found in conjunction with HGD/invasive carcinoma. The idea
that high-risk IPMN could be detected before the development of
HGD would certainly alter our clinical approach to the disease. Ex-
panded spatial profiling that includes regions of normal ductal ep-
ithelium and invasive carcinoma could address this intriguing
possibility.

In summary, our findings offer several refinements to our under-
standing of IPMN. First, GF epithelium likely represents a precursor
to PB rather than a common progenitor to either PB or INT.
Second, the activation of inflammatory signaling associates with
high-risk IPMN and occurs predominantly in PB lesions. This
finding lends credence to ongoing clinical trials of anti-inflamma-
tory therapies in the prevention of IPMN progression. Last, the in-
corporation of subtype-specific and high-risk marker genes
nominated by this study may facilitate the development of an accu-
rate risk stratification assay in IPMN.

MATERIALS AND METHODS

Patient recruitment

Archival biospecimens from patients who had undergone pancreat-
ic resection for IPMN at Duke University Hospital System between
2017 and 2021 were considered for spatial RNA profiling. The In-
stitutional Review Board approved the use of deidentified patient
specimens for retrospective molecular profiling. Informed consent
was not required because of the retrospective nature of the study
with minimal risk and deidentification of the specimens. Clinico-
pathological data were collected by study coordinators and securely
stored in the REDCap database. Archived FFPE specimens were
procured and reviewed by a board-certified pathologist specializing
in pancreatic pathology to confirm diagnosis (C.S.). Specimen
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blocks were cut into 5-pum-thick serial sections. One section was
stained with hematoxylin and eosin and imaged using a Nikon
TE2000-E microscope for pathology review. Sections containing
regions of both LGD and HGD were selected for spatial transcrip-
tomics and mounted on a positively charged slide for this
application.

Spatial RNA profiling

Digital spatial RNA profiling was conducted using the NanoString
GeoMx Digital Spatial Profiler (DSP) (22). Our pathologist (C.S.)
selected regions of interest (ROIs) annotated by histologic
subtype (PB, GF, and INT) and grade of dysplasia (LGD or
HGD). We selected ROIs that encompassed the spectrum of
subtype-grade combinations present on each slide and included
multiple biological replicates of each combination. The GeoMx
DSP imposes a maximum ROI diameter of 700 pum. Individual
ROIs were drawn to maximize the number of epithelial cells con-
tained while adhering to the size constraint. Segmental profiling
of individual cell populations within each ROI was performed by
staining the tissues with fluorescently conjugated antibodies:
CD45 for immune cells, smooth muscle actin (SMA) for stromal
fibroblasts, and anti—pan-cytokeratin (PanCK) for epithelial cells.
DSP tissue slides were incubated with the fluorescently conjugated
antibodies to CD45, PanCK, and SMA along with a cocktail of pho-
tocleavable oligonucleotide probes from the GeoMx CTA kit. Seg-
mentation thus produced multiple AOIs from each ROI. Libraries
were prepared according to the NanoString GeoMx Library Prepa-
ration Manual and pooled to equimolar concentration. RNA was
sequenced under standard conditions on an Illumina NovaSeq
6000 to a depth of 30 read pairs/pm?.

Quality control and normalization

Ultraviolet-cleaved barcode sequencing reads were processed by the
GeoMx DSP Analysis Server. Processing steps included read trim-
ming, alignment, and deduplication. A tabulated matrix of probe
counts for each AOI was exported from the DSP server and subse-
quently analyzed using R version 4.2.0.

QC metrics for each AOI were computed, including the receiver
operating characteristic curve and the associated AUC metric of
gene probes (N = 8584) versus negative probes (N = 75) (47).
This was used to denote the snAUC. A limit of detection (LOD)
for each AOI was set to the 90th percentile count of negative
probes. A probe count below this LOD was considered undetectable.
The following QC criteria were used to filter AOIs: (i) >100,000
aligned deduplicated total counts and (ii) snAUC > 0.65. AOIs
that did not meet these QC criteria were removed.

