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A B S T R A C T   

Hundreds of millions of people worldwide have recently been infected by the novel Coronavirus disease (COVID- 
19), causing significant damage to the health, economy, and welfare of the world’s population. Moreover, the 
unprecedented number of patients with COVID-19 has placed a massive burden on healthcare centers, making 
timely and rapid diagnosis challenging. A crucial step in minimizing the impact of such problems is to auto-
matically detect infected patients and place them under special care as quickly as possible. Deep learning al-
gorithms, such as Convolutional Neural Networks (CNN), can be used to meet this need. Despite the desired 
results, most of the existing deep learning-based models were built on millions of parameters (weights), which 
are not applicable to devices with limited resources. Inspired by such fact, in this research, we developed two 
new lightweight CNN-based diagnostic models for the automatic and early detection of COVID-19 subjects from 
chest X-ray images. The first model was built for binary classification (COVID-19 and Normal), whereas the 
second one was built for multiclass classification (COVID-19, viral pneumonia, or normal). The proposed models 
were tested on a relatively large dataset of chest X-ray images, and the results showed that the accuracy rates of 
the 2- and 3-class-based classification models are 98.55% and 96.83%, respectively. The results also revealed that 
our models achieved competitive performance compared with the existing heavyweight models while signifi-
cantly reducing cost and memory requirements for computing resources. With these findings, we can indicate 
that our models are helpful to clinicians in making insightful diagnoses of COVID-19 and are potentially easily 
deployable on devices with limited computational power and resources.   

1. Introduction 

Coronavirus disease 2019, also known as COVID-19, is an infectious 
disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2). It is highly contagious and can be passed on through 
airborne and respiratory droplets after coming into contact with infected 
patients who cough, sneeze, or even converse (Alshazly et al., 2021; 
Hasan et al., 2022). It was first detected in Wuhan, Hubei Province, 
China, on December 31, 2019, and has since quickly spread across the 
globe (Aakansha Gupta & Katarya, 2021a). Patients with COVID-19 
infection most frequently develop symptoms such as fatigue, dry 
cough, fever, headache, loss of taste and smell, and respiratory illnesses 
like shortness of breath (M. Khan et al., 2021). So far, more than 680 
million individuals worldwide have contracted this virus, and about 6.8 

million have died as a result (coronavirus worldometer, 2022). Despite 
the virus not causing a high death toll, its impact on the world’s health 
and well-being has been catastrophic. Therefore, many governments 
have strived to increase the diagnostic capacities of their hospitals so 
that those infected can be isolated early and receive immediate care to 
curb the spread of the virus (Abdani et al., 2020). 

Currently, the standard screening test for COVID-19 is reverse tran-
scription polymerase chain reaction (Minaee et al., 2020). However, this 
test kit is time-consuming (the results typically appear within hours to 
days). Besides, it has a low sensitivity rate of about 63.0% and is not 
widely available, particularly in developing countries (Haghanifar et al., 
2022; W. Wang et al., 2020). Thus, it is necessary to consider alternative 
diagnostic procedures to identify patients with COVID-19 so that many 
lives can be saved. Fortunately, chest radiography imaging techniques 
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have been found to be effective in this regard. This is because the virus 
primarily infects the lungs, causing abnormalities in chest radiography 
images that aid in distinguishing healthy individuals from those infected 
with COVID-19 (Chung et al., 2020). 

Computed tomography (CT) scans and chest X-rays are two imaging 
modalities currently used in clinical practice to screen and diagnose 
COVID-19 (Hertel & Benlamri, 2022; Thakur et al., 2022). Compared 
with CT scans, chest X-rays are more widely used in healthcare in-
stitutions due to their low radiation dose, ease of use, low cost, and 
widespread accessibility. However, manually analyzing a large volume 
of chest X-ray images to distinguish COVID-19 subjects from others is 
time-consuming and challenging (Ieracitano et al., 2022; Narin et al., 
2021). Moreover, the accurate diagnosis of COVID-19 infection is highly 
dependent on the expertise of radiologists, which poses difficulties for 
some due to its recent emergence and similarity to other lung diseases, 
such as pneumonia (Luz et al., 2022). Thus, such issues necessitate the 
development of an automated decision support system to improve the 
diagnosis’s efficiency, accuracy, and speed, which can be achieved using 
machine learning and statistical algorithms (Jalali et al., 2022). 

The significance of these algorithms in predicting and controlling the 
spread of COVID-19 is reflected in several studies. Some of these studies 
include predicting the potential impact of the virus, such as the possi-
bility of a third wave in India (Aakansha Gupta & Katarya, 2023), 
analyzing Twitter sentiments related to COVID-19 using machine 
learning (Katarya et al., 2022), predicting COVID-19 cases based on 
LSTM (Long Short-Term Memory) and SIR (Susceptible-Infected- 
Removed) models using social media (Aakansha Gupta & Katarya, 
2022), conducting a parameter-based literature survey of COVID-19 
mortality dynamics using machine learning techniques (Sewariya & 
Katarya, 2021), reviewing various mathematical and deep learning- 
based forecasting methods for COVID-19 pandemic (Katarya et al., 
2021), and proposing a novel LDA-based framework to forecast COVID- 
19 trends (Aakansha Gupta & Katarya, 2021b). 

Among the various machine learning algorithms proposed in the 
literature, those based on deep learning (DL) have been shown to ach-
ieve impressive results in many COVID-19 prediction and control ap-
plications. DL is a subset of machine learning that mainly focuses on 
algorithms based on artificial neural networks, which aim to automati-
cally extract and classify features from input data using multiple pro-
cessing layers. In recent years, it has become a well-established 
discipline in the application of artificial intelligence to mine, analyze, 
and detect patterns from data (Apostolopoulos et al., 2020). Therefore, 
many DL algorithms, mostly convolutional neural networks (CNNs), 
have recently been proposed for faster and more accurate detection of 
COVID-19 infection through chest X-ray images. For instance, (Aposto-
lopoulos & Mpesiana, 2020) made use of several state-of-the-art pre- 
trained DL models, such as VGG19, MobileNet-v2, Inception, Xception, 
and Inception ResNet v2, for the automatic diagnosis of COVID-19 from 
chest X-ray images. They tweaked these pre-trained models to distin-
guish COVID-19, bacterial pneumonia, and normal subjects from each 
other. Experimental results revealed that among the five models inves-
tigated in their study, VGG19 produces the highest accuracy rate, which 
is 93.48%. 

(Chaudhary & Pachori, 2021) developed a novel feature extraction 
approach for COVID-19 detection, utilizing a Fourier-Bessel series 
expansion-based decomposition (FBSED) method in conjunction with a 
set of pre-trained CNN models. The FBSED method was employed to 
decompose chest X-ray and CT scan images into sub-band images (SBIs). 
From each SBI, deep features were extracted using a variety of well- 
known models, including EfficientNet, ResNet-50, Inception-ResNet- 
v2, AlexNet, and NASNet. These deep features were then ensemble using 
fusion operations and fed to a diverse set of classifiers, including J48, 
Naive Bayes, Softmax, AdaBoost, and Random Forest (RF) classifier. 
Experimental results demonstrated the effectiveness of this methodol-
ogy, achieving an accuracy of 97.6%, a sensitivity of 97.0%, a specificity 
of 96.5%, and an F1-score of 97.0%. 

