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Abstract

Salmonella enterica is one of the most widespread bacterial pathogens found worldwide, resulting 

in approximately 100 million infections and over 200,000 deaths per year. Salmonella isolates, 

termed “serovars”, can largely be classified as either non-typhoidal or typhoidal Salmonella, 

which differ in regard to disease manifestation and host tropism. Non-typhoidal Salmonella causes 

gastroenteritis in many hosts, while typhoidal Salmonella is human-restricted and causes typhoid 

fever, a systemic disease with a mortality rate of up to 30% without treatment. There has been 

considerable interest in understanding how different Salmonella serovars cause different diseases, 

but the molecular details that underlie these infections have not yet been fully characterized, 

especially in the case of typhoidal Salmonella. In this review, we highlight the current state of 

research into understanding the pathogenesis of both non-typhoidal and typhoidal Salmonella, 

with a specific interest in serovar-specific traits that allow human-adapted strains of Salmonella to 

cause enteric fever. Overall, a more detailed molecular understanding of how different Salmonella 
isolates infect humans will provide critical insights into how we can eradicate these dangerous 

enteric pathogens.
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1. Introduction to typhoidal Salmonella

Salmonella enterica subspecies enterica is comprised of over 2,400 serovars that infect 

animal hosts via the fecal-oral route, resulting in a range of disease states ranging from self-

limiting gastroenteritis to lethal systemic infection [1]. Typhoidal Salmonella serovars S. 
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Typhi and S. Paratyphi A are clinically important, causing over 200,000 deaths world-wide 

and a significant burden on developing, under-resourced healthcare systems [2]. The H58 

lineage of S. Typhi is particularly problematic, as it is strongly associated with antimicrobial 

resistance and is rapidly becoming the most prevalent typhoidal lineage across the world 

[3]. Most individuals infected by typhoid fever live in South and Southeast Asia [4], and 

the emergence of an extensively drug-resistant (XDR) strain in these densely populated 

areas is extremely worrisome [5]. Infections with Typhi and Paratyphi A, which are human-

restricted pathogens, usually begin with ingestion of contaminated water or food. The 

pathogens invade the gastrointestinal mucosa, translocate to the lymphoid follicles where 

they survive and replicate within macrophages, and then disseminate to the intestinal lymph 

nodes, liver, spleen, bone marrow and gallbladder [4]. Vaccinations against typhoid fever are 

available but differ in regard to the protection they offer: the live oral Ty21a vaccines elicits 

some level of cross-protection against multiple strains of Salmonella [6], while the typhoid 

conjugate vaccines do not provide protection against paratyphoid fever, a cause of one in 

five cases of enteric fever in some areas of Asia [7]. Thus, an increase in paratyphoid fever 

cases in endemic areas is predicted to occur [8].

The restriction of Typhi and Paratyphi A to human hosts limits experimental approaches 

available to study the pathogenesis of enteric fever caused by these serovars. Typhimurium 

infection in mice is commonly considered a model system for studying the pathogenesis 

of typhoid and paratyphoid fever, but important differences among these serovars exist. For 

example, while both non-typhoidal and typhoidal Salmonella encode two type 3 secretion 

systems (T3SSs) on Salmonella pathogenicity islands (SPI) 1 and 2, which are required for 

translocating effector proteins into mammalian cells, prior studies have shown that the SPI-2 

T3SS is not required for the intracellular survival and replication of typhoidal Salmonella in 

the human macrophage (MΦ) cell line THP-1 [9,10] or for infection in a humanized mouse 

model [11]. In addition, many T3SS effector genes are either absent or pseudogenes in Typhi 

and Paratyphi A, and thus the functions of T3SS-1 and −2 and their effectors may be absent 

or altered in Typhi and Paratyphi A [1]. In this review we will discuss the genetic basis for 

divergent pathogenicity between serovars, key bacterial virulence factors underlying typhoid 

and paratyphoid infection, and the human immune basis for heterogeneous clinical outcomes 

(Fig. 1).

2. Evolution of human-restricted Salmonella serovars: divergence of 

typhoidal serovars from generalist serovars

The genetic basis underlying host-restriction of divergent Salmonella enterica serovars is a 

topic of considerable interest. While typhoidal and non-typhoidal Salmonella share >90% of 

genes, these serovars also encode hundreds of unique genes that may underpin differences 

in disease manifestations [12]. Many serovar-specific genes are within integrated prophage 

regions, which represent important sites of genetic diversity across bacterial genomes (Table 

