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Abstract

The fundamental biological importance and complexity of allosterically regulated proteins stem 

from their central role in signal transduction and cellular processes. Recently, machine learning 

approaches have been developed and actively deployed to facilitate theoretical and experimental 

studies of protein dynamics and allosteric mechanisms. We surveyed recent developments in 

applications of machine learning methods for studies of allosteric mechanisms, prediction 

of allosteric effects and allostery-related physicochemical properties, and allosteric protein 

engineering. We also reviewed the applications of machine learning strategies for characterization 

of allosteric mechanisms and drug design targeting SARS-CoV-2 virus. Continuous development 

and task-specific adaptation of machine learning methods for protein allosteric mechanisms will 

play an increasingly important role in bridging a wide spectrum of data-intensive experimental and 

theoretical technologies.
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Protein allostery at the intersection of modern molecular biology and data 

science

Allosteric regulation serves as an efficient strategy for molecular communication and is a 

common mechanism employed by proteins for regulation of activity and adaptability [1–3]. 

Allosteric effects occur when a certain perturbation occurs at a distal site of a protein 
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that is topographically distinct from the protein’s orthosteric function site and consequently 

modulates the protein’s activity [1–3]. Since the term “allosteric” was introduced in 1961 

[4], protein allostery has been one of the focuses of structural biology and is often referred 

as the “second secret of life”, second only to the genetic code [5,6]. A quantitative 

elucidation of such fundamental and elusive phenomenon is critical to understanding life 

process and disease therapy [7–9]. It has been further proposed that all proteins are 

allosteric: even if the protein is not known to be allosteric, under given conditions such 

as the presence of appropriate allosteric effectors or mutations, the protein could be observed 

to be allosteric [10,11].

The remarkable progress and recent breakthroughs in X-ray crystallography (see Glossary), 

nuclear magnetic resonance (NMR) spectroscopy, fluorescence resonance energy transfer 

(FRET), and hydrogen–deuterium exchange mass spectrometry (HDXMS) experimental 

technologies have enabled structural and dynamic studies of large biomolecules at atomic 

resolution and are often employed as diagnostic tools of allosteric interactions and 

communications in signaling proteins [12]. Recent advances in single-particle cryogenic 

electron microscopy (cryo-EM) have enabled the determination of near-atomic resolution 

structures for well-ordered proteins and large macromolecular assemblies, breaking 

resolution barriers for studies of allosteric events and allosteric drug discovery [13–15].

Computational approaches have complemented experimental methods and provided detailed 

molecular insights into allosteric transformations and regulatory mechanisms. Molecular 

dynamics (MD) simulations-based and elastic network models (ENM)-based approaches 

represent two main flavors of computational methods to interrogate allosteric mechanisms 

based on protein dynamics [16–19]. Many other computational approaches correlate protein 

structural information at various levels with their allosteric functions. Allosteric molecular 

events involve a complex interplay of thermodynamic and dynamic changes that are difficult 

to observe, simulate and interpret. The quantitative elucidation of these highly dynamic 

processes continues to present formidable technical and conceptual challenges [20].

Due to its universal importance, protein allostery has been studied through wide range 

of aspects (Figure 1). The past decade has witnessed the rapid development of machine 

learning and deep learning (DL) techniques and their applications to model increasingly 

complex chemical and biological phenomena [21–23]. In this review, we surveyed recent 

developments and applications of machine learning to protein allostery along three main 

themes: prediction and analysis of allosteric mechanisms, properties prediction, and 

allosteric protein design. We also provide a perspective to the future development of 

computational and machine learning approaches for studies of protein allostery.

Machine learning studies of protein allostery

Dynamics-driven allosteric models have described protein allosteric mechanisms as signal 

propagation through dynamically modulated functional motions that can occur in the 

absence of visible structural changes. The current view recognizes that allostery can 

often involve an equilibrium shift of the pre-existing conformational ensembles due to an 

effector binding [11,24]. In some perturbation-based simulation methods, mechanical forces 
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are exerted on the allosteric proteins during simulations to probe protein dynamical and 

allosteric responses [25–29].

Combined with network models, these approaches can provide insight into mechanistic 

details of signaling pathways, predict the response to various perturbations and guide the 

identification of regulatory sites. Despite the established view that many proteins function 

as dynamic and versatile allosteric regulatory machines, our atomistic understanding of 

allosteric mechanisms is still at a rudimentary level, and our knowledge of allosteric 

functional states and allosteric communication networks that govern diverse protein 

functions is surprisingly limited. Due to the lack of a universal theory, current studies aim 

to interpret protein allostery at various protein structural levels (Figure 2). A substantial 

challenge in investigating the allosteric mechanisms for large multi-domain protein systems 

is the inherent difficulty of adapting experimental and computational methodologies 

to capture the intrinsic flexibility of these structures essential for functionality. The 

fundamental biological importance and complexity of these processes require a multi-

faceted platform of integrated approaches for characterization of allosteric functional states 

and atomistic reconstruction of allosteric regulatory mechanisms. In this review, we detail 

how machine learning methods can be productively utilized to capitalize on the rapidly 

growing information and rich multidimensional data on protein dynamics and allosteric 

protein landscapes. We suggest that machine learning approaches have the potential to 

become a unifying data-centric research tool for synthesizing advances in theory and 

experimental technologies, ultimately leading to the development of robust and efficient 

computational models and expert systems for prediction of diverse allosteric effects in 

protein systems.