(Anunay Gupta et al., 2021) proposed a computer-aided diagnostic 
model for the efficient detection of COVID-19 subjects from X-ray im-
ages. They utilized a set of fine-tuned pre-trained DL models, such as 
ResNet-101, Inception-v3, Xception, MobileNetv2, and NASNet, to 
extract salient features from the inputted images. Then, they combined 
these models using a particular integrated stacking technique to form a 
new model called InstaCovNet-19. Experimental results showed that 
Gupta’s model achieved an accuracy of 99.08% in three classes (Covid- 
19, Pneumonia, and Normal) and 99.53% in two classes (Covid and Non- 
Covid). 

(George et al., 2023) developed a new VGG-inspired deep CNN 
model for identifying COVID-19 patients using chest X-ray images. They 
used a combination of Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) and a homomorphic transformation filter to process and 
extract features from the X-ray images. Then, they fed the processed 
images into their newly proposed model, which was designed to handle 
grayscale images and perform both binary and multiclass classification. 
Experimental results on two public datasets showed that their new 
model achieved 97.41% accuracy for multi-class classification and 
98.06% accuracy for binary classification. 

(Heidari et al., 2020) studied the impact of two preprocessing algo-
rithms on the performance of a pre-trained DL model, namely VGG16, 
after being fine-tuned for COVID-19 diagnosis using chest X-ray images. 
They applied a histogram equalization algorithm and a bilateral low- 
pass filter on the original grayscale images to generate pseudo-color 
images and then fed them into the three channels of the fine-tuned 
VGG16 model. Experimental results on the X-ray dataset of 3-class 
based revealed that image preprocessing algorithms help improve 
deep learning model performance. 

(Sahin, 2022) developed a new CNN model and fine-tuned two pre- 
trained DL models, namely MobileNetv2 and ResNet50, to automatically 
detect COVID-19 patients using chest X-ray images. The developed 
models were designed for two-class classification (COVID-19 and 
Normal). Results from the experiments demonstrated that their newly 
developed CNN model outperforms most existing DL algorithms re-
ported in the literature. 

(Ukwandu et al., 2022) proposed three lightweight CNN models 
through fine-tuning MobileNetV2 architecture to detect COVID-19 
infection using chest X-ray images. The first model was designed for 3- 
class categorization (COVID-19, Normal, Viral Pneumonia infection). 
Whereas the second and third ones were designed for 2-class categori-
zation (COVID-19 and Normal, COVID-19 and Viral Pneumonia). Re-
sults indicated that their proposed models yield competitive 
performance to existing heavyweight models but deliver significantly 
greater deployment efficiency. 

(Zebin & Rezvy, 2021) utilized the concept of transfer learning to 
tweak three pre-trained DL models for the classification of COVID-19, 
pneumonia, and normal class from X-ray images. Their study was 
limited to the following models: ResNet50, VGG-16, and EfficientNetB0. 
Before the training stage, they augmented the minority class using a 
generative adversarial framework. Results from their experiments 
showed that the EfficientNetB0 model performs better than the VGG16, 
and ResNet50 models, achieving an accuracy rate of 96.8%. 

Despite the promising results of CNN models reported in previous 
studies, several limitations have yet to be addressed. One major limi-
tation is that most existing models make use of pre-trained models 
trained on RGB image datasets, which are not appropriate for single- 
channel X-ray images. This can be addressed by either replicating the 
one-channel image data to three channels, which increases the number 
of operations and introduces redundancy or by altering the input layer of 
the pre-trained model to accept one-channel image data, which weakens 
the use of pre-trained weights in a transfer learning approach. Another 
limitation is the computational expense of these models, which have 
millions of parameters that need to be fine-tuned, making them 
impractical for devices with limited resources. Lastly, a significant 
challenge when using DL models is collecting an adequate number of 
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samples with appropriate annotations for effective training, and most of 
the earlier models in the literature were trained and validated on fairly 
small datasets with a limited number of X-ray images. 

Motivated by the limitations of the studies mentioned above, we in 
this research developed two new lightweight CNN-based diagnostic 
models for the automated and early detection of COVID-19 from chest X- 
ray images. The first model was designed for binary classification, spe-
cifically to distinguish between COVID-19 and normal classes. On the 
other hand, the second model was designed for multiclass classification, 
such as distinguishing between COVID-19, viral pneumonia, and normal 
classes. The purpose of using a lightweight deep CNN in our models was 
to reduce the number of learnable parameters and computations 
required. Additionally, using a lightweight model can also result in 
faster training and inference times, which is important in real-world 
applications where time constraints may be an issue. Despite their 
simplicity, the proposed models provided promising results and required 
significantly fewer tuning parameters when applied to a relatively large 
dataset. 

The main contributions of this study can be summarized as follows:  

• Two lightweight CNN models were developed for the early detection 
of COVID-19 subjects from chest X-ray images. The first is for 
detecting either COVID-19 or Normal subjects, whereas the second is 
for detecting either COVID-19, Viral Pneumonia, or Normal subjects.  

• The proposed models were tested on a fairly large dataset, and the 
results obtained using various classification metrics were encour-
aging and promising.  

• To the authors’ knowledge, the proposed models are the first to 
include a small number of learnable parameters while still achieving 
state-of-the-art performance. Hence, such models are advantageous 
for systems with low computational power, such as cell phones and 
medical diagnostic devices.  

• Compared with the up-to-date deep learning models reported in the 
literature, our models greatly reduce the computational power and 
memory resources needed during the classification process. In 
addition, they demonstrated better performance in terms of accuracy 
rate than most of the existing models. 

The remaining sections of this paper are structured as follows. Sec-
tion 2 describes the dataset used in this research and the proposed 
models for COVID-19 detection. It also presents the performance mea-
sures used to evaluate our models. Section 3 reports and discusses the 
results of our experiments, and it also provides a detailed performance 
analysis of our models against other well-established ones found in the 

literature. Finally, in Section 4, we conclude the paper. 

2. Materials and methods 

Fig. 1 illustrates the methodology followed by this study for dis-
tinguishing COVID-19 patients from other subjects using chest X-ray 
images. The following subsections provide detailed descriptions of each 
step shown in Fig. 1. 

2.1. Dataset description 

An open-access dataset, shared publicly by the Kaggle platform (htt 
ps://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography 
-database) (COVID-19 radiography database, 2022), was used to 
perform our experiments. This dataset was developed by a team of re-
searchers from Dhaka University in Bangladesh, and the University of 
Qatar in Doha, Qatar, in conjunction with their collaborators from 
Malaysia and Pakistan, under the supervision of medical professionals. 
The aim of their endeavor was to provide a comprehensive and accurate 
dataset that can be utilized for research and analysis in the field. 

The dataset includes chest X-ray images of COVID-19, Viral Pneu-
monia, and Normal subjects. At the time of the study, the categories 
mentioned earlier contained 3,616, 1,345, and 10,192 samples, 
respectively. Images of the X-rays have a standard size of 299 × 299 
pixels and were taken from different angles and positions, as shown in 
Fig. 2. In this study, we resized the images to 112 × 112 because this size 
produced similar results as other possible larger sizes. Thereby, it helped 
speed up both the training and testing processes. 