1). Prophages often encode “cargo” genes that can significantly impact microbial behavior 

and virulence. For example, multiple genes encoding type III secretion system (T3SS) 

effectors are contained on prophage regions across Salmonella serovars, including sopE, 
sspH1, sseI, and sopE2. The importance of T3SSs during typhoidal Salmonella virulence 
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is discussed in more detail in Section 3 of this review. Other serovar-specific genes are 

found on Salmonella Pathogenicity Islands (SPIs), which are large, horizontally acquired 

genetic cassettes that often encode virulence genes (Table 1). For example, SPI-7,−15,−17 

and −18 are unique to typhoidal serovars, while SPI-14 is only found in non-typhoidal 

isolates. SPI-7 is an especially important region of the S. Typhi genome that encodes the Vi 

antigen, a capsular polysaccharide that coats the surface of the bacterium and contributes 

to virulence. More specifically, the Vi capsule prevents complement binding [13] and 

masks lipopolysaccharide (LPS) from TLR-4 recognition [14], thereby avoiding immune 

recognition. The Vi capsule has also recently been found to promote phagocytosis of S. 
Typhi by human macrophages while simultaneously allowing S. Typhi to evade phagocytosis 

by human neutrophils [15]. TviA, the transcriptional activator of Vi production, is contained 

within SPI-7 and can also suppress the expression of flagellin and T3SS-1, thereby allowing 

S. Typhi to evade TLR-5 and NAIP-mediated inflammatory responses [16]. Together, 

these findings suggest that Vi capsule production contributes to a “stealth” S. Typhi 

phenotype, which may allow S. Typhi to disseminate to systemic sites without eliciting 

strong inflammatory immune responses. Interestingly, S. Paratyphi A also causes enteric 

fever but does not encode the Vi capsule. Instead, S. Paratyphi A encodes fepE, which leads 

to the generation of very long O-antigen chains that help this pathogen escape the immune 

response by limiting inflammasome activation and subsequent cell death [17]. While non-

typhoidal strains of Salmonella also encode fepE, previous studies have shown that S. 
Paratyphi A expresses fepE at significantly higher levels compared to S. Typhimurium [17]. 

Modification of surface antigens may therefore be a convergently evolved mechanism of 

Typhi and Paratyphi A to evade the human immune system.

Several pathogenicity islands are also shared between typhoidal and non-typhoidal 

Salmonella, but there are many serovar-specific genes encoded within these regions. For 

example, SPI-11 is present in both non-typhoidal and typhoidal serovars, but this island 

contains genes that encode the typhoid toxin in S. Typhi and S. Paratyphi A, including cdtB 
and pltAB [18]. While the molecular details of how typhoid toxin benefits Salmonella in the 

host are still being investigated, previous work has shown that the typhoid toxin causes DNA 

damage and host cell cycle arrest in cultured intestinal epithelial cells [19] and in human 

primary gallbladder cells [20]. There are also observations linking the toxin to gallbladder 

cancer through a mechanism where the CdtB subunit causes DNA damage and subsequent 

activation of the p53/P21 axis [21], and indeed previous work has shown that patients who 

are carriers of typhoidal Salmonella are significantly more likely to develop carcinomas 

in the gallbladder compared to non-carriers [22]. In addition, researchers have shown that 

introducing typhoid toxin-encoding genes to S. Typhimurium increases the frequency at 

which asymptomatic carriers emerge in long-term murine models of Salmonella infection 

[23], while another study assessing a two-day infection of S. Typhi in humanized mice did 

not observe a typhoid toxin-dependent effect [11]. In agreement with this mouse study, one 

recent study in humans has suggested that the typhoid toxin is not required for virulence at 

the acute stage of typhoid fever [24]. Together, these studies suggest that this toxin may play 

a role in systemic virulence and long-term persistent infection, but may not be necessary 

during early stages of typhoid fever.
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Another distinguishing feature of typhoidal serovars is the large proportion of pseudogenes 

that are present in their genomes, which is a hallmark of genome degradation. 

Approximately 5% of the genome in sequenced typhoidal isolates are predicted to be 

pseudogenes, which arise either from single base mutations that result in frameshift 

mutations, or from the appearance of early stop codons [12]. These pseudogenes include 

loci that encode many different functions, including metabolic genes (ie, narW, wcaK), 

transporters (i.e., fhuA, mglA), chemotaxis genes (i.e., trg), and cell-wall related genes 

(i.e., dacD) [25,26]. One study has shown that the loss of the loss of the ydiQRSTD 
operon in S. Typhi, which is responsible for the utilization of butyrate by non-typhoidal 

Salmonella, may have contributed to the transition of S. Typhi from a gastrointestinal 

to an extraintestinal pathogen [27]. Interestingly, there are multiple virulence genes in S. 
Typhimurium that are pseudogenes in S. Typhi and/or S. Paratyphi A, including several 

SPI-1 and SPI-2 T3SS effectors (i.e., sopA, sseI, steB, sopE2, sseK2, and sopD2) [25]. 