The CTA kit features multiple probes per gene (8584 indepen-
dent probes targeting 1829 unique gene identifiers). Probes with
undetectable expression in >80% of AOIs were removed, and the
geometric mean of representative probe counts was computed to
produce a single-expression value for each gene. Raw gene counts
were normalized in two steps to account for differences in back-
ground levels and sequencing output across AOIs. The geometric
mean of negative probe counts, a measure of background level,
was subtracted from each AOI. Background-subtracted counts
were scaled by total library size and subjected to quantile normali-
zation (48).
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Data analysis

Analysis of filtered, normalized gene expression data was performed
in the R language with Bioconductor (49). Dimensionality reduc-
tion analysis was performed with principal components analysis.
DE analysis was conducted using the limma package (50). Criteria
for calling DE genes included absolute log, fold change > 1.0 and
P,4j < 0.05. Heatmap plots were generated using the pheatmap R
package with row and column clustering using the “ward.D2"
method (51). GSEA was conducted using the Bioconductor
package fgsea (52-54). Genes were ranked by their log, fold
change in each DE analysis (e.g., HGD versus LGD). Gene sets
from MSigDB version 7.5.1. were obtained from the msgidbr
package (54, 55).

Curation of external datasets

External RNA-seq analysis results from the National Cancer Insti-
tute’s CPTAC proteogenomic characterization of pancreatic adeno-
carcinoma were obtained from table S3 (28). Genes were merged by
official gene symbol. Genes with an absolute log, fold change > 1.0
and P,g; < 0.05 were considered differentially expressed and includ-
ed in gene sets. RNA-seq analysis from Mao et al. (29) comparing
PDAC versus matched normal pancreas was curated into gene sets
(log, fold change > 1.0, P,g; < 0.01). Prognostic pathology informa-
tion from the HPA resource was downloaded from the HPA website
(www.proteinatlas.org/download/pathology.tsv.zip) (30). Genes
with prognostic significance were merged by official gene symbol
and curated into gene sets.

Coexpression network analysis

Gene-gene coexpression analysis was performed by computing the
Spearman correlation matrix of all genes, as well as a null distribu-
tion of correlation coefficients from 10,000 random permutations of
the gene expression values. Multiple testing correction was applied
using the qvalue package in Bioconductor (56). Coexpressed gene
pairs were designated as having absolute correlation coefficient > 0.7
and g < 0.01. Community detection was performed using Leiden
clustering with a resolution parameter of 0.5 (57). Visualizations
of the resulting correlation network were produced by Gephi
using the ForceAtlas 2 layout algorithm (58). Edge weights were
set to the correlation coefficient raised to the fourth power.
Cluster enrichment analysis was performed using the “enricher”
function from the clusterProfiler package (59).

Supplementary Materials
This PDF file includes:

Fig S1to S8

Legend for data file S1

Other Supplementary Material for this
manuscript includes the following:
Data file S1

REFERENCES AND NOTES
1. R.L.Siegel, K. D. Miller, H. E. Fuchs, A. Jemal, Cancer statistics, 2022. CA Cancer J. Clin. 72,
7-33 (2022).
2. R.H.Hruban, A. Maitra, S. E. Kern, M. Goggins, Precursors to pancreatic cancer. Gastro-
enterol. Clin. North Am. 36, 831-849 (2007).
3. R.Salvia, A. Burelli, G. Perri, G. Marchegiani, State-of-the-art surgical treatment of IPMNs.
Langenbecks Arch. Surg. 406, 2633-2642 (2021).

11 0f 13


http://www.proteinatlas.org/download/pathology.tsv.zip

SCIENCE ADVANCES | RESEARCH ARTICLE

4. ). Wu, Y. Wang, Z. Li, H. Miao, Accuracy of Fukuoka and American gastroenterological as-

sociation guidelines for predicting advanced neoplasia in pancreatic cyst neoplasm: A
meta-analysis. Ann. Surg. Oncol. 26, 4522-4536 (2019).