2.2. Image normalization and data splitting 

Normalizing image data before passing them on to deep learning 
models has become an essential step toward a faster learning process 
and numerical stability. For instance, when image data are normalized, 
the learning algorithm is more likely to converge faster (Nayak et al., 
2021). Hence, in this study, the input image data (X) were normalized to 
range between [-1, 1] using Eq. (1). 

Xnorm =
X − 127.5

127.5
(1) 

The normalized images were then randomly partitioned into three 
independent sets: training, validation, and testing, as shown in Table 1. 
This is to validate the efficacy of the proposed models for COVID-19 
detection. The data splitting strategy was performed by initially 

Fig. 1. Schematic diagram of the proposed methodology.  
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dividing the dataset described in Section 2.1 into training and testing 
sets with a ratio of 80%:20%, respectively. Subsequently, the training 
dataset was divided into training and validation sets with the same ratio 
mentioned earlier. 

2.3. Proposed lightweight CNN models 

The architecture of the proposed lightweight CNN models for the 

automatic classification of COVID-19 patients is depicted in Fig. 3. These 
models are basically two models, sharing the same hidden layer struc-
ture (feature extraction layers) except for the output layer (classification 
layer). The first model is 2-class based, i.e., COVID-19 and normal. 
Whereas the second one is 3-class based, i.e., COVID-19, viral pneu-
monia, and normal. Both models are primarily designed to detect 
COVID-19 patients from chest X-ray images. The purpose of developing 
such models is to reduce the computational cost and memory re-
quirements while still achieving state-of-the-art performance. This can 
be particularly useful in applications where the model needs to be 
deployed on resource-constrained devices, such as mobile phones or 
embedded systems. Additionally, lightweight models are faster to train 
and predict, making them more convenient to use in real-world appli-
cations. In the following subsections, we first provide an overview of 
CNN model. Then, we present a detailed description of the architecture, 
training and testing phases of the aforementioned proposed models. 

Fig. 2. Some samples of chest X-ray images: A) COVID-19, B) Viral Pneumonia, and C) Normal cases.  

Table 1 
The number of instances used as the training, validation and testing sets.  

Class Label Training Validation Testing 

Covid-19 2314 579 723 
Normal 6522 1631 2039 
Pneumonia 861 215 269  

Fig. 3. Structure of the proposed lightweight CNN models for detecting COVID-19 patients.  
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2.3.1. CNN: An overview 
CNN is a particular type of artificial neural network designed to 

process data similar to that seen by the human visual system. It has 
recently been used in a variety of visual recognition tasks, such as image 
classification (Hussain et al., 2021) and object detection (Dhillon & 
Verma, 2020), and has proven to produce impressive results. A typical 
CNN model consists of three main layers: convolution layers, pooling 
layers, and fully connected layers. 

A. Convolutional layer 
It is one of the core layers of CNN model, which constructs a certain 

number of filters (kernels) with a fixed size (such as 3 × 3, 5 × 5, or 7 ×
7) that are convolved over input images to perform feature extraction. 
The convolution operation is performed by first dividing an input image 
into blocks (spaced according to the stride set), each being of the same 
size as the filter to be applied to. Subsequently, an element-wise 
multiplication between each block (left to right, top to bottom) and 
the given filter is performed and then summed to produce a single output 
value (Fig. 4). The output values from the previous step are placed in the 
corresponding position of the output matrix, named a feature map. By 
repeating the above process with all the given filters, a number of 
feature maps are formed, representing different characteristics of the 
input image (Yamashita et al., 2018). 

An interesting feature of the convolution operation is weight sharing: 
the same filters are applied to all different spatial locations of the image. 
With this property, fewer weights are required to learn, decreasing the 
time and cost of training the model. To make the output of the convo-
lution operation nonlinear, an activation function, such as ELU or ReLU, 
is applied to it. This activation function makes the model learn salient 
features that best describe the data of interest, thereby boosting the 
classification performance. 

B. Pooling layer 
The feature maps obtained after the convolution process contain too 

many features that are susceptible to causing an overfitting issue. To 
overcome this issue, the concept of pooling (also known as down- 
sampling) was introduced. With pooling, the feature maps are reduced 
in size, leading to drastic lower computational costs for the subsequent 
layers. Aside from that, the pooling layer reduces the total number of 
parameters that the network has to learn (Li et al., 2021). 

The most widely used forms of pooling are Max-Pooling and 
Average-Pooling. The former partitions the feature maps into patches 
and then extracts the maximum value of each patch to obtain down- 
sampled feature maps. The latter, on the other hand, computes the 
mean value for patches of the feature maps. Fig. 5 provides a pictorial 
representation of the aforementioned pooling operations. 

C. Fully connected layer 
The output of the feature maps obtained by the last convolutional or 

pooling layer is transformed into a 1-D feature vector using the flatten 
layer. The main reason for this is that the classification layer (i.e., sig-
moid or softmax) requires its input to be in that form. This layer is 
represented by a fully connected layer (also known as a dense layer), 
which connects each of its internal nodes (or neurons) to each incoming 
input node by a learnable weight. The number of nodes in the classifi-
cation layer depends on the particular task under consideration. For 
instance, if the data to be studied consists of two classes, the number of 
nodes is two with a softmax activation function, however the number 
changes to one with a sigmoid activation function (Aggarwal et al., 
2022). It should be noted that sigmoid activation is not used in the 
classification layer when the data consists of more than two classes. 

Usually, a few fully connected layers with a predefined number of 
nodes are placed between the flatten layer and the classification layer to 
serve as feature extractors. These layers are also followed by a nonlinear 
activation function, e.g., ELU or ReLU, which helps the network learn 
nonlinear combinations of high-level features. 

2.3.2. Architecture of the proposed models 
Table 2 presents a summary demonstrating the architecture of the 

developed models for COVID-19 detection. As mentioned previously, the 
feature extraction part of both proposed models is identical, which 
consists of four hierarchical blocks. The first block consists of two 
consecutive convolutional layers, each containing 11 filters of 3x3 size, a 
stride of 1, and padding=’same’, followed by a Max-Pooling layer with a 
pool of 3x3 size, a stride of 3, and padding=’same’. The second block 
consists of the same layers as the first block except for the number of 
filters used, which is 17. The third block consists of two consecutive 
convolutional layers, each containing 23 filters of 3x3 size, a stride of 1, 
and padding=’same’, followed by an Average-Pooling layer with a pool 

Fig. 4. Illustration of the convolution operation on an image of 6 × 6 pixels (Convolution operation, 2022).  
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of 2x2 size, a stride of 2, and padding=’same’. The last block consists of 
a fully connected layer containing 512 neurons, which receives the 
flattened version of its previous block output as an input. 

After each of the above blocks, a dropout layer was added with a 
drop rate reported in Table 2. During training time, this layer randomly 
sets input units to zero with a specific drop rate at each step, which helps 
prevent complex co-adaptation to the training data. Furthermore, the 
output of the convolutional layers and the fully connected layer was 
activated using the ELU function defined in Eq. (2). 

r(z) =
{

z z ≥ 0
α(ez − 1) z < 0

}

(2)  

where z is the input tensor to be activated, and α is a constant value help 
control the value at which an ELU saturates for the input tensor’s 
negative values. In this study, we set α to 1 experimentally. 