sseI is also a pseudogene in non-typhoidal Salmonella belonging to the ST313 lineage, 

which causes systemic bacteremia in humans [28]; these invasive non-typhoidal Salmonella 
infections have been reviewed elsewhere extensively [29-32]. Previous work has shown that 

the loss of SseI contributes to the ability of ST313 Salmonella to hyperdisseminate from 

the gut to systemic sites [33] and thus the pseudogenization of sseI may contribute to the 

ability of ST313 Salmonella to cause systemic bacteremia. In addition, many genes encoded 

by non-typhoidal Salmonella that contribute to colonization of the gut are pseudogenes in 

S. Typhi and S. Paratyphi A, including the autotransporter misL, the adhesin-encoding gene 

siiE, and the type VI secretion system (T6SS) genes sciI and sciS [12]. It is likely that 

the loci mutated in S. Typhi and S. Paratyphi A are not necessary for systemic disease in 

humans. In agreement with this hypothesis, many of these virulence-related pseudogenes 

have been shown in S. Typhimurium to promote intestinal persistence, which is not a 

hallmark of typhoidal serovars [12]. More generally, gene loss has been found to result in 

fundamental changes in the behavior of numerous bacterial pathogens and can even enhance 

virulence phenotypes [34-38]. In the case of S. Typhi, it has been reported that the loss of the 

fepE gene enhances immune evasion mediated by the Vi capsule [39].

Although both S. Typhi and S. Paratyphi A encode many pseudogenes, there is little 

overlap in pseudogenes between these typhoidal serovars; for example, less than 20% 

of pseudogenes in S. Paratyphi A 9150 A are also pseudogenes in S. Typhi CT18 

[25]. This observation strongly suggests that S. Typhi and S. Paratyphi A have evolved 

independently to converge on the same disease phenotype. Based on the high number 

of pseudogenes in these serovars, it is likely that both S. Typhi and S. Paratyphi A 

primarily evolved via reductive evolution from a non-typhoidal ancestor, losing genes that 

are no longer necessary for survival or intracellular replication during the progression 

of typhoid fever [40]. Interestingly, reductive evolution appears to be a feature of other 

human-restricted pathogens including Mycobacterium leprae, Shigella flexneri, and human-

restricted strains of Bordetella spp [41-43]. In addition, recent work has suggested that some 

bioinformatically predicted pseudogenes in typhoidal Salmonella may produce functional 

proteins, although this finding should be confirmed experimentally by other groups [44]. 

Thus, a more careful analysis of pseudogenes in the above pathogens may yield deeper 
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insights into the molecular mechanisms by which human-restricted pathogens evolve to 

cause disease.

3. Molecular mechanisms underlying typhoid and paratyphoid 

pathogenesis

As previously mentioned, Salmonella encodes two T3SS, which are conserved between 

non-typhoidal and typhoidal Salmonella [45]. However, the repertoire of T3SS effectors 

differ between these serovars (Table 2). The roles that T3SS-secreted effectors play are best 

described for Typhimurium infections – ranging from manipulation of host cytoskeleton to 

immune evasion, intracellular trafficking and cell survival [45-47]. Differences in expression 

of T3SS and the effector repertoire between typhoidal and non-typhoidal serovars will be 

highlighted here.

T3SS-1, encoded in the SPI-1 locus, enables Salmonella species to gain a foothold in the 

gastrointestinal tract by triggering Salmonella uptake by non-phagocytic cells, including 

epithelial cells. Previous work has shown that the regulation of T3SS-1 dependent invasion 

may differ between non-typhoidal and typhoidal Salmonella. For example, Winter et. al. 

found that TviA, a transcriptional regulator that is only present in S. Typhi, positively 

regulates Vi capsule production and represses T3SS-1 expression [48]. In addition, S. Typhi 

up-regulates T3SS-1 and invasion of epithelial cells in response to bile, which is present in 

the gallbladder, whereas S. Typhimurium does not [49], which may partly explain why the 

gallbladder is a site of chronic S. Typhi infections in humans [50].

In addition to differences in T3SS regulation, the effectors encoded on these virulence 

loci also differ between non-typhoidal and typhoidal Salmonella (Table 2). For example, 

previous work has shown that many T3SS-1 effectors contribute to intestinal inflammation 

in S. Typhimurium [51], but some of these effectors are pseudogenes in S. Typhi and 

S. Paratyphi A. In turn, one hypothesis for why typhoidal serovars do not cause acute 

intestinal inflammation is genetic degradation of the specific T3SS-1 dependent effectors. 

For example, six T3SS-1 effectors, SipA, SopA, SopB, SopD, SopE, and SopE2, elicit 

neutrophil infiltration and fluid accumulation during S. Typhimurium infection of bovine 

illeal loops [52], but SopA and SopE2 are pseudogenized in S. Typhi [53]. Another 

potential hypothesis for reduced intestinal inflammation is that typhoidal serovars encode 

unique genes to specifically dampen inflammatory responses during intestinal infection. 

