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Abstract

Cryo-Electron Microscopy (cryo-EM) has emerged as a key technology to determine the structure 

of proteins, particularly large protein complexes and assemblies in recent years. A key challenge 

in cryo-EM data analysis is to automatically reconstruct accurate protein structures from cryo-EM 

density maps. In this review, we briefly overview various deep learning methods for building 

protein structures from cryo-EM density maps, analyze their impact, and discuss the challenges 

of preparing high-quality data sets for training deep learning models. Looking into the future, 

more advanced deep learning models of effectively integrating cryo-EM data with other sources 

of complementary data such as protein sequences and AlphaFold-predicted structures need to be 

developed to further advance the field.
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1. Introduction

Cryo-EM is revolutionizing structural biology due to its unique capability of determining 

the structures of large protein complexes and assemblies. The atomic-resolution structure 

determination for proteins enabled by cryogenic electron microscopy (cryo-EM) [3], allows 

us to understand the complex biological processes carried out by proteins as well as to 

identify potential therapeutic protein targets for drug discovery. However, reconstructing 

de novo protein structures from high-resolution (~ 3 - 4 Å) cryo-EM density maps, which 

accounts for a large portion of cryo-EM density maps deposited currently in the EMDB [2], 

is time-consuming and challenging when homologous template structures for target proteins 

are not available. For instance, as shown in Figure 1, in the current year 2022, only about 

12,500 out of 22,300 density maps of high-resolutions deposited to EMDB have a complete 

atomic structure available in Protein Data Bank (PDB) [40].

Accurately reconstructing protein structures from cryo-EM maps is a challenging process 

because the data is often noisy and incomplete and target protein structures can be large 

and complex. Traditional methods based on energy optimization such as EM-Fold [23], 

Gorgon [24], Rosetta [25], Pathwalking [26], MAINMAST [27, 28], VESPER [51], and 

Phenix [29] have made valuable progress in reconstructing protein structures from cryo-EM 

density maps. These methods rely on extensive physics-based or statistical potential-based 

optimization algorithms that require high computational resources. These methods often 

need manual intervention and trials to extract features from the cryo-EM density maps to 

obtain accurate reconstruction of protein structure.

A different strategy to automatically determine protein structures from cryo-EM density 

maps is to use the data-driven machine learning approach [44], a kind of artificial 

intelligence (AI) technology, to directly learn a mapping from cryo-EM density maps to 

protein structures from the large amount of known cryo-EM data and their corresponding 

protein structures (i.e., labels). Early AI methods in the field are based on shallow 

machine learning techniques such as k-nearest neighbor, support-vector machines, or k-

means clustering techniques. These methods such as RENNSH [30], SSELearner [31], and 

Pathwalking [26] are able to identify only secondary structures or simplified backbone 

structures and often are unable to achieve the optimal solution.

To overcome the challenges of the traditional optimization methods and early machine 

learning methods, deep learning methods [45] have been developed to automatically 

reconstruct three-dimensional (3D) protein structures from cryo-EM density maps with 

significant success in recent years (see Figure 2 for a summary of a general cryo-EM 

protein structure determination pipeline powered by deep learning). In this article, we review 

the recent development of deep learning technology in the field, analyze their impacts, 

investigate the challenging issues in preparing data to train deep learning models, and 

discuss some new trends to further advance the field.

2. Deep learning reconstruction of protein structures from cryo-EM density maps

Deep learning, also called deep neural network, is currently the most powerful machine 

learning method of predicting the properties of an object from the input data describing the 
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object. It has achieved great success in many fields including a recent major breakthrough 

in predicting protein structure from sequence by AlphaFold [1]. Compared to other machine 

learning methods, deep learning has a unique capability of extracting informative features 

for pattern recognition from raw data automatically, making it suitable for reconstructing 

protein structures from raw density maps in which only a large amount of numbers rather 

than informative features are available.