Lastly, the high-level features obtained from the above blocks were 
fed to each of the two proposed classifiers for classification. The first 
classifier (i.e., 2-class based) is a fully connected layer with a single 
neuron followed by the sigmoid activation function. This function is 
expressed mathematically as in Eq. (3), which produces an output that 
falls in the range of (0, 1). Eq. (4) was used as the decision-making of this 
classifier. 

σ(z) = 1
1 + e− z (3)  

D(σ(z) ) =
{

1 σ(z) ≥ 0.5
0 σ(z)<0.5

}

(4) 

As for the second classifier (i.e., 3-class based), we used a fully 
connected layer with three neurons followed by the softmax activation 

Fig. 5. Illustration of Max-Pooling and Average-Pooling operations applied to an arbitrary feature map.  

Table 2 
Architecture of the proposed CNN models for COVID-19 prediction.  

Layer Filter Padding Activation Kernel Initializer Output Shape Param # 

Input – – – – (112, 112, 1) 0 
Conv2D (3 × 3) 11 Same ELU HeNormal (112, 112, 11) 110 
Conv2D (3 × 3) 11 Same ELU HeNormal (112, 112, 11) 1100 
MaxPooling2D (3 × 3) – Same – – (38, 38, 11) 0 
Dropout (0.4) – – – – (38, 38, 11) 0 
Conv2D (3 × 3) 17 Same ELU HeNormal (38, 38, 17) 1700 
Conv2D (3 × 3) 17 Same ELU HeNormal (38, 38, 17) 2618 
MaxPooling2D (3 × 3) – Same – – (13, 13, 17) 0 
Dropout (0.4) – – – – (13, 13, 17) 0 
Conv2D (3 × 3) 23 Same ELU HeNormal (13, 13, 23) 3542 
Conv2D (3 × 3) 23 Same ELU HeNormal (13, 13, 23) 4784 
AveragePooling2D (2 × 2) – Same – – (7, 7, 23) 0 
Dropout (0.4) – – – – (7, 7, 23) 0 
Flatten – – – – (1127) 0 
Dense – – ELU HeNormal (512) 577,536 
Dropout (0.25) – – – – (512) 0    

Output of Binary Classification    
Dense – – Sigmoid HeNormal (1) 513    

Output of Multiclass Classification    
Dense – – Softmax HeNormal (3) 1539  
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function. This function is expressed mathematically as in Eq. (5), which 
generates a probability score for each class, with all probabilities sum-
med to 1. During prediction, this classifier predicts the class with the 
highest probability. 

s(z) =
ez

∑c
i=1ezi

(5)  

where c is 3, indicating the number of classes, and ez is the input tensor 
containing the probabilities of the classes. 

While building the proposed models, the most challenging part was 
combining all the aforementioned layers and activation functions to 
obtain excellent performance in terms of accuracy and other evaluation 
metrics. In particular, we focused on building a cost-effective architec-
ture to reduce the computational complexity of the network while 
maintaining a high level of accuracy. This was achieved by using smaller 
filters, fewer layers, and lower-dimensional representations, as evi-
denced by Table 2, which shows a reasonable number of learnable pa-
rameters of 591,903 and 592,929 for the proposed binary and multiclass 
classification models, respectively. 

2.3.3. Model training and testing 
To train and test the two proposed models, we initially normalized 

the chest X-ray images and then divided them into three sets, namely 
training, validation, and testing, as described in Section 2.2. We subse-
quently trained both models on the training set and determined the 
model’s best hyperparameters using the validation set. Finally, we 
evaluated both models on the testing (unseen) set using various per-
formance metrics described in the following subsection. It should be 
noted that the 2-class-based model was trained and tested only on the 
COVID-19 and Normal classes reported in Table 1. 

During training, the binary and categorical cross-entropy losses were 
used for the binary and multiclass models. These loss functions measure 
the deviation of the values predicted by the model from the true values, 
which enables the model to improve over successive epochs by reducing 
the error in the predictions using a particular optimization algorithm. 
The above losses are expressed mathematically as in Eqs. (6) and (7). 

LB(p, q) = −
1
m

∑m

i=1
pilog(qi)+ (1 − pi)log(1 − qi) (6)  

LC(p, q) = −
1
m

∑m

i=1

∑c

j=1
pi,jlog

(
qi,j

)
(7)  

where LB and LC are the binary and categorical cross-entropy losses, 
respectively, m refers to the number of samples (chest X-ray images) 
used, pi and qi represent the true and predicted values of the samples, 
and c is the number of classes. 

In this study, we used an Adam optimizer to optimize the learnable 
parameters of both proposed models, which is a variant of stochastic 
gradient descent. Furthermore, we employed the class weight method 
(Heidari et al., 2020) to handle the imbalanced dataset shown in Table 1, 
which was applied to the training data during the learning phase to 
minimize the potential consequences on the model’s performance. This 
method assigns higher weights to the minority classes than the majority 
ones to compensate for their underrepresentation during training. Thus, 
the loss calculation becomes a weighted average, in which each sample 
is given a weight corresponding to its associated class. Eq.(8) was used to 
compute the weight of each class. Details about other hyperparameters 
used during model training can be found in Table 3. Furthermore, a 
summary of the steps needed for implementing the proposed models is 
provided in Algorithm 1. 

wi = T/(c × ni) (8)  

where wi is the weight of class i, T is the total number of training sam-
ples, c is the number of classes, and ni is the number of samples 

belonging to class i.  
Algorithm 1: Pseudocode of the proposed COVID-19 diagnostic models 

Input: Training, validation, and test sample sets: (Xtr, ytr), (Xval, yval), and (Xtes,

ytes)Output: Predicted Binary class label vector:y p ∈ [0,1]Predicted Multi-class 
label vector:y p ∈ [0,1,2]

• Start:  
• Training and Validation Stage  

1) Use Eq. (1) to transform Xtr→Xtr
norm and Xval→Xval

norm  
2) Construct lightweight CNN models according to Table 2  
3) Use Adam optimizer to optimize models’ parameters  
4) Use the class weight method (Eq. (8)) to deal with the data imbalance issue  
5) Train the lightweight CNN models on (Xtr, ytr) and validate them on (Xval,yval)

6) Learn about the models’ weights and hyperparameters  
7) Analyze the validation loss and accuracy at each epoch  
8) Determine the model’s optimal hyperparameters  

• Testing Stage  
1) Use Eq. (1) to transform Xtes→Xtes

norm  
2) Feed Xtes

norm to the validated lightweight CNN models  
3) Use Eqs. (4) and (5) to predict the class labels (y p)  

• Model Evaluation  
1) Obtain results of the classification performance using Eqs. (9–12)  
2) Compare training, validation, and test results  
3) Check model bias: overfitting and underfitting  

• End  

2.3.4. Evaluation metrics 
Detecting COVID-19 patients from chest X-ray images is, in essence, a 

classification problem. Therefore, we selected some commonly used 
classification metrics derived from the confusion matrix to measure the 
effectiveness of the proposed models. Accuracy (Alghamdi et al., 2021), 
sensitivity (Bhattacharyya et al., 2022), specificity (Akter et al., 2021), 
and Matthews correlation coefficient (MCC) (Ali et al., 2021) are the 
metrics used in this study, which are expressed mathematically as in Eqs. 
(9)-(12), respectively. 