Interestingly, a T3SS-1 dependent effector present in S. Typhi, named StoD, is an E3/4 

ubiquitin ligase that likely causes degradation of host targets and may play a role in 

dampening immune responses [54].

After adhering to the surface of epithelial cells, T3SS-1 injects effector proteins into the host 

cell cytoplasm to facilitate internalization. S. Typhi and S. Typhimurium both induce T3SS-1 

dependent ruffling of epithelial cell surfaces upon invasion, indicating a conserved “trigger” 

mechanism of invasion caused by cytoskeletal rearrangement. The injected effectors SipA 

and SipC directly nucleate actin [55], while SopE and SopE2 initiate actin polymerization 

through host GTPases Cdc42 and Rac1[56]. Notably, SipA, SipC and SopE are conserved in 

typhoidal serovars while SopE2 is pseudogenized [53]. The T3SS-1 dependent effector SptP 

Wang et al. Page 5

Curr Opin Microbiol. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is deployed by S. Typhimurium to antagonize SopE-mediated cytoskeletal rearrangements 

by degrading Cdc42 & Rac1 and return the cytoskeleton to homeostasis after internalization 

occurs [57]. However, the sptP ORF within S. Typhi contains a point mutation rendering 

the protein non-functional [58]. Therefore, the mechanism by which S. Typhi resolves host 

cytoskeletal rearrangements post-invasion is currently unclear.

While T3SS-1 dependent invasion is required to enter nonphagocytic cells, macrophages 

naturally phagocytose pathogens, and thus SPI-1 mediated invasion is not required 

for Salmonella internalization [59]. Paradoxically, macrophages, which typically kill 

phagocytosed pathogens, are a major replicative niche for Salmonella during systemic 

infection [60]. Salmonella uses multiple molecular mechanisms to facilitate intra-

macrophage replication. Effector proteins deployed through the T3SS-2 are required for 

S. Typhimurium intra-macrophage replication within the Salmonella-containing vacuole 

(SCV) [61]. However, T3SS-2 is not strictly required for S. Typhi intracellular survival 

and/or replication in THP-1 macrophages [9,10]. The molecular mechanisms underlying this 

discrepancy between non-typhoidal and typhoidal serovars remain unclear.

Most of the mechanisms by which Salmonella survive and replicate within a vacuole inside 

of macrophages has been performed with S. Typhimurium [62]. For example, previous 

studies have shown that two T3SS-2 dependent effectors, SseF and SseG, play an important 

role in intracellular trafficking of the SCV [63], and these effectors are conserved in 

typhoidal Salmonella. It has also been shown in S. Typhimurium that multiple effectors, 

including SifA, PipB2, SopD2 and SseJ, contribute to growth and elongation of the SCV 

membrane to form Salmonella-induced filaments (Sifs) [64]. However, these Sif-inducing 

effectors are not universally conserved; for example, SseJ, which normally localizes to the 

SCV surface and recruits SifA in Typhimurium, is a pseudogene in typhoidal Salmonella 
[65]. Similarly, the gene that encodes SopD2, which plays a role in limiting Sif extension 

and ensuring optimal membrane dynamics, is also a pseudogene in typhoidal Salmonella 
[26]. Whether S. Typhi and S. Paratyphi A genomes contain different effectors that function 

similarly to SseJ and SopD2 is currently unclear. In S. Typhimurium, SopD2 also works 

cooperatively with another effector protein, GtgE, which is absent in typhoidal serovars 

[66]. GtgE degrades various Rab GTPases, which typically regulate many components of 

membrane trafficking in eukaryotic cells and may deliver antimicrobial factors to the SCV 

during Salmonella infection [67]. Previous work has shown that the presence of Rab32 leads 

to the death of S. Typhi in mouse macrophages, which may partly explain why typhoidal 

Salmonella cannot infect mice [66]. In agreement with this model, trans-expression of GtgE 

from S. Typhimurium allows S. Typhi to overcome host restriction by removing Rab32 from 

the SCV surface and replicate in murine macrophages [66]. While typhoidal Salmonella 
does not encode GtgE, one recent study has suggested that S. Typhi utilizes its SPI-1 T3SS 

to evade Rab32-mediated killing in human macrophages [68]. The molecular mechanisms 

by which S. Typhi can overcome the same Rab-mediated killing in human macrophages but 

not in murine macrophages are currently unclear.