5. M. Tanaka, C. Ferndndez-del Castillo, T. Kamisawa, J. Y. Jang, P. Levy, T. Ohtsuka, R. Salvia,

Y. Shimizu, M. Tada, C. L. Wolfgang, Revisions of international consensus Fukuoka
guidelines for the management of IPMN of the pancreas. Pancreatology 17,
738-753 (2017).

6. S.S.Vege, B. Ziring, R. Jain, P. Moayyedi, M. A. Adams, S. D. Dorn, S. L. Dudley-Brown,

S. L. Flamm, Z. F. Gellad, C. B. Gruss, L. R. Kosinski, J. K. Lim, Y. Romero, J. H. Rubenstein,
W. E. Smalley, S. Sultan, D. S. Weinberg, Y.-X. Yang, American gastroenterological associ-
ation institute guideline on the diagnosis and management of asymptomatic neoplastic

pancreatic cysts. Gastroenterology 148, 819-822 (2015).
7. M. Distler, S. Kersting, M. Niedergethmann, D. E. Aust, M. Franz, F. Ruckert, F. Ehehalt,

C. Pilarsky, S. Post, H.-D. Saeger, R. Griitzmann, Pathohistological subtype predicts survival

in patients with intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Ann.
Surg. 258, 324-330 (2013).

8. M. Mino-Kenudson, C. F. Castillo, Y. Baba, N. P. Valsangkar, A. S. Liss, M. Hsu, C. Correa-
Gallego, T. Ingkakul, R. P. Johnston, B. G. Turner, V. Androutsopoulos, V. Deshpande,

D. McGrath, D. V. Sahani, W. R. Brugge, S. Ogino, M. B. Pitman, A. L. Warshaw, S. P. Thayer,
Prognosis of invasive intraductal papillary mucinous neoplasm depends on histological

and precursor epithelial subtypes. Gut 60, 1712-1720 (2011).

9. A. C.Yopp, N. Katabi, M. Janakos, D. S. Klimstra, M. I. D'Angelica, R. P. DeMatteo, Y. Fong,
M. F. Brennan, W. R. Jarnagin, P. J. Allen, Invasive carcinoma arising in intraductal papillary

mucinous neoplasms of the pancreas. Ann. Surg. 253, 968-974 (2011).

10. M.Noég, N. Niknafs, C. G. Fischer, W. M. Hackeng, V. Beleva Guthrie, W. Hosoda, M. Debeljak,

E. Papp, V. Adleff, J. R. White, C. Luchini, A. Pea, A. Scarpa, G. Butturini, G. Zamboni,
P. Castelli, S.-M. Hong, S. Yachida, N. Hiraoka, A. J. Gill, J. S. Samra, G. J. A. Offerhaus,
A. Hoorens, J. Verheij, C. Jansen, N. V. Adsay, W. Jiang, J. Winter, J. Albores-Saavedra,
B. Terris, E. D. Thompson, N. J. Roberts, R. H. Hruban, R. Karchin, R. B. Scharpf,
L. A. A. Brosens, V. E. Velculescu, L. D. Wood, Genomic characterization of malignant
progression in neoplastic pancreatic cysts. Nat. Commun. 11, 4085 (2020).

11. M. C. Tan, O. Basturk, A. R. Brannon, U. Bhanot, S. N. Scott, N. Bouvier, J. LaFemina,
W. R. Jarnagin, M. F. Berger, D. Klimstra, P. J. Allen, GNAS and KRAS mutations define
separate progression pathways in intraductal papillary mucinous neoplasm-associated
carcinoma. J. Am. Coll. Surg. 220, 845-854.e1 (2015).

12. E. Amato, M. D. Molin, A. Mafficini, J. Yu, G. Malleo, B. Rusev, M. Fassan, D. Antonello,
Y. Sadakari, P. Castelli, G. Zamboni, A. Maitra, R. Salvia, R. H. Hruban, C. Bassi, P. Capelli,

R.T. Lawlor, M. Goggins, A. Scarpa, Targeted next-generation sequencing of cancer genes
dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J. Pathol.

233, 217-227 (2014).