Machine learning approaches for molecular simulations and characterization of allosteric 
functional states

Without a universally accepted fundamental theory, experimental observations remain as the 

foundation of protein allostery. New advances in experimental techniques often provide new 

insight into this ubiquitous phenomenon. For example, the recent breakthroughs in single 

molecule fluorescence resonance energy transfer (smFRET) technologies have enabled 

dynamic studies of large biomolecules. These advances provided semi-direct experimental 

observation of allostery related protein dynamics. Combined with MD simulations at 

microsecond scale, smFRET experiments could directly probe transitions among allosteric 

states with significant conformational changes [30–32]. Recently, the DeepFRET method 

was developed using a DL model to bridge experimental data and protein dynamics [33]. 

These emerging experimental advances provide a solid foundation for computational and 

theoretical studies of protein allostery seen in recent years.

Machine learning approaches have been widely employed to facilitate conformational 

sampling with MD simulations via optimal selection of reaction coordinates [34–37], 

enhanced conformational sampling by active learning [38–40] and even autonomous 

generation of equilibrium ensembles without performing MD simulations [41]. With help 

from machine learning methods, time-dependent structural changes can be quantitatively 

analyzed to provide insight into underlying allosteric mechanisms. Takami et al. [42] applied 
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three time-series clustering methods, the unsupervised machine learning technique for time-

series data, to analyze multiple Tight-Relaxed state transition trajectories of Human adult 

hemoglobin (HbA). These trajectories were classified by time-series clustering methods and 

analyzed to investigate the effect of oxygen molecules on the structural change of HbA.

In many other cases, the allostery related structural changes could not be easily recognized 

or characterized. Therefore, a number of machine learning models have been developed 

to identify structural features that can properly describe the slowest dynamics underlying 

conformational changes. These features could be used to model protein kinetics that underly 

allosteric processes [43–45].

Identifying key protein allosteric residues

As fundamental building blocks of protein, individual residues are the focus of many protein 

allosteric mechanism studies. Machine learning methods provide quantitative means to 

correlate global protein allostery with individual residues. Many studies aim to identify 

key residues for protein allostery through informative and insightful analysis of protein 

dynamics data using various machine learning methods. Zhou et al. [46] applied supervised 

learning methods, decision tree and neural networks, to build classification models for 

allosteric states based on the simulation data of the second PDZ domain from human PTP1E 

protein (PDZ2). These accurate classification models provide numerical measurement of 

importance of each residue for overall allostery. The key allosteric residues identified 

based on this importance has excellent agreement with experimental and computational 

studies. Similarly, Hayatshahi et al. [47] applied deep neural networks (DNNs) to build a 

classification model of the PDZ3 domain from the adaptor protein PSD95 to distinguish 

otherwise similar allosteric states using MD simulation data. Their classification model, 

a residue response map as a 2D property-residue map, could be constructed to represent 

allosteric effects as residue-specific properties. More recently, Do et al. [48] introduced a 

Gaussian-accelerated molecular dynamics (GaMD), DL, and free energy profiling workflow 

(GLOW), to characterize both activation and allosteric modulation of a G protein-coupled 

receptor (GPCR). A convolutional neural network (CNN) model was employed in GLOW to 

classify the residue contact maps, from which important residues could be identified.

Mapping of allosteric networks and communication pathways using machine learning

The nature and atomistic details of the allosteric communication between the allosteric site 

and the functional site are often difficult to dissect. The experimental approaches could 

reveal allosteric hotspots and potential communication pathways in protein structures. Using 

a combination of mutagenesis, mass spectrometry, amide HDXMS, and FRET studies, the 

atomistic details and allosteric pathways of the Hsp70 chaperone regulation mechanisms 

have been mapped, revealing the previously unrecognized dichotomy of allosteric control in 

the chaperone [49–51].

There are many machine-learning-based methods to identify allosteric pathway or 

networks. Graph theory-based methods are among the most widely used approaches. 

By mapping dynamic fluctuations onto a graph, network-based approaches can describe 

signal transmission via cascades of coupled residue fluctuations and characterize allosteric 

Xiao et al. Page 4

Trends Biochem Sci. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



communication pathways in proteins. Zhu et al. [52] applied a graph neural network 

(GNN)-based neural relational inference (NRI) model, which adopts an encoder-decoder 

architecture to simultaneously infer latent interactions for probing protein allosteric 

processes as dynamic networks of interacting residues. From the MD trajectories, this model 

successfully learned the long-range interactions and pathways that can mediate the allosteric 

communications between distant sites. Machine learning methods could also be applied to 

develop various dynamic network models of allosteric interactions to decrypt the underlying 

mechanisms driving allosteric effects in proteins [53].

Other machine-learning-based methods use various correlation relations among residues 

to identify potential allosteric pathways. Zhou et al. [54] used relative entropy concept 

from information theory to develop the relative entropy-based dynamical allosteric network 

(REDAN) model. The relative entropy is used to measure the response of each residue 

pair to external perturbation. The potential allosteric pathways are identified as a series of 

short-range residue pairs with the most significant response. Botlani et al. [55] extended the 

underlying mechanism of allostery by exploring correlation between ensembles of protein 

in different allosteric states. They applied support vector machine (SVM) to quantitively 

evaluate these correlations using simulations representing different allosteric states of the 

same protein. Undirected weighted graph theory was also employed to identify the shortest 

pathway possible for allosteric signaling mechanisms. Yan et al. [56] proposed the node-

weighted amino acid contact energy network (NACEN) to characterize and predict three 

types of functional residues, namely, hot spots, catalytic residues, and allosteric residues. 