While both typhoidal and non-typhoidal Salmonella survive and thrive within macrophages, 

the fate of intracellular Salmonella in human macrophages are heterogeneous, and include 

host-killed, non-replicating, persisting, and actively replicating intracellular bacteria [69]. As 
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demonstrated with S. Typhimurium, macrophages with host-killed bacteria and bystander 

cells share a transcriptomic phenotype that is characterized by an M1 polarization state 

[70]. In contrast, macrophages that allow for intracellular replication and non-replicating 

persisting bacteria tend to have a transcriptomic profile dominated by M2 polarization 

genes [70]. Thus, the state of individual macrophages influences the ability of intracellular 

Salmonella to replicate and manipulating macrophage activation states can alter the overall 

outcome of Salmonella infection. Whether or not these bacterial populations and/or 

macrophage polarization states are different during typhoidal vs. non-typhoidal Salmonella 
infections is currently an ongoing area of investigation. Determining the relative sizes of 

each of these populations, their role in maintaining persistent infection, and characterizing 

the molecular mechanisms underlying each state may reveal additional serovar-specific 

differences during macrophage infection.

4. Host factors that influence the outcome of disease

While multiple differences have been identified between non-typhoidal and typhoidal 

Salmonella that may influence disease manifestation, as highlighted in the above sections, 

there are also numerous studies investigating differences in host factors and genetic 

predispositions that may influence disease severity in the infected host. A variety of 

pathogen-associated molecular patterns (PAMPs) in both typhoidal and non-typhoidal 

Salmonella interact with extracellular and intracellular pattern recognition receptors (PRRs). 

For example, TLRs including TLR2, TLR4 and TLR5 recognizes CsgA, LPS and FliC, 

respectively [71-73]. As these receptors are engaged, the adaptor proteins TIRAP/MyD88 or 

TRIF/TRAM are phosphorylated and initiate distinct signaling cascades that lead to cytokine 

and chemokine production, which recruit and activate myeloid and lymphoid cells necessary 

to clear the infection [74]. Consequently, Tlr2−/−, Tlr4−/− and Myd88−/− mice have distinct 

disease phenotypes and succumb to infection within days of S. Typhimurium infection 

[75]. TLRs are highly involved in inducing inflammasome formation and the subsequent 

processing and release of IL-1 superfamily proteins which is the hallmark of pyroptosis [76]. 

As such, inflammasome deficient mice, including Casp1−/−, Il18−/− and Il1b−/− are more 

susceptible to S. Typhimurium infection than wild type control mice [77]. In addition, one 

study has shown that TLR11 is responsible for host restriction of S. Typhi in mice [78], 

although other groups have failed to replicate this finding [79].

Other factors beyond PRRs have also been shown to influence host susceptibility 

to Salmonella. For example, a point mutation in the Nramp1 allele, which regulates 

iron-availability in macrophages, has also been shown to increase the susceptibility of 

conventional C57BL/6J and BALB/C mice to Salmonella infection, and C57BL/6 mice 

complemented with the wild type Nramp1 allele have increased survival compared to WT 

controls [80]. In addition, MHC-II deficient mice that fail to present Salmonella antigens 

to host immune cells are more susceptible to infection than wild type mice [81]. Some of 

these afore-mentioned genes have further been implicated to play a role in the susceptibility 

to typhoid fever in humans, suggesting that there are shared immunological pathways that 

are important for causing more severe disease in both humans and animals. For example, 

SNPs in both TLR4 [82] and HLA genes [83] has been shown to influence typhoid 

susceptibility. In contrast, there are some genes that may influence infection outcomes 
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differently in different hosts. For example, while Nramp1 is important for control of non-

typhoidal Salmonella infections in mice [80,84], there are no reports that SNPs in the human 

homologue SLC11A1 influence typhoid susceptibility [85]. In addition, SNPs in IL4 [86], 

PARK2 [87], PACRG [87], CFTR [88] and VAC14 [89] have been implicated to increase the 

susceptibility to typhoidal Salmonella infection in humans, but they have not been shown to 

have effects in murine models. Studies have also shown that defects in the IFNγ-IL12 axis 

are risk factors for invasive non-typhoidal Salmonella infections, but not for typhoid fever 

[90-92].

While mouse models are commonly used to study non-typhoidal Salmonella infections 

in the laboratory, there are critical differences between human and murine cells that 

are important to consider. For example, Salmonella infection activates the NAIP/NLRC4 

inflammasome in both human and murine macrophages, but these responses are distinctly 

different. Mice encode multiple NAIPs which are constitutively expressed by macrophages 

to sense bacterial ligands in the cytosol while humans encode a single NAIP [93]. The 

NLRC4/NAIP inflammasome recognizes SPI-1 and SPI-2 associated proteins (PrgI, PrgJ 

and SsaG) as well as flagellin [94]. For human NAIP to recognize flagellin, a full-length 

isoform is needed which is expressed in hMDMs but not in monocytic/macrophage cell 

lines such as THP-1 or U937 cells [95]. On the pathogen side, Salmonella serovars 

have evolved different mechanisms to counteract host recognition and inflammasome 

activation. For example, non-typhoidal strains of Salmonella within the ST313 lineage 

trigger less inflammasome activation compared to serovars belonging to the ST19 lineage 

[28]. Differences in these responses have been attributed to lower expression of the SPI-1 

effector SopE2 and the flagellin FliC in ST313 strains compared to ST19 isolates during 

host cell infection [28]. Typhoidal Salmonella also triggers lower amounts of inflammasome 

activation compared to non-typhoidal Salmonella, in part due to the presence of the TviA 

transcriptional regulator, which is uniquely found in typhoidal Salmonella. TviA decreases 

the expression of flagellin during host cell infections by S. Typhi, in turn suppressing 

inflammasome activation and subsequent IL-1β and pyroptosis responses [16].