13. A.V.Maker, V. Hu, S. S. Kadkol, L. Hong, W. Brugge, J. Winter, C. J. Yeo, T. Hackert, M. Biichler,
R. T. Lawlor, R. Salvia, A. Scarpa, C. Bassi, S. Green, Cyst fluid biosignature to predict in-
traductal papillary mucinous neoplasms of the pancreas with high malignant potential.

J. Am. Coll. Surg. 228, 721-729 (2019).

14. A.V. Maker, N. Katabi, M. Gonen, R. P. DeMatteo, M. |. D'Angelica, Y. Fong, W. R. Jarnagin,
M. F. Brennan, P. J. Allen, Pancreatic cyst fluid and serum mucin levels predict dysplasia in

intraductal papillary mucinous neoplasms of the pancreas. Ann. Surg. Oncol. 18,
199-206 (2011).

15. A.V.Maker, S. Carrara, N. B. Jamieson, M. Pelaez-Luna, A. M. Lennon, M. D. Molin, A. Scarpa,

L. Frulloni, W. R. Brugge, Cyst fluid biomarkers for intraductal papillary mucinous neo-

plasms of the pancreas: A critical review from the international expert meeting on pan-

creatic branch-duct-intraductal papillary mucinous neoplasms. J. Am. Coll. Surg. 220,
243-253 (2015).

16. N. V. Peters, J. W. Kunstman, Clinical implications of the molecular characterization of in-

traductal papillary mucinous neoplasms of the pancreas. J. Cancer Metastasis Treat. 7,
32 (2021).

17. M. T.Yip-Schneider, R. A. Carr, H. Wu, M. C. Schmidt, Prostaglandin E2: A pancreatic fluid
biomarker of intraductal papillary mucinous neoplasm dysplasia. J. Am. Coll. Surg. 225,

481-487 (2017).
18. K. K. Das, H. Xiao, X. Geng, C. Fernandez-del-Castillo, V. Morales-Oyarvide, E. Daglilar,

D. G. Forcione, B. C. Bounds, W. R. Brugge, M. B. Pitman, M. Mino-Kenudson, K. M. Das, mAb

Das-1 is specific for high-risk and malignant intraductal papillary mucinous neoplasm
(IPMN). Gut 63, 1626-1634 (2014).

19. N. Sato, N. Fukushima, A. Maitra, C. A. lacobuzio-Donahue, N. T. van Heek, J. L. Cameron,
C. J. Yeo, R. H. Hruban, M. Goggins, Gene expression profiling identifies genes associated

with invasive intraductal papillary mucinous neoplasms of the pancreas. Am. J. Pathol.
164, 903-914 (2004).

20. R.P.Jury, B.J. Thibodeau, L. E. Fortier, T. J. Geddes, S. Ahmed, B. L. Pruetz, M. A. Farinola,

G. D. Wilson, Gene expression changes associated with the progression of intraductal
papillary mucinous neoplasms. Pancreas 41, 611-618 (2012).

lyer et al., Sci. Adv. 9, eade4582 (2023) 17 March 2023

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

33.

34,

35.

36.

37.

V. Bernard, A. Semaan, J. Huang, F. A. San Lucas, F. C. Mulu, B. M. Stephens, P. A. Guerrero,
Y. Huang, J. Zhao, N. Kamyabi, S. Sen, P. A. Scheet, C. M. Taniguchi, M. P. Kim, C.-W. Tzeng,
M. H. Katz, A. D. Singhi, A. Maitra, H. A. Alvarez, Single-cell transcriptomics of pancreatic
cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an
early event in neoplastic progression. Clin. Cancer Res. 25, 2194-2205 (2019).

C. R. Merritt, G. T. Ong, S. E. Church, K. Barker, P. Danaher, G. Geiss, M. Hoang, J. Jung,

Y. Liang, J. McKay-Fleisch, K. Nguyen, Z. Norgaard, K. Sorg, |. Sprague, C. Warren, S. Warren,
P. J. Webster, Z. Zhou, D. R. Zollinger, D. L. Dunaway, G. B. Mills, J. M. Beechem, Multiplex
digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38,

586-599 (2020).