It is worth noting that deep learning has been applied to almost all the areas of cryo-EM 

data analysis [35, 32, 19, 20, 21, 22, 38] from sample preparation, particle picking, density 

map denoising, and to the final step of 3-D structure determination. Due to the space limit, 

this review is focused on the last step of cryo-EM data analysis - reconstructing protein 

structures from density maps. The deep learning architectures designed for this task and how 

to prepare data to train them are discussed in the two subsections below.

2.1 Deep learning architectures for reconstructing protein structures from cryo-EM 
density maps

Deep learning methods for inferring protein structures from cryo-EM density maps can be 

classified into different categories based on the neural network architectures, for example, 

convolutional neural network (CNN) [33], U-Net [34, 43], graph convolutional network 

(GCN) [41], and long- and short-term memory network (LSTM) [42] they use and the 

output (e.g., 3D structure and secondary structure) they generate from density map input. 

Early deep learning methods aimed to identity secondary structures from low- and medium-

resolution density maps [11]. As more and more high-resolution density maps became 

available [3], recent deep learning methods targeted at directly reconstruct 3D backbone 

structures (i.e., locations of carbon and nitrogen atoms on the protein backbone) and even 

full-atom 3D structures (i.e., locations of all/most heavy atoms and amino acid identity/type) 

from density maps [10, 7, 14, 15, 16]. An example of deep learning reconstruction of protein 

structure from cryo-EM density map is showed in Figure 3.

One of the most widely used deep learning architectures of obtaining protein structural 

information from density maps is convolution neural network (CNN). CNNs use a 

mathematical operation known as convolution to extract features from spatially organized 

data such as a 2D-image or 3D density map to predict the properties of the data (e.g., 

classifying voxels in a density map into amino acid types). Several CNN methods (mostly 

3D-CNN architecture) including Generator [7], Emap2sec [8], AAnchor [9], CNN Based 

[11], Cascaded-CNN [10], and CR-I-TASSER (mostly 3D CNN) [15] have been developed 

to determine secondary structures [8, 11], backbone-/full-atom 3D structures [15, 7, 9] 

or both from cryo-EM density maps [10]. Cascaded-CNN is the first deep learning de 

novo method of directly reconstructing 3D structures of proteins from cryo-EM density 

maps, even though it focuses on building backbone structures. CR-I-TASSER combines 

the 3D-CNN prediction from cryo-EM maps and an advanced protein structure prediction 

method - I-TASSER [46] to build full-atom protein structures.

Another widely used convolutional neural network architecture in the field is U-Net [34], 

originally designed for biomedical image classification and segmentation tasks. U-Net 

consists of a series of convolution-based down-sampling layers to condense the input 
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images into smaller dimensions and a series of convolution-based up-sampling counterpart 

layers to reconstruct the data of the same dimension as in the down-sampling process to 

classify/segment pixels in the input images. Compared to the standard CNN architectures, 

U-Nets can be more effective in extracting multi-level abstract representations of the data 

through the down-sampling and up-sampling processes. The 2D U-Net architecture has 

been generalized to 3D U-Net architectures in Haruspex [12] and EMNUSS [17] to detect 

secondary structures from cryo-EM density maps (e.g., Figure 4, and 5), and in DeepTracer 

[13] and EMBuild [16] to reconstruct 3D protein structures from cryo-EM density maps. 

DeepTracer has been successfully applied to reconstruct the structures of some SARS-CoV 

proteins from cryo-EM density maps (e.g., Figure 3).

In addition to CNN and U-Net, other deep learning architectures such as graph convolutional 

networks (GCN) and long- and short-term memory network (LSTM) have also been used 

with CNN to reconstruct protein structures from cryo-EM density maps [7]. A summary of 

different deep learning-based methods, their function (e.g., input and output) and availability 

is presented in Table 1.