One hallmark of typhoid fever is that ~5-10% of people carry Salmonella persistently for 

more than 1 year and thus serve as a reservoir of infection for this disease [96]. Although 

our understanding of the mechanisms that underlie typhoidal persistence remains limited, 

it has been shown that typhoidal Salmonella can persist in the gallbladders of chronic 

carriers [97]. Intriguingly, bile, which is found at high concentrations in the gallbladder, 

has been shown to trigger increased biofilm formation in typhoidal Salmonella [98], which 

may partly explain how this pathogen is able to persist in the gallbladder. It has also been 

reported that not all chronic carriers of typhoidal Salmonella have gallstones [99], strongly 

suggesting that there are other factors that contribute to the persistent stage of this infection. 

However, given the human-restricted nature of typhoidal Salmonella, the chronic phase of 

this disease has remained difficult to study. Instead, researchers have used S. Typhimurium 

infections of the 129x1/svJ mouse model to study persistent infections, as S. Typhimurium 

can persist in tissues of these mice for at least one year [84]. Data from long term studies 

in 129x1/svJ mice indicate that there is a shift from TH1 driven response at early time 

points, characterized by IL-1β, TNFα, IFNγ and IL-12 production, to TH2 driven responses 

during persistent infection [100]. Although there are no proteomic studies on the cytokine 
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profile in human carriers of typhoidal Salmonella, several studies have demonstrated that 

acute typhoid fever is also accompanied by high serum levels of pro-inflammatory cytokines 

including IFNγ, IL-1, IL-6 and IL-8 [101-104]. While the cytokine response during the 

persistent phase of typhoid fever is currently unclear, some case reports suggest that children 

with prolonged Mycobacterium and Salmonella co-infection have reduced IFN-receptor- 

or IL-12 receptor expression in isolated blood cells, suggesting that functional interferon 

signaling is essential for the host to counteract long-term Salmonella infection [105-107].

One key feature of persistent Salmonella infections is the formation of granulomas, a 

structure formed to contain macrophages infected by Salmonella that cannot be cleared by 

the host. Salmonella driven formation of granulomas has been found in the MLN, liver 

and spleen in humans infected with typhoid fever, and thus granulomas may represent 

another mechanism by which the host influences Salmonella persistence [108-110]. 

These granuloma structures have also been observed during S. Typhimurium infection 

of 129x1/SvJ mice, and in this chronic infection model, granulomas form rapidly, with 

observable structures found by 1 week post infection [111]. Splenic granulomas are 

characterized by a lack of TH1 cells, which allows Salmonella to persist and replicate in 

the activated macrophages [112]. Recent studies have also shown that S. Typhimurium 

facilitates the use of the effector protein SteE to polarize macrophages into an M2-like, anti-

inflammatory phenotype within splenic granulomas, allowing Salmonella to persist within 

these structures during long-term infection [111,113]. Intriguingly, there is no homolog of 

steE encoded in the genomes of typhoidal Salmonella, and thus more research is needed to 

identify typhoidal-specific effectors that allow typhoidal Salmonella to persist within human 

granulomas.

5. Conclusion

As extensively antibiotic-resistant outbreaks of typhoid and paratyphoid fever increase in 

frequency and magnitude, a deeper understanding of human typhoidal disease is critical for 

the development of new therapies and vaccines. Identifying specific molecular mechanisms 

unique to typhoidal pathogenesis is key to developing anti-virulence strategies for targeted 

treatment. While much progress has been made in characterizing the molecular mechanisms 

that underlie Salmonella infections, especially in the context of non-typhoidal Salmonella, 

many questions remain. For example, while many genetic differences have been identified 

between non-typhoidal and typhoidal Salmonella, how do these changes in genotypes 

relate to differences in phenotype or disease manifestation? How do typhoidal strains of 

Salmonella replicate within human macrophages, and are there typhoid-specific virulence 

factors that play a role in these infections? What are the specific molecular determinants that 

allow typhoidal Salmonella to persist in human hosts for years, and are there better ways 

that we can model these human-adapted infections? Overall, by studying human-restricted 

typhoidal Salmonella in a variety of human-associated model systems, including human 

macrophages, human-derived intestinal organoids, and humanized mice, researchers may 

uncover human-specific mechanisms of virulence. In addition, understanding the human 

immune response to these “stealth” pathogens will likely reveal novel mechanisms of 

immune modulation.
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Highlights

• Salmonella enterica is a bacterial pathogen that is comprised of non-typhoidal 

and typhoidal isolates, aka “serovars”.