P. L. Stahl, F. Salmén, S. Vickovic, A. Lundmark, J. F. Navarro, J. Magnusson, S. Giacomello,
M. Asp, J. 0. Westholm, M. Huss, A. Mollbrink, S. Linnarsson, S. Codeluppi, A. Borg, F. Pontén,
P. 1. Costea, P. Sahlén, J. Mulder, O. Bergmann, J. Lundeberg, J. Frisén, Visualization and
analysis of gene expression in tissue sections by spatial transcriptomics. Science 353,
78-82 (2016).

A. M. Eckhoff, A. A. Fletcher, K. Landa, M. lyer, D. P. Nussbaum, C. Shi, S. K. Nair, P. J. Allen,
Multidimensional immunophenotyping of intraductal papillary mucinous neoplasms
reveals novel t cell and macrophage signature. Ann. Surg. Oncol. 29, 7781-7788 (2022).
V. M. Castellano-Megias, C. I. Andrés, G. Lopez-Alonso, F. Colina-Ruizdelgado, Pathological
features and diagnosis of intraductal papillary mucinous neoplasm of the pancreas. World
J. Gastrointest. Oncol. 6, 311-324 (2014).

. Kitazono, M. Higashi, S. Kitamoto, S. Yokoyama, M. Horinouchi, M. Osako, T. Shimizu,
M. Tabata, S. K. Batra, M. Goto, S. Yonezawa, Expression of MUC4 mucin is observed mainly
in the intestinal type of intraductal papillary mucinous neoplasm of the pancreas. Pancreas
42, 1120-1128 (2013).

S. Detlefsen, M. Jakobsen, M. F. B. Nielsen, G. Kloppel, M. B. Mortensen, Expression of
CD117, CK17, CK20, MUC4, villin and mismatch repair deficiency in pancreatic intraductal
papillary mucinous neoplasm. Pathol. Res. Pract. 217, 153312 (2021).

L. Cao, C. Huang, D. C. Zhou, Y. Hu, T. M. Lih, S. R. Savage, K. Krug, D. J. Clark, M. Schnaubelt,
L. Chen, F. da Veiga Leprevost, R. V. Eguez, W. Yang, J. Pan, B. Wen, Y. Dou, W. Jiang, Y. Liao,
Z. Shi, N. V. Terekhanova, S. Cao, R. J-H. Lu, Y. Li, R. Liu, H. Zhu, P. Ronning, Y. Wu,

M. A. Wyczalkowski, H. Easwaran, L. Danilova, A. S. Mer, S. Yoo, J. M. Wang, W. Liu, B. Haibe-
Kains, M. Thiagarajan, S. D. Jewell, G. Hostetter, C. J. Newton, Q. K. Li, M. H. Roehrl, D. Fenyo,
P. Wang, A. I. Nesvizhskii, D. R. Mani, G. S. Omenn, E. S. Boja, M. Mesri, A. |. Robles,

H. Rodriguez, O. F. Bathe, D. W. Chan, R. H. Hruban, L. Ding, B. Zhang, H. Zhang; Clinical
Proteomic Tumor Analysis Consortium, Proteogenomic characterization of pancreatic
ductal adenocarcinoma. Cell 184, 5031-5052.€26 (2021).

Y. Mao, J. Shen, Y. Lu, K. Lin, H. Wang, Y. Li, P. Chang, M. G. Walker, D. Li, RNA sequencing
analyses reveal novel differentially expressed genes and pathways in pancreatic cancer.
Oncotarget 8, 42537-42547 (2017).

M. Uhlen, C. Zhang, S. Lee, E. Sjostedst, L. Fagerberg, G. Bidkhori, R. Benfeitas, M. Arif, Z. Liu,
F. Edfors, K. Sanli, K. von Feilitzen, P. Oksvold, E. Lundberg, S. Hober, P. Nilsson, J. Mattsson,
J. M. Schwenk, H. Brunnstrém, B. Glimelius, T. Sjoblom, P.-H. Edqvist, D. Djureinovic,

P. Micke, C. Lindskog, A. Mardinogluy, F. Ponten, A pathology atlas of the human cancer
transcriptome. Science 357, eaan2507 (2017).