Inspired by the recent breakthrough in developing deep learning methods of predicting 

protein structures from sequences such as AlphaFold [1] and RoseTTAFold [5], a new 

trend is to integrate deep learning methods of reconstruct protein structures from cryo-EM 

density maps with the advanced computational (e.g., deep learning) methods of predicting 

protein structures from sequences to obtain more accurate structural models. For instance, 

DeepTracer ID [14] first uses DeepTracer to build an initial structure from cryo-EM density 

maps and then search the structure against a database of AlphaFold-predicted structures 

to identify similar structural hits to enhance the reconstructed structure. EMBuild [16] 

combines the structures reconstructed from cryo-EM maps, AlphaFold-predicted structural 

models and other protein structural refinement methods to construct accurate structures for 

protein complexes. ModelAngelo [18] refines the geometry of protein chains by combining 

information extracted from cryo-EM data, prior knowledge of protein geometries, and 

amino acid sequence data. DeepProLigand [4] integrates the protein structural models 

reconstructed from cryo-EM density maps by DeepTracer with the known template 

structures containing ligands to model protein-ligand interaction, which was ranked first 

in the ligand prediction in 2021 EMDataResource Ligand Model Challenge.

3. Data preparation for training deep learning methods to reconstructing 

protein structures from cryo-EM density maps

3.1. Cryo-EM density map data collection

Collecting a sufficient amount of high-quality data to train and test deep learning models is 

critical for any deep learning task. The common way to acquire the experimental cryo-EM 
density maps is through the Electron Microscopy Data Bank [2]. An alternative approach 

employed by some methods such as Cascaded-CNN [10] and SSELearner [31] is to simulate 

the density map from the PDB protein structure. Cascaded-CNN applies pdb2mrc from 

EMAN2 package [50], and VESPER uses pdb2vol from Situs package [52] to generate 

the simulated maps. However, simulated maps lack complex noise, missing density values, 
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and experimental artifacts which can arise from particle alignment errors, interaction of 

electron beam with the atoms, or movement of atoms during image capture. Therefore, 

the deep learning models trained on simulated maps may not work as expected on very 

noisy experimental data. To address the problem, CR-I-TASSER, EMNUSS and Emap2sec 

employs a hybrid training approach that uses both simulated maps and experimental maps in 

the training and validation process.

3.2. Training data preprocessing

Prior to using the cryo-EM density map to train deep learning models, it is generally 

necessary to normalize and standardize the data to make them suitable for deep learning 

as shown by Cascaded-CNN and DeepTracer, which perform data grid resampling, density 

value normalization, and grid division. These preprocessing steps ensure the uniformity 

among density maps and help deep learning models to extract features and recognize 

patterns more easily. During the grid division, the 3D cryo-EM is splitted into the cubes 

of a specific size (e.g., 64 × 64 × 64 Å3 by Cascaded-CNN and DeepTracer, 50 × 50 × 50 

Å3 by CR-I-TASSER, 40 × 40 × 40 Å3 by Haruspex, and 11 × 11 × 11 Å3 by Emap2sec and 

AAnchor). Each of these cubes is then processed by the deep learning method to classify 

the voxels into the targeted classes such as amino acid types (identities) and secondary 

structures.

4. Future directions

Deep learning has made a significant impact on protein structure reconstruction from cryo-

EM density maps. However, the field is still in the early stage of development. The latest 

deep learning technology such as graph neural networks [53] and attention mechanisms 

[47] have not been extensively used in the field. While CNNs and U-Nets based on 

convolution are currently the most used methods for structure reconstruction, they have 

some short-coming for 3D structural modeling. CNNs are translation-equivariant, but not 

fully rotation invariant that is desirable for 3D structure analysis. Moreover, the convolution 

mechanism propagates message in the constrained local receptive field, which is not as 

effective as the attention mechanism [47] that can leverage all the input information by 

automatically weighting the input features according to their relevance as demonstrated by 

the remarkable success of AlphaFold2 in protein structure prediction. More sophisticated 

deep learning models like attention-based Transformer models [36], 3D-equivariant graph 

neural networks [37], and AlphaFold2-like deep learning models need to be developed to 

better use cryo-EM data to improve reconstruction accuracy.