• While non-typhoidal Salmonella causes self-limiting gastroenteritis, typhoidal 

Salmonella causes typhoid fever.

• The molecular mechanisms that underlie different disease manifestations are 

still being explored.

• In this review, we focus on the mechanisms that underlie the pathogenesis of 

typhoidal Salmonella.

• We highlight specific genetic traits that may contribute to typhoid fever, 

including serovar-specific virulence factors.

• We discuss how the host responds to infections by typhoidal vs. non-typhoidal 

Salmonella.
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Figure 1. Summary figure highlighting some key known differences in the pathogenesis between 
typhoidal and non-typhoidal Salmonella.
Typhoidal and non-typhoidal serovars of Salmonella are genetically similar but have distinct 

features that lead to divergent disease phenotypes. For example, typhoidal and non-typhoidal 

serovars genomes differ in the repertoire of pathogenicity islands and pseudogenes that they 

contain. In addition, these genetic variations give rise to key differences in secreted effectors 

and virulence factors that influence the intracellular survival of Salmonella serovars. 

Finally, on the host side, SNPs in key genes that influence pattern recognition and antigen 

presentation may help typhoidal serovars evade local responses in the gastrointestinal 

tract and spread to systemic sites, triggering either enteric fever and/or chronic persistent 

infections.
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Table 1.

Horizontally Acquired Regions of the S. Typhi Ty2 Chromosome

Name Length Key Virulence Features

SPI-1 40,278 bp T3SS-1; invasion, host cell modulation

SPI-2 39,633 bp T3SS-2; intracellular replication, host cell modulation

SPI-3 36,845 bp Magnesium uptake genes, many pseudogenes in S. Typhi

SPI-4 23,392 bp SiiE adhesin & T1SS

SPI-5 7,408 bp SopB, PipA, PipB

SPI-6 57,634 bp T6SS; gut colonization & unique 10 kb in Typhi

SPI-7 131,750 bp Unique to Typhi; capsule biosynthesis, SopEφ, type IVB pilus

SPI-8 - (Unique 8kb part of SPI-13)

SPI-9 15,696 bp T1SS, putative adhesin

SPI-10 33,675 bp Unique to Typhi; contains ST46

SPI-11 10,080 bp PhoP-activated genes, typhoid toxin

SPI-12 6,439 bp SspH2

SPI-13 24,963 bp An 8 kb portion is different between Typhi and Typhimurium

SPI-15 6,009 bp Absent form Typhimurium, present in Typhi

SPI-16 4,087 bp Three ORFs with a high level of identity with P22 phage genes

SPI-17 4,939 bp Absent from Typhimurium, present in Typhi

SPI-18 1,678 bp Absent from Typhimurium, present in Typhi; ClyA & TaiA

ST10 42,759 bp Absent from Typhimurium, present in Typhi (prophage)

ST15 32,588 bp Absent from Typhimurium, present in Typhi (prophage)

ST27 22,785 bp Salmochelin iron acquisition operon (iroCDEN), PipB2, VirK

ST2-27 10,268 bp Absent from Typhimurium, present in Typhi (prophage)

ST35 35,194 bp Absent from Typhimurium, present in Typhi (prophage)

ST46 7,055 bp Absent from Typhimurium, present in Typhi (prophage)

CS54 24,674 bp RatA, SivI

SopEφ (within SPI-7) 33,971 bp Present in some Typhimurium strains, present in Typhi Ty2 strain

Curr Opin Microbiol. Author manuscript; available in PMC 2024 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 20

Table 2.