R. Griitzmann, H. Boriss, O. Ammerpohl, J. Luttges, H. Kalthoff, H. K. Schackert, G. Kléppel,
H. D. Saeger, C. Pilarsky, Meta-analysis of microarray data on pancreatic cancer defines a
set of commonly dysregulated genes. Oncogene 24, 5079-5088 (2005).

A. Liberzon, C. Birger, H. Thorvaldsdéttir, M. Ghandi, J. P. Mesirov, P. Tamayo, The molecular
signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417-425 (2015).
E. Sadot, O. Basturk, D. S. Klimstra, M. Génen, L. Anna, R. K. G. Do, M. I. D'Angelica,

R. P. DeMatteo, T. P. Kingham, W. R. Jarnagin, P. J. Allen, Tumor-associated neutrophils and
malignant progression in intraductal papillary mucinous neoplasms: An opportunity for
identification of high-risk disease. Ann. Surg. 262, 1102-1107 (2015).

H. Kim, W. Jung, Y. Chan Shin, I. W. Han, Y. Byun, H. W. Lee, J. S. Heo, D. W. Choi, C.-S. Lim,
The diagnostic and prognostic values of inflammatory markers in intraductal papillary
mucinous neoplasm. HPB 23, 1623-1628 (2021).

M. A. Al Efishat, M. A. Attiyeh, A. A. Eaton, M. Gonen, D. Prosser, A. E. Lokshin, C. F. Castillo,
K. D. Lillemoe, C. R. Ferrone, I. Pergolini, M. Mino-Kenudson, N. Rezaee, M. Dal Molin,

M. J. Weiss, J. L. Cameron, R. H. Hruban, M. I. D'Angelica, T. P. Kingham, R. P. DeMatteo,
W. R. Jarnagin, C. L. Wolfgang, P. J. Allen, Multi-institutional validation study of pancreatic
cyst fluid protein analysis for prediction of high-risk intraductal papillary mucinous neo-
plasms of the pancreas. Ann. Surg. 268, 340-347 (2018).

G. Gemenetzis, F. Bagante, J. F. Griffin, N. Rezaee, A. A. Javed, L. L. Manos, A. M. Lennon,
L. D. Wood, R. H. Hruban, L. Zheng, A. Zaheer, E. K. Fishman, N. Ahuja, J. L. Cameron,

M. J. Weiss, J. He, C. L. Wolfgang, Neutrophil-to-lymphocyte ratio is a predictive marker for
invasive malignancy in intraductal papillary mucinous neoplasms of the pancreas. Ann.
Surg. 266, 339-345 (2017).

J. B. Rose, C. Correa-Gallego, Y. Li, J. Nelson, A. Alseidi, W. S. Helton, P. J. Allen,

M. I. D'Angelica, R. P. DeMatteo, Y. Fong, T. P. Kingham, K. V. Kowdley, W. R. Jarnagin,

12 of 13



SCIENCE ADVANCES | RESEARCH ARTICLE

F. G. Rocha, The role of biliary carcinoembryonic antigen-related cellular adhesion mole-
cule 6 (CEACAMS) as a biomarker in cholangiocarcinoma. PLOS ONE 11, e0150195 (2016).

38. The Gene Ontology Consortium, The gene ontology resource: Enriching a GOId mine.
Nucleic Acids Res. 49, D325-D334 (2021).

39. A.C.Yopp, P. J. Allen, Prognosis of invasive intraductal papillary mucinous neoplasms of
the pancreas. World J. Gastrointest. Surg. 2, 359-362 (2010).

40. Y. X.Koh, H. L. Zheng, A.-Y. Chok, C. S. Tan, W. Wyone, T. K. H. Lim, D. M. Y. Tan, B. K. P. Goh,
Systematic review and meta-analysis of the spectrum and outcomes of different histologic
subtypes of noninvasive and invasive intraductal papillary mucinous neoplasms. Surgery
157, 496-509 (2015).