These studies demonstrate the viability and diversity, as well as uncertainty, of using 

machine learning methods to evaluate allosteric contribution from individual residues.

Allosteric community models divide different residues into different groups, referred to 

as communities. These allosteric communities are not necessarily correlated with protein 

secondary or tertiary structural components and could provide a higher level of information 

than pathway and network models. Zhou et al. [57] and Ibrahim et al. [58] developed a 

community analysis algorithm based on their machine learning based classification model 

for protein allostery. The allosteric communities are built in a way such that the impacts 

of external perturbations on the distribution differences are maximum across different 

communities and minimum within the same community. This algorithm was applied to 

reveal allosteric mechanism of fungal circadian clock photoreceptor Vivid (VVD), as one 

member of light-oxygen-voltage (LOV) domain, upon photo activation. Interestingly, two 

distal loop regions were identified in the same community. This means that despite the 

distance between these two secondary structures, residue pairs across these two loop regions 

in VVD carry minimal allosteric significance. On the other hand, these two loops together 

carry significant contribution to overall allosteric effects.

Stetz and Verkhivker [59] applied a graph-based model on Hsp70 chaperones to 

construct residue interaction networks. The allosteric communities in Hsp70 were 

constructed as stable clusters of residues along the simulations. Verkhivker and co-workers 

[60,61] developed allosteric community models for Hsp90 through residue interaction 

networks analysis and noted that different allosteric communities were correlated through 

intermodular pathways for long-range communications. They also applied the community 
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models to characterize functional mechanisms of Hsp90 allosteric modulation through 

binding with various allosteric modulators as well as other protein domains for its 

regulation [62,63]. Chen et al. [64] applied dynamic network analysis to build community 

model to reveal the regulatory effect on GPCR through binding with G-protein-mimicking 

Nanobody80 (Nb80). Both supervised (neural network) and unsupervised (principal 

component analysis) learning methods were used for feature extraction and key residues 

identification for dynamical response to binding event. In comparison to pathway and 

network models, allosteric community models do not target certain sites in protein and could 

provide a more comprehensive view of underlying protein allosteric mechanisms. Based on 

protein dynamics, these community models provide alternative views of protein structure 

related to allostery other than conventional primary, secondary, and tertiary structures. 

The communities within protein structures identified in these allosteric community models 

provide functional information regarding protein allostery in addition to convention 

secondary and tertiary structural information.

Machine learning approaches for prediction of allosteric binding sites, 

hotspots, and phenotypes, and applications in allosteric drug design

Allosteric drug development is among the most promising fields based on allostery for many 

reasons: the allosteric drugs could be more selective and less toxic with fewer side effects; 

they can either activate or inhibit proteins; they can be used in conjunction with orthosteric 

drugs. Discovery of allosteric drugs presents challenges beyond those encountered in 

orthosteric drug discovery. To address this challenge, Zhang and coworkers constructed 

AlloSteric Database (ASD) [65], which is a platform providing comprehensive information 

of allosteric proteins and their modulators. The database now contains a total of 1949 entries 

of allosteric proteins. ASBench [66], an optimized selection of ASD data, includes a core 

set with 235 unique allosteric sites and a core-diversity set with 147 structurally diverse 

allosteric sites. However, in many cases the location of allosteric sites is unknown. It is also 

difficult to accurately predict whether the drug will activate or inhibit the protein strength 

of the allosteric regulation [67,68]. Machine learning and deep learning, leveraging existing 

sample data to make predictions or decisions, can help predict the allosteric components.

Predicting allosteric sites

Several methods have been developed to detect and predict allosteric sites in proteins. These 

studies can be classified as sequence-based, structure-based, dynamics-based, normal mode 

analysis (NMA)-based, or combined prediction approaches [69]. Machine learning can help 

with the detection task since it can deal with numerous input features, including local or 

static features of pockets and delocalized or dynamic features of proteins (Table 1).

The static features, such as pocket volume, pocket flexibility, and pocket hydrophobicity, 

characterize the conformation of protein pockets, and further provide information for 

classifiers to identify allosteric sites. Akbar et al. [70] characterized allosteric pockets using 

a set of physicochemical descriptors and trained a predictive model based on Naïve Bayes 

and artificial neural networks. The predictive models were capable of prioritizing allosteric 

pockets in a set of pockets found on a given protein and were encapsulated in publicly 
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accessible program ALLO. Tian and Xiao et al. adapted an ensemble learning method 

combining eXtreme gradient boosting (XGBoost) and graph convolutional neural networks 

(GCNNs), and an automated machine learning method (AutoGluon and AutoKeras) to 

predict plausible allosteric sites. They deployed both models to Protein Allosteric Site 

Server (passer.smu.edu) [71,72]. Chen et al. [73] used the structures of the sites and the 

co-crystallized ligands to calculate 43 structural descriptors. These structural descriptors 

were used to build a three-way predictive model based on random forest to characterize 

protein-ligand binding sites as allosteric, regular or orthosteric. Huang et al. applied SVM 

for prediction of allosteric sites using static pocket features as well, leading to a web server 

Allosite [74].