T3SS-Dependent Effectors in the Typhi Ty2 Genome

Effector Ty2 Locus CT18 Locus STm LT2 Locus Paratyphi A
9150 Locus

Locus
Location

T3SS-1 T3SS-
2

AvrA ⊘ ⊘ STM2865 ⊘ SPI-1 ✔ ✔

GogB ⊘ ⊘ STM2584 ⊘ Gifsy-1 ✔ ✔

GtgA ⊘ ⊘ STM1026 ⊘ Gifsy-2 ✔ ✔

GtgE ⊘ ⊘ STM1055 ⊘ Gifsy-2 ✔ ✔

PipB2 T_RS13590 STY2897 STM2780 SPA_RS13395 ST27 ✔ ✔

SlrP T_RS10620 STY0833 STM0800 SPA_RS09800 - ✔ ✔

SpvC ⊘ ⊘ PSLT038 ⊘ pSLT ✔ ✔

SpvD ⊘ ⊘ PSLT037 ⊘ pSLT ✔ ✔

SspH1 ⊘ ⊘ STM14_RS07010 ⊘ Gifsy-3 ✔ ✔

SteA T_RS07605 STY1482 STM1583 SPA_RS06440 - ✔ ✔

SteB ⊘ ⊘ STM1629 ⊘ - ✔ ✔

SteE (SarA) ⊘ ⊘ STM2585 ⊘ Gifsy-1 ✔ ✔

SipA T_RS14125 STY3005 STM2882 SPA_RS13925 SPI-1 ✔

SipB T_RS14140 STY3008 STM2885 SPA_RS13940 SPI-1 ✔

SipC T_RS14135 STY3007 STM2884 SPA_RS13935 SPI-1 ✔

SipD T_RS14130 STY3006 STM2883 SPA_RS13930 SPI-1 ✔

SopA T_RS04065 STY2275 STM2066 SPA_RS04025 - ✔

SopB T_RS09305 STY1121 STM1091 SPA_RS08830 SPI-5 ✔

SopD T_RS14435 STY3073 STM2945 SPA_RS14235 - ✔

SopE T_RS21905 STY4609 SL1344_RS13925 SPA_RS12970 SopEφ ✔

SopE2 T_RS05225 STY1987 STM1855 SPA_RS05115 - ✔

SopF T_RS05655 STY1893 STM1239 SPA_RS08080 SPI-11 ✔

SptP* T_RS14105 STY3001 STM2878 SPA_RS13905 SPI-1 ✔

StoD T_RS09505 STY1076 ⊘ ⊘ ST10 ✔

GogA ⊘ ⊘ STM2614 ⊘ Gifsy-1 ✔

CigR T_RS19110 STY4024 STM3762 SPA_RS18310 SPI-3 ✔

PipA T_RS09330 STY1115 STM1087 SPA_RS08855 SPI-5 ✔

PipB T_RS09325 STY1117 STM1088 SPA_RS08850 SPI-5 ✔

SifA T_RS08635 STY1264 STM1224 SPA_RS08155 - ✔

SifB T_RS07700 STY1462 STM1602 SPA_RS06345 - ✔

SopD2 T_RS09990 STY0971 STM0972 SPA_RS09170 - ✔

SpiC T_RS06440 STY1727 SL1344_RS06920 SPA_RS07330 SPI-2 ✔

SpvB ⊘ ⊘ PSLT039 ⊘ pSLT ✔

SrfA T_RS07655 STY1472 STM1593 SPA_RS06390 - Pred.

SrfB T_RS07660 STY1471 STM1594 SPA_RS06385 - Pred.

SrfC T_RS07665 STY1470 STM1595 SPA_RS06380 - Pred.

SrfJ ⊘ ⊘ STM4426 ⊘ - ✔

SseB T_RS06465 STY1722 STM1398 SPA_RS07305 SPI-2 ✔
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Effector Ty2 Locus CT18 Locus STm LT2 Locus Paratyphi A
9150 Locus

Locus
Location

T3SS-1 T3SS-
2

SseC T_RS06475 STY1720 STM1400 SPA_RS07295 SPI-2 ✔

SseD T_RS06480 STY1719 STM1401 SPA_RS07290 SPI-2 ✔

SseF T_RS06495 STY1716 STM1404 SPA_RS07275 SPI-2 ✔

SseG T_RS06500 STY1715 STM1405 SPA_RS07270 SPI-2 ✔

SseI (srfH) ⊘ ⊘ STM1051 ⊘ Gifsy-2 ✔

SseJ T_RS25885 STY_RS06750 STM1631 ⊘ - ✔

SseK1 ⊘ ⊘ STM4157 ⊘ - ✔

SseK2 T_RS23900 STY_RS11125 SL1344_RS10980 SPA_RS23070 - ✔

SseK3 ⊘ ⊘ SL1344_RS10000 ⊘ ST64B ✔

SseL T_RS02915 STY2517 SL1344_RS11745 SPA_RS02885 - ✔

SspH2 T_RS03160 STY2467 STM2241 ⊘ SPI-12 ✔

SteC T_RS08195 STY1353 STM1698 SPA_RS05905 - ✔

SteD T_RS03630 STY2367 STM2139 SPA_RS03565 - ✔

Grey box = Gene has a frameshift or early truncation in S. Typhi relative to S. Typhimurium, assumed to be non-functional

*
= The sptP gene is mutated and non-functional in S. Typhi

⊘ = Gene is absent from this serovar

✔ = S. Typhimurium translocation of this effector is dependent on T3SS-1, −2 or both. “Pred.” means predicted but not yet directly demonstrated.

If there is no homolog in S. Typhimurium str. LT2, homolog in strain SL1344 or 14028 given instead.
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