41. X.Qi, X.Zhao, J. Su, M. Xu, W. Zhang, H. Sheng, Z. Li, J. Wang, Malignant transformation and
overall survival of morphological subtypes of intraductal papillary mucinous neoplasms of
the pancreas: A network meta-analysis. Eur. J. Intern. Med. 26, 652-657 (2015).

42. M. Do, H.Kim, D. Shin, J. Park, H. Kim, Y. Han, J.-Y. Jang, Y. Kim, Marker identification of the
grade of dysplasia of intraductal papillary mucinous neoplasm in pancreatic cyst fluid by
quantitative proteomic profiling. Cancers 12, 2383 (2020).

43. A.Chan, |. Prassas, A. Dimitromanolakis, R. E. Brand, S. Serra, E. P. Diamandis, I. M. Blasutig,
Validation of biomarkers that complement CA19.9 in detecting early pancreatic cancer.
Clin. Cancer Res. 20, 5787-5795 (2014).

44. ). Zheng, J. M. Hernandez, A. Doussot, L. Bojmar, C. P. Zambirinis, B. Costa-Silva,

E. J. A. H. van Beek, M. T. Mark, H. Molina, G. Askan, O. Basturk, M. Gonen, T. P. Kingham,
P. J. Allen, M. . D'Angelica, R. P. DeMatteo, D. Lyden, W. R. Jarnagin, Extracellular matrix
proteins and carcinoembryonic antigen-related cell adhesion molecules characterize
pancreatic duct fluid exosomes in patients with pancreatic cancer. HPB 20,

597-604 (2018).

45. M.T.Tun, R. K. Pai, S. Kwok, A. Dong, A. Gupta, B. C. Visser, J. A. Norton, G. A. Poultsides,
S.Banerjee, J. Van Dam, A. M. Chen, S. Friedland, B. A. Scott, R. Verma, A. W. Lowe, W. G. Park,
Diagnostic accuracy of cyst fluid amphiregulin in pancreatic cysts. BMC Gastroenterol. 12,
15 (2012).

46. S.Roth, P. Bose, M. S. S. Alhamdani, S. A. Mustafa, C. Tjaden, K. Zamzow, U. Hinz,

C. W. Michalski, J. P. Neoptolemos, J. D. Hoheisel, M. W. Biichler, T. Hackert, Noninvasive
discrimination of low and high-risk pancreatic intraductal papillary mucinous neoplasms.
Ann. Surg. 273, e273-e275 (2021).

47. X.Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, M. Miiller, pROC: An open-
source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12,
77 (2011).

48. B.M.Bolstad, R. A. Irizarry, M. Astrand, T. P. Speed, A comparison of normalization methods
for high density oligonucleotide array data based on variance and bias. Bioinformatics 19,
185-193 (2003).

49. W. Huber, V. J. Carey, R. Gentleman, S. Anders, M. Carlson, B. S. Carvalho, H. C. Bravo,

S. Davis, L. Gatto, T. Girke, R. Gottardo, F. Hahne, K. D. Hansen, R. A. Irizarry, M. Lawrence,
M. I. Love, J. MacDonald, V. Obenchain, A. K. Ole$, H. Pagés, A. Reyes, P. Shannon,

G. K. Smyth, D. Tenenbaum, L. Waldron, M. Morgan, Orchestrating high-throughput
genomic analysis with Bioconductor. Nat. Methods 12, 115-121 (2015).

50. M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, G. K. Smyth, limma powers diff-
erential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.
43, e47 (2015).

lyer et al., Sci. Adv. 9, eade4582 (2023) 17 March 2023

51. Kolde, Raivo, pheatmap: Pretty heatmaps (2019); https://CRAN.R-project.org/package=
pheatmap.

52. A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette,

A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Gene set enrichment
analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. U.S.A. 102, 15545-15550 (2005).

53. G. Korotkevich, V. Sukhov, N. Budin, B. Shpak, M. N. Artyomov, A. Sergushichev, Fast gene
set enrichment analysis. bioRxiv 060012 [Preprint] 1 February 2021. https://doi.org/10.
1101/060012.