Dynamic features were also used for allosteric site prediction because allostery is a 

dynamic behavior of the whole protein. Greener et al. utilized perturbed NMA and pocket 

descriptors in SVM to sort pockets in proteins and developed the AlloPred web server to 

predict allosteric pockets [75]. Song et al. [76] combined pocket features with NMA-based 

perturbation analysis to build a logistic regression model, AllositePro, to predicts allosteric 

sites in proteins.

Other features were also explored for allosteric site prediction. Mishra et al. [77] used 

various features at residue level, including amino acid physicochemical properties, rate of 

residue evolution, and features for protein geometry and dynamics, to build the Active and 

Regulatory site Prediction (AR-Pred) model. Fogha et al. [78] found that crystal additives 

(CA), which stabilize proteins during the crystallization process, tend to aggregate in protein 

hotspots, especially near the binding cavities, so that it can be a criterion to make site-type 

decisions. They proposed an efficient and easy way to use the structural information of CA 

to identify allosteric sites.

With comparable accuracy but using different methods, these prediction models for 

allosteric sites provide ample choice for users. One could also apply methods using different 

strategies in the same study and use the consensus results for better outcome. The workflow 

of an allosteric site analysis web-server AlloFinder is illustrated in Figure 3.

The reversed allosteric communication theory has been proposed [79] and achieved 

several successful studies. It is based on the premise that allosteric signaling in proteins 

is bidirectional and can propagate from an allosteric to an orthosteric site and vice 

versa [80,81]. Some of the reversed allosteric communication approaches are rooted in 

the dynamic network-based models of inter-residue interaction [82,83]. An integrated 

computational and experimental strategy exploited the reversed allosteric communication 

concepts to combine MD simulations with Markov state model (MSM) for characterization 

of binding shifts in the protein ensembles and identification of cryptic allosteric sites [84]. In 

MSM, the dimensionality reduction techniques are employed to generate suitable collective 

variables to characterize protein conformational space. The simulation of allosteric protein 

could be projected into the space using these collective variables as the distribution in the 

conformational space. Clustering methods are generally applied to cluster these distribution 

into metastable states. Accordingly, transition probability among these metastable states 

could be estimated based on the simulation data.
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Using the reversed allosteric communication concept, machine learning methods enable 

reconstruction and analysis of the comparative perturbed ensembles of the allosteric states 

and characterize redistribution of dynamic states in the inhibitor-bound versus inhibitor-free 

systems following allosteric binding [85]. It should be pointed out that these machine-

learning based models either as classification or regression models cannot account for the 

signal transduction between the distal sites and function related active sites as no such 

information is included in the training data to develop these models.

As the predicted allosteric sites could potentially be used directly for allosteric drug 

development and due to the recent breakthrough of protein structure prediction including 

AlphaFold2 and many others, the allosteric sites prediction methods possess huge potential 

and significance related to protein allostery.

Machine learning models based on deep mutational scanning

Currently, experimental data remain as the primary foundation for the development of 

allostery related computational models for understanding, predicting, and engineering 

biophysical properties of allosteric proteins. Emerging deep mutational scanning (DMS) 

experiments combine saturation mutagenesis of a protein with a high-throughput functional 

test and deep sequencing and provide unbiased and systematic single mutational information 

of target proteins. Such large and quantitative datasets enabled machine learning approaches 

to predict allosteric properties from sequence. Leander et al. [86] carried out DMS of 

four homologous bacterial allosteric transcription factors (aTF). They further developed 

prediction models using neural network model and genetic algorithms to identify hotspots 

of homolog proteins and to predict the structural and molecular properties of allosteric 

hotspots. Faure et al. [87] generated mutagenesis libraries of the C-terminal SH3 domain 

of the human growth factor receptor-bound protein 2 (GRB2-SH3) and third PDZ domain 

from the adaptor protein PSD95 (PSD95-PDZ3) domains containing both single and double 

amino acid substitutions. Neural network model was developed using DMS data to predict 

the binding free energy change upon single amino acid substitution on both systems. These 

prediction models were used to map the energetic and allosteric landscapes of the target 

domains.

These recent studies demonstrated the potential of DMS data to facilitate the development of 

machine learning based methods for protein allostery related properties at residue level and 

even theoretical landscaping models for protein allostery.

Evaluating allosteric effectors

Binding with allosteric modulators is the main allosteric perturbation in many cases. Some 

studies aimed to distinguish allosteric modulators from non-allosteric modulators. Several 

physically relevant compound descriptors of molecules were computed, and the feature 

differences were then connected into chemical property differences. Wang et al. [88] and 

Smith et al. [89] concluded that allosteric modulators are generally more aromatic, structural 

rigid, and more hydrophobic. This general idea can help with preliminary screening of 

allosteric modulators.
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Similar to using machine learning models to identify allosteric sites for proteins, machine 

learning models could be developed to classify modulators as allosteric or non-allosteric. 

For example, Hou et al. [90] trained six types of machine learning models using different 

combinations of features for a an 11-class classification task with 10 GPCR subtype classes 

and a random compounds class. It is the first work on the multi-class classification of GPCR 

allosteric modulators.