Another important direction is to use deep learning to integrate cryo-EM data with 

multiple other sources of complementary data such as protein structural models predicted 

from sequences, structural templates in the Protein Data Bank, and protein sequences to 

more accurately reconstruct protein structures from noisy density maps that often miss 

the density values of some atoms. The current integration process is limited to shallow 

data combination. For instance, DeepTracer ID uses AlphaFold models to refine the 

structural models predicted from structural models reconstructed from deep learning. More 

comprehensive, end-to-end deep learning models to combine multiple sources of data to 

Giri et al. Page 5

Curr Opin Struct Biol. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



generate accurate final protein structures can be developed to automatically and accurately 

reconstruct protein structures from the data.

Moreover, it is important to integrate cryo-EM based deep learning methods of 

reconstructing protein structures with the advanced methods developed in the field of protein 

structure prediction. The structural models directly reconstructed from cryo-EM data by 

deep learning generally have correct overall topology, but the reconstructed models may not 

satisfy physicochemical restraints such as bond length and bond angles and not have all 

the molecular details (e.g., the precise location of all side chain atoms) [10, 4]. Linking the 

atoms of amino acids identified from the density maps into full peptide chains consistent 

with protein sequences and physical-chemical restraints is still challenging. However, the 

modeling techniques such as protein structure refinement and molecular dynamics to fix 

these problems have been established for protein structure prediction [1]. Some methods 

such as CR-I-TASSER have started to integrate the two kinds of technologies. More 

synergistic integration of the two are needed to generate high-quality realistic protein 

structures from cryo-EM data.

The development of high-quality deep learning models to reconstruct protein structures 

from cryo-EM density maps critically depends on the availability of sufficient high-quality 

training data. Although experimental cryo-EM data and its related ground truth structure are 

freely accessible through EMDB [2] and RCSB PDB [40], these datasets still need to be 

pre-processed and labeled before they can be used for deep learning training. Curating a 

large amount of high-quality training and test data is challenging and time consuming, but 

often receives little attention. Currently, there are few well-curated experimental cryo-EM 

data sets publicly available for training and evaluating deep learning models in the field. 

Therefore, more effort needs to be devoted to creating such data sets and make them to 

publicly available for the community to use.

5. Conclusion

A number of useful deep learning models have been developed to reconstruct protein 

structures from cryo-EM density maps, demonstrating deep learning is a promising 

technology to further push the frontier of applying cryo-EM technology to determine protein 

structures. As the deep learning field is evolving very fast, many more state-of-the-art 

deep learning architectures (e.g., AlphaFold2-like models and transformers) have yet to be 

applied to further advance the emerging field. More sophisticated deep learning methods 

need to be developed to seemlessly integrate cryo-EM data with other complementary data 

such as predicted protein structures, protein sequences, and template structures to further 

improve cryo-EM-based structure determination. A synergistic integration of cryo-EM based 

protein structure determination techniques and latest protein structure prediction techniques 

is also important for generating highly accurate native-like protein structures. To speed up 

the development, more effort is need to create a large amount of high-quality cryo-EM 

training and test data for the community to use.
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Highlights

• Deep learning is a promising technique for efficient, automatic, and accurate 

reconstruction of protein structures from cryo-EM density maps

• Advanced convolutional neural networks and U-Nets have been successfully 

applied to reconstruct protein structures from high-resolution cryo-EM 

density maps

• Creating high-quality cryo-EM data sets for training and testing deep learning 

methods is important and there is a significant need of curating such data sets 

to facilitate the development of deep learning methods

• Better structure reconstruction can be obtained by combining AlphaFold 

predicted structure models and cryo-EM data and by integrating cryo-EM 

based structure determination techniques and protein structure prediction 

techniques.