54. A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdéttir, P. Tamayo, J. P. Mesirov,
Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739-1740 (2011).

55. 1. Dolgalev, MSigDB gene sets for multiple organisms in a tidy data format (2022); https://
CRAN.R-project.org/package=msigdbr.

56. J. Storey, A. Bass, A. Dabney, qvalue: Q-value estimation for false discovery rate control
(2022); http://github.com/jdstorey/qvalue.

57. V. A.Traag, L. Waltman, N. J. van Eck, From Louvain to Leiden: Guaranteeing well-con-
nected communities. Sci. Rep. 9, 5233 (2019).

58. M. Bastian, S. Heymann, M. Jacomy, Gephi: An Open Source Software for Exploring and
Manipulating Networks, in Proceedings of the International AAAI Conference on Weblogs and
Social Media (2009), vol. 3, pp. 361-362.

59. T.Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, T. Feng, L. Zhou, W. Tang, L. Zhan, X. Fu, S. Liu,
X. Bo, G. Yu, clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
Innovation 2, 100141 (2021).

Acknowledgments: We thank H. K. lyer for critical review of statistical and bioinformatics
methodology. We also thank the Duke University BioRepository and Precision Pathology Center
(Duke BRPC; supported by P30CA014236) and the National Cancer Institute’s Cooperative
Human Tissue Network (CHTN; supported at Duke University by UM1CA239755) for the
provision of samples. Funding: This work was supported by National Institutes of Health grant
RO1 (CA182076): Biomarker validation for intraductal papillary mucinous neoplasms of the
pancreas; National Institutes of Health grant T-32 (T32-CA093245): Translational research in
surgical oncology; and Cancer Center Support grant P-30 (P30-CA014236): Duke Cancer
Institute. Author contributions: Conceptualization: P.J.A. Methodology: M.K.I, C.S., AM.E.,, AF,
and PJ.A. Investigation: MK\, C.S., AM.E., AFF.,, D.P.N,, and P.J.A. Visualization: M.K.l, D.P.N.,
A.M.E., and P.J.A. Funding acquisition: A.M.E. and P.J.A. Project administration: A.F. and P.J.A.
Supervision: P.J.A. Writing—original draft: M.K.l. Writing—review and editing: M.K.I, D.P.N., C.S.,
A.M.E., and P.J.A. Competing interests: The authors declare that they have no competing
interests. Data and materials availability: Code and data have been deposited at Zenodo: DOI
10.5281/zenodo.7479047. Code is also available at GitHub: https://github.com/mkiyer/spatial_
rna_ipmn. All data needed to evaluate the conclusions in the paper are present in the paper
and/or the Supplementary Materials.

Submitted 17 August 2022
Accepted 10 February 2023
Published 17 March 2023
10.1126/sciadv.ade4582

13 of 13


https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://doi.org/10.1101/060012
https://doi.org/10.1101/060012
https://CRAN.R-project.org/package=msigdbr
https://CRAN.R-project.org/package=msigdbr
http://github.com/jdstorey/qvalue
http://dx.doi.org/10.5281/zenodo.7479047
https://github.com/mkiyer/spatial_rna_ipmn
https://github.com/mkiyer/spatial_rna_ipmn

	INTRODUCTION
	RESULTS
	Patient characteristics
	Targeted spatial transcriptome profiling
	Divergence of INT from PB and GF subtypes
	Identification of genes associated with epithelial subtype
	Identification of genes associated with high-risk IPMN
	Genes that differentiate high-grade PB from INT IPMN
	Association of IPMN subtypes with PDAC
	Up-regulation of inflammatory signaling and cell proliferation during dysplastic progression
	Unsupervised network analysis to delineate gene clusters associated with progression to carcinoma

	DISCUSSION
	MATERIALS AND METHODS
	Patient recruitment
	Spatial RNA profiling
	Quality control and normalization
	Data analysis
	Curation of external datasets
	Coexpression network analysis

	Supplementary Materials
	This PDF file includes:
	Other Supplementary Material for this &break /;manuscript includes the following:

	REFERENCES AND NOTES
	Acknowledgments