Other studies focus on developing generative models to build and evaluate allosteric 

inhibitors targeting various receptors. Different methods and training data were used to 

develop various machine learning based models with comparable performance. Bian et 
al. [91] first established a general molecule generation model (g-DeepMGM) with a half 

million compounds collected from the ZINC database, and then constructed a target-specific 

molecule generation model (t-DeepMGM) based on the transfer learning process of reported 

cannabinoid receptor 2 (CB2) ligands. Yang et al. [92] first trained a Transformer-encoder-

based generator on ChEMBL’s 1.6 million data sets to learn the grammatical rules of 

known drug molecules. Transfer Learning is used to introduce the prior knowledge of drugs 

with known activities against particular targets into the generative model to construct new 

molecules similar to the known ligands. Reinforcement Learning is used to combine the 

generative model and the predictive model to generate molecules with drug-like properties 

that are expected to bind well with the target.

Vennila et al. [93] utilized the voxelized representation of five different conformational 

states of PDK1 allosteric site, PIF pocket, to predict 1D SMILES imparted in LiGANN 

pipeline in playmolecule platform, in which, for a given protein shape, a generative 

adversarial neural network (GANN) produces complementary ligand shapes in a multimodal 

fashion. Huang et al. [94] built AlloFinder that identifies potential endogenous or exogenous 

allosteric modulators and their involvement in human allosterome. AlloFinder automatically 

amalgamates allosteric site identification, allosteric screening, and allosteric scoring 

evaluation of modulator–protein complexes to identify allosteric modulators, followed 

by allosterome mapping analyses of predicted allosteric sites and modulators in the 

human proteome. More recently, Miljkovic et al. [95] applied random forest, SVM, and 

DNN models to predict different classes of kinase inhibitors targeting different allosteric 

sites. Compounds were represented using molecular fingerprints without other structural 

information being considered. As the authors were struck by consistently good performance 

across different methods used in this study, this demonstrated that machine learning methods 

in general could extract key chemical features for certain properties using appropriate 

features.

Identifying receptors for allosteric inhibitors

In some scenarios, potential receptors need to be identified for known substrates 

with significant pharmaceutical effects. These substrates may include allosteric effectors 

interacting with pharmacology networks. Rodrigues et al. [96] developed a novel strategy 

to identify potential targets of known allosteric effectors using self-organizing map–based 

prediction of drug equivalence relationships (SPiDER) model. The SPiDER model uses a 

consensus of unsupervised self-organizing maps, consensus scoring, and statistical analysis 
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to identify potential targets for known active substrates. Using this approach, the authors 

identified 5-lipoxygenase as an allosteric inhibiting target for β-lapachone as a clinical-

stage, natural product with thorough validation. As an emerging field of computer-aided 

molecule design, there are many potential directions that machine learning methods could be 

applied specifically for allosteric modulator development.

Machine learning studies for allosteric protein design

One of the goals of studying protein allostery is developing novel proteins which carry 

improved or novel allosteric functions. As this is a new area, large amounts of data related 

to the allostery of different proteins have yet to be employed in the developing process. In 

an early study, Zayner et al. [97] studied over 100 mutations of Avena sativa light-oxygen-

voltage domain 2 (AsLOV2) as a light-activated protein. In this experimental study, the 

authors used various experimental methods to characterize the target mutations of AsLOV2. 

The biggest lesson learned through this study was that most mutations, which were expected 

to be highly disruptive substitutions, turned out to be modest or had no effect on function, 

even with many mutations displaying enhanced photoactivity. These counterintuitive results 

signify the importance of deeper and more comprehensive understanding of protein allostery 

in the effort to design an enhanced or novel allosteric molecular apparatus.

Weinkam et al. [98] used simulation data of a set of ten proteins and their mutations to 

build prediction models for allostery. They built a decision-based machine learning model 

with a wide range of features, including geometric- and energy-based features, to predict 

mutational effect on protein allosteric activity. This prediction function no doubt will help 

with the efforts of protein engineering to develop modified protein allosteric activities and 

functions. Xiao et al. [99] employed systematic machine learning approaches to analyze 

allostery of thrombin as a multifunctional serine protease at conformational ensemble level. 

Their study provided mechanistic insight into allostery of one key thrombin mutant with 

ample intramolecular interaction details.

Currently, successful cases of allosteric protein design are still mainly based on special 

expertise and experience of researchers. For example, García-Fernández et al. [100] 

developed a novel biosensor by fusing two ion channels, a tetrameric viral Kcv channel 

and the dimeric mouse TREK-1 channel, to a physiologically unrelated membrane protein, 

GPCR. The GPCR displayed regulatory effort toward both fused ion channels. A great 

deal of effort was spent to fine tune the length of linkers connecting GPCR with two ion 

channels. The success of the fusion between two physiologically unrelated allosteric proteins 

to design novel biosensors indicates a direction for computational studies based on structural 

and simulation data and machine learning modeling to identify potential candidates and 

appropriate design for linkers. In a more traditional study, D’Amico et al. [101] developed 

enhanced tryptophan synthases through mutations at a distant, surface-exposed network 

residue. It is expected that data-driven strategies using machine learning methods could 

catalyze the breakthrough in allosteric proteins designs in the near future.

