Skip to main content
. 2023 Mar 18;223:119900. doi: 10.1016/j.eswa.2023.119900

Table 6.

Performance analysis of the proposed 3-class based model with relevant existing deep learning models in terms of accuracy and trainable parameters.

Reference Method Data Size Accuracy (%) Trainable Parameters
COVID-19 Normal Pneumonia
(Apostolopoulos & Mpesiana, 2020) VGG19 224 504 714 93.48 143,667,240
(Anunay Gupta et al., 2021) Inception-V3 361 365 362 97.00 24,000,000
(George et al., 2023) GrayVIC model 2,250 2,250 2,250 97.41 2,684,650
(Hussain et al., 2021) CoroDet 500 800 800 94.20 2,874,635
(Heidari et al., 2020) VGG16 445 2,880 5,179 94.50 138,000,000
(A. I. Khan et al., 2020) CoroNet 284 310 657 95.00 33,969,964
(Nayak et al., 2023) LW-CORONet 2358 8066 5575 95.67 680,000
(Ukwandu et al., 2022) MobileNet-V2 1,200 1,341 1,345 94.50 3,538,984
(L. Wang et al., 2020) COVID-Net 358 8,066 5,538 93.30 11,750,000
(Zebin & Rezvy, 2021) EfficientNetB0 202 300 300 96.80 5,300,000
Proposed Model Lightweight CNN Model 3,616 10,192 1,345 96.83 592,929