• More advanced deep learning architectures and better integration of multiple 

sources of complementary data are needed to advance the field
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Figure 1: 
The growth of cryo-EM density maps and cryo-EM-derived protein structures and the 

distribution of the resolution of the density maps. The statistics was obtained from 

EMDataResource [2], an unified data resource for 3-Dimension electron microscopy 

(3DEM) on 2022-09-14.
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Figure 2: 
A summary of a cryo-EM density map generation and protein structure reconstruction 

pipeline powered by deep learning. The density map (EMD-22898) illustrated in the figure 

is for SARS-CoV-2 ORF3a [39]. PDB ID: 7KJR.
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Figure 3: 
An example of reconstructing a structure from the cryo-EM density map of SARS-CoV 

spike gycoprotein by deep learning. (a) Density map of SARS-CoV spike glycoprotein [48] 

(EMD-6732) in resolution of 3.8 Å at recommended contour level of 0.06 (11.0 σ). (b) 
The structure reconstructed from EMD-6732 by a deep learning method - DeepTracer. The 

RMSD is 1.023 Å with respect to the ground truth structure (PDB ID: 5XLR). (c) The 

overlay of the density map and reconstructed structure at 0.5 transparency level by UCSF 

ChimeraX [49].

Giri et al. Page 14

Curr Opin Struct Biol. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
An example of secondary structure annotation in cryo-EM density map of SARS-CoV 

spike gycoprotein [48] (EMD-6732) by deep learning. PDB ID: 5XLR. (a) Haruspex [12] 

predicted strands in transparent gray overlapped with deposited PDB structure strands. 

(b) EMNUSS [17] predicted strands in transparent gray overlapped with deposited PDB 

structure strands.

Giri et al. Page 15

Curr Opin Struct Biol. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
An example of secondary structure annotation in cryo-EM density map of SARS-CoV 

spike gycoprotein [48] (EMD-6732) by deep learning. PDB ID: 5XLR. (a) Haruspex [12] 

predicted helices in transparent gray overlapped with deposited PDB structure helices. 

(b) EMNUSS [17] predicted helices in transparent gray overlapped with deposited PDB 

structure helices.
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Table 1:

Summary of deep learning based methods for protein structure reconstruction from cryo-EM density maps.

Methods Architecture Function Open
source

Structure Generator[7] 3-D CNN, GCN, 
Bidirectional LSTM

First use 3-D CNN to identify amino acids and their rotameric identities 
in an EM map and then GCN and LSTM to build protein structures

✓

Emap2sec[8] 3-D CNN Take voxel cubes as input to identify secondary structures of protein ✓

AAnchor[9] 3-D CNN Take in voxel cubes to identify amino acid types and locations ✓

A CNN Based 
Method[11]

3-D CNN Take in voxel cubes to detect secondary structures of protein from 
background

×

CascadedCNN[10] Cascaded 3-D CNN Take in voxel cubes to identify Cα atoms of protein backbone and 
secondary structures to generate 3D protein structures

✓

Haruspex[12] 3-D U-Net Take in voxel cubes to predict the probabilities of 4 different classes; α-
helix, β-sheet, nucleotide, or unassigned to assign secondary structures

✓

DeepTracer[13] 3-D U-Net Take in voxel cubes to identify the location of backbone atoms, 
secondary structures and amino acid types simultaneously to build 
3D structure

×

DeepTracer ID[14] DeepTracer (3-D U-
Net) and pre-calculated 
AlphaFold2 protein library

Use DeepTracer to generate an initial 3D protein structure to search 
AlphaFold2DB to identify similar structural hits for refinement

×

CR-I-TASSER [15] 3-D CNN, I-TASSER Predict Cα using 3-D CNN for selecting structural templates for I-
TASSER to generate 3D protein structure

✓

EMBuild [16] 3-D U-Net++, AlphaFold Integrate AlphaFold structure pre-diction, FFT-based global fitting, 
domain-based semi-flexible refinement, and graph-based iterative 
assembling with main-chain probability maps predicted by U-Net++ 
to build 3D protein structure

✓

EMNUSS [17] 3-D U-Net++ Take in voxel cubes to identify secondary structures of protein ✓

ModelAngelo [18] Graph Neural Network Refines geometry of protein chains and classifies amino acid for each 
nodes 

×
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