Accuracy =
CS
TS

× 100(%) (9)  

Sensitivity =
STP

STP + SFN
× 100(%) (10)  

Specificity =
STN

STN + SFP
× 100(%) (11)  

MCC =
STP × STN − SFP × SFN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(STP + SFP) × (STP + SFN) × (STN + SFP) × (STN + SFN)

√ (12)  

where CS (Correct Samples) represents the number of samples being 
correctly predicted, TS (Total Samples) represents the total number of 
samples to be predicted, STP (True Patient) and STN (True Normal) refer 
to the number of subjects that were correctly predicted as COVID-19 and 
normal. SFP (False Patient) and SFN (False Normal) indicate the number 
of subjects that were incorrectly predicted as COVID-19 and normal. 

Besides the above metrics, we used another metric called the area 
under the curve (AUC) of receiver operating characteristic (ROC). This 
metric shows the sensitivity of a particular classifier to the threshold 
value used during the classification process. 

Table 3 
Hyperparameters used during training.  

Hyperparameter Value 

Optimizer ‘adam’ 
Learning_rate 0.001 
Beta_1 0.9 
Beta_2 0.999 
Class_weight {0: 1.9092, 1: 0.6774} for binary model 

{0: 1.3969, 1: 0.4956, 2: 3.7542} for multiclass model 
Epoch 100 
Batch size 32  
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3. Results and discussion 

In this section, we comprehensively evaluated the proposed light-
weight CNN models for COVID-19 detection using widely adopted per-
formance measures. The proposed models were implemented using the 
Python programming language installed on a computer equipped with 
Intel(R) Core(TM) i7-8550U CPU @1.80 GHz 1.99 GHz, 12 GB of RAM, 
and Windows 11 as an operating system. In the following subsections, 
we first report and discuss the results obtained by the proposed models. 
Then, we present a comparative analysis between our proposed models 
and the latest existing ones. 

3.1. Accuracy and loss vs. Epoch 

During the training stage of a given classifier algorithm, accuracy 
and loss are the most common metrics chosen to be displayed over 
successive epochs to control overfitting and perceive the predictions’ 
status. These metrics are assumed to be inversely proportional, i.e., with 
low loss values, high accuracy values are expected. Results of the 
aforementioned metrics on the training and validation sets are illus-
trated in Figs. 6 and 7. The trend curves of these figures indicate that as 
the number of epochs increases, the accuracy and loss of the validation 
set initially vary significantly with notable fluctuations but then grad-
ually improve to yield higher accuracy and lower loss with small fluc-
tuations. The trend curves also show that validation accuracy tends to be 
close to training accuracy over multiple epochs, indicating that the 
proposed models do not show signs of significant underfitting or 
overfitting. 

3.2. Confusion matrix analysis 

This matrix provides a summary containing the prediction results of 
a given classification algorithm. Its name derives from the fact that it 
makes it easy to observe where the model gets confused. That is, mis-
labeling some samples by another class label. Fig. 8 shows results of the 
confusion matrices obtained by the proposed 2-class based model. As 
can be seen from Fig. 8, the binary model misclassified 1, 16, and 23 
COVID-19 samples from the training, validation, and testing sets as 
belonging to the Normal class. The error rates of these COVID-19 sam-
ples are 0.04%, 2.76%, and 3.18%. Similarly, 2, 21, and 17 Normal 
samples were misclassified as belonging to the COVID-19 class, resulting 
in an error rate of 0.03%, 1.29%, and 0.83% in samples of the Normal 
class. Some samples that were misclassified by this diagnostic model is 
shown in Fig. 9. A possible reason for the misclassification could be the 
similar imaging characteristics between COVID-19 and normal samples, 
as well as the misalignment and non-frontal view of some of these 
samples. Considering the low misclassification rates in the above classes, 
one can tell that the proposed model (2-class-based) achieves excellent 

results, mainly due to its ability to generate features with high interclass 
discrimination. 

As for the proposed 3-class-based model, the confusion matrices 
generated by it are shown in Fig. 10. From this figure, it is evident that 
the samples of Normal and COVID-19 classes are more likely to be 
mislabeled than samples of Viral Pneumonia class. This is mainly due to 
the high similarity between the features of some samples of these cate-
gories (Fig. 11), making differentiation extremely difficult. However, 
the overall performance remains satisfactory. For instance, from the 
confusion matrix of the testing set, it is quite clear that only 0.83% and 
2.07% of COVID-19 samples were misclassified as Viral Pneumonia and 
Normal, respectively. Likewise, 0.74% and 2.65% of Normal samples 
were mislabeled as Viral Pneumonia and COVID-19, respectively. With 
these results, one can conclude that the proposed model (3-class-based) 
yields a very low error rate in each of the aforementioned categories, 
demonstrating its remarkable ability to learn features. 

3.3. Overall performance of the proposed models 

We obtained further results using some widely reported evaluation 
metrics to examine the overall performance of the proposed 2-class and 
3-class classification models. These results can be found in Table 4 and 
Fig. 12. From Table 4, it can be seen that the overall accuracy is 99.97% 
(training), 98.33% (validation), and 98.55% (testing) for the 2-class- 
based model. As for the 3-class-based model, the overall accuracy is 
presented in Fig. 12, which is 99.43% (training), 97.20% (validation), 
and 96.83% (testing). The accuracy results suggest the feature extrac-
tion part of both proposed models is highly discriminatory as the results 
obtained are promising. Furthermore, when both models are compared, 
it is evident that the 2-class classification model outperforms the 3-class 
classification model. This is expected because the multiclass labels are 
more difficult to distinguish than the binary class labels. 

Since the dataset used in this study is imbalanced, considering ac-
curacy as the sole performance metric is misleading. For instance, the 
class with the most samples is more likely to suppress the other classes, 
affecting the model’s overall performance. Therefore, we report other 
popular metrics used for this purpose. It can be noticed from Table 4 that 
the sensitivity and specificity of the unseen (testing) data obtained by 
the proposed 2-class classification model are 96.82% and 99.17%, 
respectively. Such results indicate the remarkable performance of the 
proposed model because there is no significant bias toward the Normal 
class over the COVID-19 class. That is, the specificity of the Normal class 
does not differ much from the sensitivity of the COVID-19 class. 
Furthermore, the MCC obtained by the binary model is 0.962, which 
again confirms that there is no bias due to its closeness to the optimal 
value, i.e., 1. 

As for the proposed 3-class classification, we report the accuracy of 
each class to determine its overall performance. The accuracy result of 

Fig. 6. Performance of accuracy and loss during model training and validation for binary classification.  
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each class is listed in Fig. 12. Taking the testing set as an example, we 
can observe that the accuracy of the three classes is very close to one 
another, i.e., 97.10% for COVID-19, 97.77% for Pneumonia, and 96.62% 
for Normal. Despite the slight differences in their performance, the re-
sults of the three categories are very satisfactory. These results clearly 
demonstrate that the proposed model for multiclass classification does 
not favor any class over others. 