There is at least one study using a machine learning method to model evolutionary relations 

among allosteric proteins. Astl and Verkhivker [102] used a systematic approach and carried 
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out ENM analysis of 235 unique allosteric protein entries from ASBench. Using residue 

interaction networks models of the target proteins, they evaluated the coevolutionary of key 

residues for different allosteric proteins and identified unifying molecular signatures shared 

by allosteric systems. The application of their models on protein kinases revealed molecular 

signatures of known regulatory allosteric residues. Allostery related protein evolution is 

relatively uncharted area, mainly due to the lack of unified theoretical models for protein 

allostery. The applications of suitable machine learning models to correlate protein allosteric 

mechanism with evolution point to a new direction of deciphering protein allostery.

Concluding remarks and future perspectives

Allostery is an intrinsic but elusive ubiquitous phenomenon in proteins. We have reviewed 

research progress in protein allostery using machine learning methods in various frontiers. 

Although many theories and models were developed to interpret this phenomenon, there 

is no simple equation to quantify allostery. Machine learning helps explain the mechanism 

in different dimensions, residues, pathways, networks, and communities. As there is no 

universal theory for all allosteric regulations, it could be the case that protein allostery theory 

or mechanisms cannot be unified given the diversity of proteins structures and dynamical 

behaviors.

Important implementations of protein allostery include prediction of various protein 

allostery related properties. Suitable for processing large amounts of data and developing 

reliable prediction models in general, data-driven machine learning methods have been 

applied to develop computational models to predict protein allosteric binding sites and 

modulators. Those prediction models have been made available with easy access to the 

research community and have been widely used in many studies related to protein allostery. 

The biggest impact made to protein allostery studies using machine learning methods 

is mainly in applications. This was demonstrated by the emphasis on machine learning 

method-based approaches that focused on allosteric mechanisms of SARS-CoV-2 (Box 1) 

and modulators as ligands to target various receptors in SARS-CoV-2 (Box 2).

Despite the promising developments presented in this review, the readers should also be 

aware of the limitation of the machine learning based methods for protein allostery study. In 

general, the usage of a machine learning model is restricted by the training data source and 

model construction. Machine learning based models may not lead to a universal theory to 

explain general allosteric events.

Nevertheless, given the success in numerous studies of protein allostery using machine 

learning methods, we expect to see the current trend to continue with more applications 

using machine learning methods suitable for protein systems, especially dynamical 

processes. Due to the uniqueness of protein systems, there is a need to develop machine 

learning methods for different purposes, including dimensionality reduction methods with 

accurate decoding functionality, time-dependent data series analysis, and features suitable 

for chemical structures, protein structures and protein assembly structures. With more data 

available and deeper insight into protein allosteric mechanisms, we expect to see systematic 

development in allosteric protein engineering and even de novo allosteric protein design. 
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With continuous accumulation of more data and information in chemical and biological 

sciences related to protein allostery, there is increasing room and opportunities for advanced 

and specific machine learning methods to be integrated into this interdisciplinary field (see 

Outstanding questions).
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Glossary

Allosterome
is systematic identification of protein allosteric interactions. It provides entire allosteric 

landscapes for related proteins of interest.

Angiotensin-converting enzyme 2 (ACE2)
a vital element in the renin-angiotensin-aldosterone system (RAAS) pathway that is critical 

to the regulation of processes such as blood pressure, wound healing, and inflammation. 

ACE2 helps modulate the many activities of angiotensin II (ANG II). When the SARS-

CoV-2 virus binds to ACE2, it prevents ACE2 from performing its normal function to 

regulate ANG II signaling.

Cryogenic electron microscopy (Cryo-EM):
a microscopy technique applied to samples cooled to cryogenic temperatures. It can be used 

to provide 3D structural information on biological molecules and assemblies by imaging 

non-crystalline specimens. The structures of the samples are preserved by embedding in an 

environment of low temperature.

Elastic network model (ENM)
a computational model used to describe proteins as structured elastic objects at a 

coarse-grained level. In ENM, proteins are treated as points in space with mass and 

connected by springs. ENMs can provide essential vibrational dynamics associated with 

the given structure and have been widely used to study protein dynamics, function, and 

conformational changes.

Fluorescence resonance energy transfer (FRET)
a distance-dependent physical process by which energy is transferred nonradiatively from an 

excited molecular fluorophore (the donor) to another fluorophore (the acceptor) by means of 

intramolecular long-range dipole–dipole coupling. FRET can be an accurate measurement of 

molecular proximity at distances between 10 and 100 Å and highly efficient if the donor and 

acceptor are positioned within the Förster radius (the distance at which half the excitation 

energy of the donor is transferred to the acceptor, typically 3–6 nm).

Hydrogen–deuterium exchange mass spectrometry (HDXMS)
protein is exposed to D2O and induces rapid amide H → D exchange in disordered regions 

that lack stable hydrogen-bonding. Tightly folded elements are much more protected from 
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HDX, resulting in slow isotope exchange that is mediated by the structural dynamics 

(“breathing motions”) of the protein.

Machine learning
part of artificial intelligence, which leverages data to improve performance on sets of tasks. 

It builds a model based on sample data, known as training data, to make predictions or 

decisions without being explicitly programmed to do so.

Markov state model (MSM)
a theoretical model employed to study the allosteric regulatory events. The first step is 

using robust dimensionality reduction techniques to identify suitable collective variables. 

Simulation data can be projected and represented by these collective variables. Clustering 

methods are applied to divide the projection of simulation into metastable states. Transition 

probabilities among these metastable states could be estimated based on the simulation data.