Even though both proposed models were trained on imbalanced 
training data, the above results show no evidence of bias. We believe this 
is mainly due to applying the class weight technique to the training data. 
With this technique, different weights are assigned to different classes, 
with the highest weight being assigned to the class with the fewest 
samples. This is to help the loss function in making the minority class’s 
cost higher than the majority class’s cost when they are incorrectly 
predicted, thereby forcing the learning algorithm to be unbiased. 

3.4. ROC curve analysis 

The ROC curve is a graph that demonstrates the classifier’s ability to 
distinguish between different class labels against different thresholds 

used during prediction. Therefore, we consider reporting this graph to 
illustrate the classifier’s effectiveness at discriminating COVID-19 from 
other cases. Figs. 13 and 14 report results of the AUC of ROC obtained by 
the proposed binary and multiclass classification models, respectively. It 
can be observed from these figures that both proposed models perform 
extremely well in terms of AUC on the three sets of chest X-ray images: 
training, validation, and testing, in which an AUC value of more than 
0.99 was achieved for each data partitioning set of both models. These 
findings indicate that both proposed models are almost invariant to the 
thresholds used during prediction because the AUCs obtained are very 
close to the optimal value, i.e., 1. Thus, we can infer that the frameworks 
proposed for COVID-19 detection seem to have excellent deployment 
potential. 

3.5. Run time complexity analysis 

The computational complexity of the proposed models has been 
estimated in relation to their crucial role in DL models. The exponential 
growth in computational complexity is directly related to the increase in 
network-level growth (Fang & Wang, 2022). Determining the 

Fig. 7. Performance of accuracy and loss during model training and validation for multiclass classification.  

Fig. 8. Confusion matrices obtained by the proposed binary classification model.  

Fig. 9. Some samples of misclassified chest X-ray images obtained by the proposed binary classification model.  
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computational complexity usually involves leveraging the trainable 
parameters from the model’s architecture (Ahrabi et al., 2021). Hence, 
in this study, the trainable parameters within the proposed model’s ar-
chitecture were used to determine the computational complexity. The 
proposed models have been shown to require a reasonable number of 
trainable parameters, as demonstrated by Table 2. The models require 
an approximate total of 590 k trainable parameters. Moreover, Fig. 15 

displays the duration required by the proposed models for predicting the 
class label of test data. It can be observed from this figure that the 
proposed binary model requires 8.86 s to predict the class label of 2762 
test chest X-ray images. In contrast, the proposed multiclass model takes 
10.04 s to predict the class label of 3031 test chest X-ray images. These 
results demonstrate the efficiency of the proposed models in terms of 
computational complexity and real-time adoption. 

3.6. Comparative analysis with state-of-the-art approaches 

We compared the proposed models with the recent models published 
in the literature for COVID-19 detection to determine how well our 
models fit in with them. Tables 5 and 6 present results of the compari-
son. It is obvious from these tables that a direct comparison of perfor-
mance is not fair due to the use of different sizes of datasets in the 
reported studies. This issue was prevalent in many previous studies, as 
the availability of samples changed over time, in which samples are now 

Fig. 10. Confusion matrices obtained by the proposed multiclass classification model.  

Fig. 11. Some samples of misclassified chest X-ray images obtained by the proposed multiclass classification model.  

Table 4 
Performance analysis of the proposed binary classification model under different 
evaluation metrics.  

Metrics Training Validation Testing 

Accuracy (%)  99.97  98.33  98.55 
Sensitivity (%)  99.96  97.24  96.82 
Specificity (%)  99.97  98.71  99.17 
MCC  0.999  0.957  0.962  
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becoming more abundant. For instance, it was difficult to obtain a large 
number of samples during the first year of the COVID-19 outbreak. Over 
time, however, the availability of samples began to increase and became 
more accessible thanks to public repositories, such as GitHub and 
Kaggle. 

Even though the dataset sizes are variable, it is quite clear that the 
proposed models outperform most of the existing models by a large 
margin in terms of accuracy performance, as evidenced by the results 
presented in Tables 5 and 6. The proposed binary model achieved an 
improvement in accuracy rate of 1.55%, 0.49%, 2.88%, 5.55%, 0.22%, 
2.30%, and 1.84% when compared to Inception-V3, GrayVIC model, 
ResNet50, Vgg16, ResNet-34, LW-CORONet, and CNN_Model, respec-
tively. Similarly, the proposed multiclass model showed an improve-
ment in accuracy rate of 3.35%, 2.63%, 2.33%, 1.83%, 1.16%, 2.33%, 
3.53%, and 0.03% when compared to VGG19, CoroDet, VGG16, 
CoroNet, LW-CORONet, MobileNet-V2, COVID-Net, and EfficientNetB0, 
respectively. However, it is noted that the models CoroDet, CoroNet, and 
MobileNet-V2 performed slightly better than our binary classification 
model, and Inception-V3 and GrayVIC models achieved a higher accu-
racy rate than our multiclass classification model. We believe that the 
aforementioned models scored better accuracy rates than ours because 
they used a much smaller dataset for testing their model’s performance. 

From Tables 5 and 6, one can also observe that the models reported 
in the literature require between 1.1 and 57.4 and 1.15 to 242.3 times 
more learnable parameters than the proposed binary and multiclass 
models, respectively. This indicates a remarkable achievement since our 
models require much less computing power and memory resources, 
which are necessary for building a cost-effective model. 

We also compared the proposed models with the recent existing 
models in terms of sensitivity, specificity, and f1-score metrics. Results 
of the comparison are presented in Figs. 16 and 17. It can be observed 
from these figures that both of the proposed models exhibit a significant 
improvement in performance when compared with many of the existing 
models. However, a slight edge in terms of f1-score was observed for 
Inception-V3 and EfficientNetB0 when compared to the proposed mul-
ticlass model. Additionally, MobileNet-V2 exhibited slightly higher 
values of sensitivity and specificity when compared to the proposed 
binary class model. We believe that the superior performance of these 
existing models may be attributed to their testing on small datasets. This 
belief is supported by the understanding that a larger dataset can lead to 
better generalizability of models. 

In summary, when comparing the proposed models with the 
heavyweight models, the results show that they are competitive. 
Furthermore, they demonstrate that our models can serve as the basis for 
low-cost mobile decision support applications. With these features in 
mind, we believe that our models can help radiologists save more lives of 
those infected with COVID-19 by making faster and more accurate de-
cisions. In particular, our models are very useful for developing coun-
tries or rural areas since they have limited access to highly accredited 
radiologists and affordable diagnostic kits. 

3.7. Limitations and future directions 

Despite the satisfactory performance of the proposed lightweight 
CNN models, there is still scope for further improvement. One potential 
avenue for improvement is the application of image preprocessing al-
gorithms to X-ray images prior to their utilization in the proposed 
models. However, it is important to consider that the model’s perfor-
mance is also contingent upon other factors such as the quality of the 
data used for training and the complexity of the task at hand. Addi-
tionally, the application of certain image preprocessing algorithms may 
not be suitable for all types of X-ray images, and may even negatively 
impact the model’s performance. Therefore, a comprehensive evalua-
tion to identify image preprocessing methods that positively impact the 
performance of the proposed models would be a valuable area of study. 