Molecular dynamics (MD) simulation
a computational method for analyzing the movements of atoms and molecules in space. The 

MD trajectories of atoms and molecules are determined by numerically solving Newton’s 

equations of motion for a system of interacting particles. The forces between the particles 

and their potential energies are calculated using molecular mechanics force fields. These 

simulations can capture a wide variety of important biomolecular processes, including 

conformational change, ligand binding, and protein folding.

Normal mode analysis (NMA)
provides vibrational modes accessible to a system in an equilibrium state, approximating the 

system in harmonic potentials. This computational model has been applied to identify and 

characterize the slow and global motions in a macromolecular system.

Nuclear magnetic resonance (NMR) spectroscopy
used to obtain information about the structure and dynamics of proteins, nucleic acids, and 

their complexes. The sample is placed inside a powerful magnet to measure the absorption 

of radio frequency signals. Types of nuclei and distances between adjacent nuclei can be 

determined from absorption information and can be used to determine the overall structure 

of the protein. NMR spectroscopy can monitor both conformations and dynamics and can be 

applied to partially unfolded proteins.

X-ray crystallography
an experimental technique to determine the 3D structure of a compound in crystal. The 

crystallized sample is exposed to an X ray beam to obtain diffraction patterns. These patterns 

can be processed to yield information about the crystal packing symmetry, the size of the 

repeating unit, and a map of the electron density. The molecular structure can be built and 

refined based on electron density information from diffraction patterns.
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Box 1.

Allosteric mechanisms for SARS-CoV-2 viral spike protein

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 

emerged in 2019 and then quickly spread around the globe. The infection involves 

the attachment of the receptor-binding domain (RBD) of the SARS-CoV-2 viral spike 

(S) protein to the angiotensin-converting enzyme 2 (ACE2) receptors on the peripheral 

membrane of host cells [103]. The open and closed conformations of ACE2 differ from 

each other by the degree of opening of the catalytic site cleft of the peptidase domain. 

These structural insights identified ACE2 as a viable target to block S1 recognition 

through allosteric control of open–closed transitions necessary for S1 recognition 

[104,105].

Extensive studies have revealed that SARS-CoV-2 shares many biological features 

with but has higher infectivity than SARS-CoV [106]. Delgado et al. [107] aimed 

to understand the host receptor recognition mechanism of SARS-CoV-2 to explain 

this. Affinity propagation algorithm, an unsupervised machine learning algorithm was 

employed for clustering analysis of CoV and CoV-2 spike-ACE2 systems. Trozzi et al. 
[108] developed a Collective Variable-guided Convolutional Neural Network (CV-CNN) 

model as a novel scheme to capture the functional and structural differences of ACE2 

extracellular N-terminal peptidase domain (PD). The REDAN model was employed to 

obtain the pathway information of residue-residue interactions that characterize ACE2 

PD functional dynamics. Uyar et al. [109] distinguished several all-atom molecular 

dynamics simulations by linear discriminant analysis (LDA) method to show persistent 

differences in the ACE2 structure upon binding. This allows the prediction for which 

compounds lead to free versus bound states and to pinpoint long-range ligand-induced 

allosteric changes in the ACE2 structure. Ray et al. [103] focused on the correlations 

between the RBD and residues in distant, allosteric sites. These computational studies 

provided insight at the atomistic level into the infection process of SARS-CoV-2 virus 

and paved the way for allosteric drug design to cope with COVID-19.
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Box 2.

Allosteric drug development against SARS-CoV-2 virus

During the COVID-19 pandemic, developing drugs based on an allosteric mechanism of 

recognition between SARS-CoV-2 spike protein and ACE2 proteins was an important 

strategy. Iyengar [110] used the machine learning method Partial Order Optimum 

Likelihood (POOL) to predict allosteric binding sites in protein structures from SARS-

CoV-2. Some other studies focused on identifying allosteric modulators for either SARS-

CoV-2 spike proteins or ACE2 as potential drug. Karki et al. [104] introduced an 

application of a deep neural network-based drug screening method, validating it using 

a docking algorithm on approved drugs for drug repurposing efforts, and extending the 

screen to a library of 750,000 compounds. Jain et al. [111] built predictive models, 

using both machine learning and pharmacophore-based modeling, with the screening data 

from the SARS-CoV-2 cytopathic effect reduction assay. Experimental testing with live 

virus provided 100 active compounds out of the predicted hits from the screening result 

of optimized models. SARS-CoV-2 main protease (Mpro) is required for maturation of 

the virus and infection of host cells, so the key question is how to block the activity 

of Mpro. Kaptan et al. [112] combined atomistic simulations with machine learning 

methods, the Gaussian Mixture Model (GMM) and the Partial Least Squares based 

Functional Mode Analysis (PLS-FMA) model, and found that the enzyme regulates its 

own activity by a collective allosteric mechanism that involves dimerization and binding 

of a single substrate. Their results suggest that dimerization of main proteases is a 

general mechanism to foster coronavirus proliferation and propose a strategy that does 

not depend on the frequently mutating spike proteins at the viral envelope. Verkhivker 

and co-workers [113–119] have done a series of computational work to explore allosteric 

mechanisms and potential regulatory effects of SARS-CoV-2 spike proteins for different 

strains (Figure I). They applied different allosteric models using various machine learning 

methods to formulate allosteric interaction pathway and networks model for the binding 

of the SARS-CoV-2 spike proteins. These studies demonstrate the positive impact that 

advanced and mature computational modeling of protein allostery using machine learning 

methods could exert on real global public health emergency.

Xiao et al. Page 21

Trends Biochem Sci. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure I. 
Landscape-based protein stability analysis and network modeling of multiple 

conformational states of the SARS-CoV-2 spike D614G mutant. Multiple computational 

methods and models were employed in this study of SARS-CoV-2 spike protein 

allostery focusing in on its D614G mutant. Coarse-grained simulations were carried 

out for trimers of this protein. Residue interaction networks were identified based on 

both dynamic correlations and coevolutionary residue couplings. A community model 

was built based on a graph theory representation of protein structure. The impact on 

protein allostery through mutational perturbation was revealed through both network and 

community models. The ensemble-based analysis characterizes the dynamic signatures 

of the conformational landscapes for the target protein. The combination of multiple 

allosteric models reveals a hinge-shift mechanism leading to the increased stability of the 

open form in the mutant. [119]
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Outstanding questions

How the underlying mechanisms for protein allostery could be formulated at different 

structural levels, including individual residues, allosteric pathways, and networks?

How could the advanced experimental technics, such as single molecule FRET, be used 

to characterize protein allostery at microscopic level?

Could protein ensembles generated from simulations be used directly to shed light on 

underlying allosteric mechanisms?

With their strength in analyzing large amount of data to build highly performing 

prediction models, how could machine learning methods be used to develop prediction 

models for allosteric sites?

How could potential modulators targeting allosteric proteins with desired properties be 

effectively developed using machine learning based approaches?

Is it feasible to engineer or even develop novel allosteric proteins with desired properties? 

If so, how could machine learning methods be used to facilitate these developments?

How could machine learning-based computational analysis and prediction methods 

related to protein allostery be used to address the pharmaceutical challenges caused by 

COVID-19 pandemic?
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Highlights

Machine learning methods provide unprecedented opportunities for the studies in 

understanding and exploiting protein allostery.

Large amount of data including simulations related to protein allostery were subjected 

to various types of machine learning methods to provide deeper insight into 

underlying allosteric mechanisms at levels of allosteric residues, pathways and networks, 

communities, and protein ensembles.

Machine learning methods have done exceptionally well to develop prediction models for 

protein allosteric properties, including allosteric sites and effectors.

Allosteric protein engineering and design are emerging fields with accumulating 

information for further applications of machine learning methods.

Protein allostery played a key role in many computational studies using machine learning 

methods targeting SARS-CoV-2 virus, aiming to mitigate the COVID-19 pandemic.
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Figure 1. 
Solving the puzzle of allostery with machine learning. Protein allostery has been 

investigated from multiple aspects, including fundamental theories, allostery mechanisms, 

allostery related properties, and allosteric protein design. With increasing amounts of 

information and data related to allostery available, machine learning methods add another 

piece to the puzzle and have been employed more widely to study protein allostery in 

various areas.
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Figure 2. 
Allostery study facilitated by machine learning. Due to the lack of a universal theoretical 

framework for protein allostery, the mechanisms of allostery have been elucidated in 

multiple levels. At the residue level, key individual residues are identified as important 

for functions of the target allosteric proteins. At the pathway level, allosteric pathways 

consisting of multiple residues are identified as main communication channels between 

the allosteric site and the main functional site. In some cases, multiple pathways could 

form networks to enable allosteric signal transduction within the protein structure. The 

allosteric community comprises a group of closely related residues associated with allostery. 

Allosteric protein structure could be divided into several communities which interact with 

each other synergistically to carry out allosteric function. From dynamical point of view, 

proteins need to transition between different functional states when fulfilling their allosteric 

functions. These allosteric functional states could be identified through both computational 

and experimental studies.
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Figure 3. 
The workflow of AlloFinder. After the user uploads a query protein to AlloFinder, all 

putative allosteric sites on the protein are predicted. The user can choose one allosteric site 

to screen a predefined ligand library virtually. The pocket-generated pharmacophore model 

for the selected allosteric site is generated for quickly ruling out unbound compounds in the 

library. Conformational sampling of an ensemble of docked conformations are performed 

for each compound. The most favorable binding energy of each compound is evaluated and 

ranked. The top 100 compounds are provided by the AlloFinder server. Finally, the predicted 

allosteric sites and modulators are harnessed to perform allosterome mapping analyses in the 

human proteome. [94]
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Table 1.

Representative allosteric site prediction methods

Features Methods Datasets
a Refs

Static pocket features Naïve Bayes and neural networks ASD and ASBench [70]

Static pocket features GCNN with XGBoost ASD [71]

Static pocket features Automated machine learning ASD and ASBench [72]

Static pocket features Random forest
ASD 

b [73]

Static pocket features Support vector machine ASD [74]

Pocket features with NMA perturbation Support vector machine ASBench [75]

Pocket features with NMA perturbation Logistic regression ASBench [76]

Features at residue level Random forest ASBench [77]

Crystal additive location DBSCAN
ASD and ASBench

c [78]

a
The original datasets used to obtain allosteric site data. The data was filtered for high-resolution and non-redundant structures, individually.

b
The PDBbind database was used to obtain information on orthosteric sites.

c
The RCSB protein data bank was used to obtain protein-crystallographic additives complexes.
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