Fig. 12. Accuracy performance of each class along with the overall accuracy 
result of the proposed multi-class classification model. 

Fig. 13. Roc curve of the proposed 2-class classification model.  
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Another limitation that must be acknowledged is that neither the 
source of the dataset used in this study nor the source of the studies 
reported in the literature provides any information about the de-
mographic characteristics of the participants. Specifically, there is no 
indication of the age, authenticity, or gender of the individuals included 
in the sample. As a result, it is challenging to determine whether the 
proposed models exhibit any form of bias with regard to these de-
mographic factors. This issue highlights the importance of transparently 
reporting the characteristics of study participants in order to assess the 
generalizability and potential biases of the findings. Therefore, using the 
proposed models for the diagnosis of COVID-19 infection in real-world 
applications, such as testing them on a private database of a local hos-
pital, is a valuable next step in determining their clinical validity. This 
would involve collecting data from patients diagnosed with COVID-19, 
as well as from a control group of individuals, along with their de-
mographic characteristics, and using this data to train and test the 
models. In this way, one can learn their clinical validity and improve 
them accordingly. Once the models have been validated, they can be 
used to aid in the diagnosis of COVID-19 in a clinical setting. This could 
involve integrating the models into existing electronic medical record 
systems, or developing a standalone diagnostic tool that can be used by 

healthcare providers. 

4. Conclusions 

In an effort to curb the spread of COVID-19, numerous deep learning- 
based models have recently been developed to detect patients with this 
disease as early as possible using chest X-ray images. However, most of 
these developed models are highly complex (heavyweight) and require a 
lot of computing power, making them unsuitable for devices with 

Fig. 14. Roc curve of the proposed 3-class classification model.  

Fig. 15. The time needed by the proposed models to predict the class labels of 
test data. 

Table 5 
Performance analysis of the proposed 2-class based model with relevant existing 
deep learning models in terms of accuracy and trainable parameters.  

Reference Method Data Size Accuracy 
(%) 

Trainable 
Parameters COVID- 

19 
Normal 

(Anunay 
Gupta 
et al., 
2021) 

Inception-V3 361 365  97.00 24,000,000 

(George 
et al., 
2023) 

GrayVIC 
model 

2,250 2,250  98.06 2,684,650 

(Hussain 
et al., 
2021) 

CoroDet 500 800  99.10 2,873,609 

(Jyoti et al., 
2023) 

ResNet50 2409 2866  95.67 23,591,810 

(A. I. Khan 
et al., 
2020) 

CoroNet 284 310  99.00 33,969,964 

(Malik 
et al., 
2022) 

Vgg16 4630 1583  93.00 14,715,714 

(Nayak 
et al., 
2021) 

ResNet-34 775 775  98.33 21,800,000 

(Nayak 
et al., 
2023) 

LW-CORONet 2358 8066  96.25 680,000 

(Sahin, 
2022) 

CNN_Model 3,626 10,198  96.71 667,458 

(Ukwandu 
et al., 
2022) 

MobileNet-V2 1,200 1,341  99.60 3,538,984 

Proposed 
Model 

Lightweight 
CNN Model 

3,616 10,192  98.55 591,903  
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limited resources, such as smartphones. In recent times, devices like 
these have gained adoption everywhere, and thus they are being advo-
cated to show great promise for the rapid diagnosis of COVID-19 
infection. Motivated by the earlier discussion, two lightweight CNN- 
based models were proposed in this research to efficiently detect 

COVID-19 subjects from chest X-ray images. The proposed models are 
mainly 2-class (COVID-19 and Normal) and 3-class (COVID-19, Normal, 
and Viral Pneumonia) classification models, which were structured to 
contain learnable parameters not exceeding 600 K; hence, they are 
referred to as lightweight. Results from experiments on a sizable COVID- 
19 radiography dataset demonstrate that the proposed models achieved 
excellent performance in terms of accuracy, sensitivity, specificity, MCC, 
and AUC-ROC measures, without showing any indication of overfitting. 
For instance, we obtained an overall test accuracy rate of 98.55% in the 
binary classification and 96.83% in the multiclass classification tasks, 
which are really encouraging. Furthermore, our models require sub-
stantially lower computing power and memory resources than the 
existing CNN-based heavyweight models while maintaining comparable 
accuracy. Based on these results, we can conclude that our models may 
aid physicians in making meaningful diagnoses of COVID-19 infection 
and are suitable for implementation on devices with limited resources 
and power consumption. 

In the future, we aim to apply some image preprocessing algorithms 
to the X-ray images to determine the extent of their impact on improving 
the proposed models’ performance. We also intend to use the proposed 
models in real-world applications, like testing them on the private 
database of a local hospital, so that we can learn their clinical validity 
and improve them accordingly. 

Table 6 
Performance analysis of the proposed 3-class based model with relevant existing deep learning models in terms of accuracy and trainable parameters.  

Reference Method Data Size Accuracy (%) Trainable Parameters 
COVID-19 Normal Pneumonia 

(Apostolopoulos & Mpesiana, 2020) VGG19 224 504 714  93.48 143,667,240 
(Anunay Gupta et al., 2021) Inception-V3 361 365 362  97.00 24,000,000 
(George et al., 2023) GrayVIC model 2,250 2,250 2,250  97.41 2,684,650 
(Hussain et al., 2021) CoroDet 500 800 800  94.20 2,874,635 
(Heidari et al., 2020) VGG16 445 2,880 5,179  94.50 138,000,000 
(A. I. Khan et al., 2020) CoroNet 284 310 657  95.00 33,969,964 
(Nayak et al., 2023) LW-CORONet 2358 8066 5575  95.67 680,000 
(Ukwandu et al., 2022) MobileNet-V2 1,200 1,341 1,345  94.50 3,538,984 
(L. Wang et al., 2020) COVID-Net 358 8,066 5,538  93.30 11,750,000 
(Zebin & Rezvy, 2021) EfficientNetB0 202 300 300  96.80 5,300,000 
Proposed Model Lightweight CNN Model 3,616 10,192 1,345  96.83 592,929  

Fig. 16. Comparison of sensitivity and specificity results for binary model: 
Proposed One vs. Recently Published Literature. 

Fig. 17. F1-Score comparison for multiclass model: Proposed One vs. Recently Published Literature.  
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Towards an effective and efficient deep learning model for COVID-19 patterns 
detection in X-ray images. Research on Biomedical Engineering, 38, 149–162. https:// 
doi.org/10.1007/s42600-021-00151-6 

Malik, D., Anjum, & Katarya, R. (2022). Comparative analysis by transfer learning of pre- 
trained models for detection of COVID-19 using chest X-ray images. Proceedings of the 
International Conference on Paradigms of Communication, Computing and Data Sciences, 
549–557. 10.1007/978-981-16-5747-4_46. 

Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., & Soufi, G. J. (2020). Deep-COVID: 
Predicting COVID-19 from chest X-ray images using deep transfer learning. Medical 
Image Analysis, 65, Article 101794. https://doi.org/10.1016/j.media.2020.101794 

Narin, A., Kaya, C., & Pamuk, Z. (2021). Automatic detection of coronavirus disease 
(COVID-19) using X-ray images and deep convolutional neural networks. Pattern 
Analysis and Applications, 24, 1207–1220. https://doi.org/10.1007/s10044-021- 
00984-y 

Nayak, S. R., Nayak, D. R., Sinha, U., Arora, V., & Pachori, R. B. (2021). Application of 
deep learning techniques for detection of COVID-19 cases using chest X-ray images: 

H.I. Hussein et al.                                                                                                                                                                                                                               

https://doi.org/10.1109/ISIEA49364.2020.9188133
https://doi.org/10.1109/ISIEA49364.2020.9188133
https://doi.org/10.1016/j.compbiomed.2022.105350
https://doi.org/10.1016/j.compbiomed.2022.105350
https://doi.org/10.3390/computation9010003
https://doi.org/10.3390/biology10111174
https://doi.org/10.1109/ACCESS.2021.3054484
https://doi.org/10.1016/j.compbiomed.2021.104672
https://doi.org/10.3390/s21020455
https://doi.org/10.3390/s21020455
https://doi.org/10.1007/s40846-020-00529-4
https://doi.org/10.1007/s13246-020-00865-4
https://doi.org/10.1007/s13246-020-00865-4
https://doi.org/10.1016/j.bspc.2021.103182
https://doi.org/10.1016/j.compbiomed.2021.104454
https://doi.org/10.1148/radiol.2020200230
https://doi.org/10.1148/radiol.2020200230
https://doi.org/10.1007/s13748-019-00203-0
https://doi.org/10.1016/j.bbe.2022.07.009
https://doi.org/10.1016/j.bbe.2022.07.009
https://doi.org/10.1016/j.bbe.2022.11.003
https://doi.org/10.1016/j.compbiomed.2021.104920
https://doi.org/10.1016/j.compbiomed.2021.104920
https://doi.org/10.1007/s12648-022-02425-w
https://doi.org/10.2139/ssrn.3833706
https://doi.org/10.1007/978-981-19-4453-6_7
https://doi.org/10.1007/s11042-022-12156-z
https://doi.org/10.1007/s11042-022-12156-z
https://doi.org/10.1016/j.imu.2022.100945
https://doi.org/10.1016/j.imu.2022.100945
https://doi.org/10.1016/j.ijmedinf.2020.104284
https://doi.org/10.1016/j.ijmedinf.2020.104284
https://doi.org/10.1016/j.bea.2022.100041
https://doi.org/10.1016/j.chaos.2020.110495
https://doi.org/10.1016/j.chaos.2020.110495
https://doi.org/10.1016/j.neucom.2022.01.055
https://doi.org/10.1016/j.eswa.2022.116942
https://doi.org/10.1016/j.eswa.2022.116942
https://doi.org/10.1016/j.compbiomed.2022.106331
https://doi.org/10.1016/j.compbiomed.2022.106331
https://doi.org/10.1109/ACCAI53970.2022.9752511
https://doi.org/10.1016/j.cmpb.2020.105581
https://doi.org/10.1016/j.cmpb.2020.105581
https://doi.org/10.1016/j.eswa.2021.115695
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1007/s42600-021-00151-6
https://doi.org/10.1007/s42600-021-00151-6
https://doi.org/10.1016/j.media.2020.101794
https://doi.org/10.1007/s10044-021-00984-y
https://doi.org/10.1007/s10044-021-00984-y


Expert Systems With Applications 223 (2023) 119900

15

A comprehensive study. Biomedical Signal Processing and Control, 64, Article 102365. 
https://doi.org/10.1016/j.bspc.2020.102365 

Nayak, S. R., Nayak, D. R., Sinha, U., Arora, V., & Pachori, R. B. (2023). An efficient deep 
learning method for detection of COVID-19 infection using chest X-ray images. 
Diagnostics, 13(1), 1–17. https://doi.org/10.3390/diagnostics13010131 

Sahin, M. E. (2022). Deep learning-based approach for detecting COVID-19 in chest X- 
rays. Biomedical Signal Processing and Control, 78, Article 103977. https://doi.org/ 
10.1016/j.bspc.2022.103977 

Sewariya, M., & Katarya, R. (2021). Parameter based literature survey of COVID-19 
mortality dynamics using machine learning techniques. International Conference on 
Recent Trends on Electronics, Information, Communication and Technology, RTEICT, 
2021, 141–145. https://doi.org/10.1109/RTEICT52294.2021.9573980 

Thakur, S., Kasliwal, Y., Kothambawala, T., & Katarya, R. (2022). A Study on pulmonary 
image screening for the detection of COVID-19 using convolutional neural networks. 
In Data Engineering for Smart Systems. Lecture Notes in Networks and Systems (Vol. 
238). 10.1007/978-981-16-2641-8_44. 

Ukwandu, O., Hindy, H., & Ukwandu, E. (2022). An evaluation of lightweight deep 
learning techniques in medical imaging for high precision COVID-19 diagnostics. 
Healthcare Analytics, 2, Article 100096. https://doi.org/10.1016/j. 
health.2022.100096 

Wang, L., Lin, Z. Q., & Wong, A. (2020). COVID-Net: A tailored deep convolutional 
neural network design for detection of COVID-19 cases from chest X-ray images. 
Scientific Reports, 10, 19549. https://doi.org/10.1038/s41598-020-76550-z 

Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., & Wenjie, T. (2020). Detection of 
SARS-CoV-2 in different types of clinical specimens. JAMA - Journal of the American 
Medical Association, 323, 1843–1844. https://doi.org/10.1001/jama.2020.3786 

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural 
networks: An overview and application in radiology. Insights into Imaging, 9, 
611–629. https://doi.org/10.1007/s13244-018-0639-9 

Zebin, T., & Rezvy, S. (2021). COVID-19 detection and disease progression visualization: 
Deep learning on chest X-rays for classification and coarse localization. Applied 
Intelligence, 51, 1010–1021. https://doi.org/10.1007/s10489-020-01867-1 

H.I. Hussein et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.bspc.2020.102365
https://doi.org/10.3390/diagnostics13010131
https://doi.org/10.1016/j.bspc.2022.103977
https://doi.org/10.1016/j.bspc.2022.103977
https://doi.org/10.1109/RTEICT52294.2021.9573980
https://doi.org/10.1016/j.health.2022.100096
https://doi.org/10.1016/j.health.2022.100096
https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1001/jama.2020.3786
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s10489-020-01867-1

	Lightweight deep CNN-based models for early detection of COVID-19 patients from chest X-ray images
	1 Introduction
	2 Materials and methods
	2.1 Dataset description
	2.2 Image normalization and data splitting
	2.3 Proposed lightweight CNN models
	2.3.1 CNN: An overview
	2.3.2 Architecture of the proposed models
	2.3.3 Model training and testing
	2.3.4 Evaluation metrics


	3 Results and discussion
	3.1 Accuracy and loss vs. Epoch
	3.2 Confusion matrix analysis
	3.3 Overall performance of the proposed models
	3.4 ROC curve analysis
	3.5 Run time complexity analysis
	3.6 Comparative analysis with state-of-the-art approaches
	3.7 Limitations and future directions

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


