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Abstract

As the COVID-19 pathogen, SARS-CoV-2 relies on its main protease (MPro) for pathogenesis and 

replication. During the crystallographic analyses of MPro crystals that were exposed to the air, 

a uniquely Y-shaped, S-O-N-O-S-bridged posttranslational crosslink that connects three residues 

C22, C44, and K61 at their side chains was frequently observed. As a novel covalent modification, 

this crosslink serves potentially as a redox switch to regulate the catalytic activity of MPro, a 

demonstrated drug target of COVID-19. The formation of this linkage leads to a much more 

opened active site that can be potentially targeted for the development of novel SARS-CoV-2 

antivirals. The structural rearrangement of MPro by this crosslink indicates that small molecules 

that lock MPro in the crosslinked form can be potentially used with other active site-targeting 

molecules such as paxlovid for synergistic effects in inhibiting the SARS-CoV-2 viral replication.
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SARS-CoV-2 is the viral pathogen of COVID-19 that has ravaged the whole world for 

more than two years. Effective vaccines that target the membrane Spike protein of SARS-

CoV-2 have been developed and widely adopted for human immunization.1 However, the 

continuous emergence of new SARS-CoV-2 variants with mutations at Spike has led to 

viral evasion of vaccines and consequently infection surges.2 The situation has called for 

the search for SARS-CoV-2 antivirals and led to the recent success of the development of 

Pfizer’s paxlovid.3–4 SARS-CoV-2 is an RNA virus with a positive-sense RNA genome. It 

contains a big 20-kb open reading frame ORF1ab that is translated alternatively to form 

two large polypeptides pp1a and pp1ab in infected human cells.5–6 These two polypeptides 

need to be hydrolyzed to form 16 nonstructural proteins (nsps) that are key to viral biology 

including the formation of the RNA-dependent RNA polymerase complex for the replication 

of the viral genome and subgenomic RNAs. The maturation of pp1a and pp1ab is catalyzed 

by two internal nsp fragments. One of them is main protease (MPro) that processes 13 out of 

the total 16 nsps.7 Paxlovid is a combination therapy with two chemical components. One 

component is nirmatrelvir that potently inhibits MPro to prevent viral replication in infected 

human cells.4

As an essential enzyme for SARS-CoV-2, MPro is an established target for the development 

of SARS-CoV-2 antivirals.8–12 Many academic research groups and a number of 

pharmaceutical companies have been working on the development of MPro inhibitors.13–24 

A large international COVID Moonshot project for the development of MPro inhibitors has 

also been organized.25 As a key tool for the structure-based drug discovery, X-ray protein 
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crystallography has been frequently employed to determine structures of MPro-inhibitor 

complexes to assist further inhibitor optimization. This is also the approach that we have 

adopted for the development of MPro inhibitors.26 To facilitate a quick determination 

of MPro-inhibitor complexes, we have been crystalizing the apo form of MPro and then 

soaking the crystals with different inhibitors for the ensuing X-ray protein crystallographic 

analysis.26–31 Our obtained apo-MPro crystals have a C121 or I121 space group that contains 

an MPro dimer or monomer, respectively, in an asymmetric unit. These crystals are different 

from other reported MPro crystal forms. In both crystal forms, MPro has a relatively loose 

and open packaging pattern that makes the active site more solvent accessible (Figure 

S1). In the I121 space group, two monomers from two asymmetric units form a tightly 

bound dimer. In both C121 and I121 space groups, a tightly bound dimer interacts with 

other MPro dimers within the crystals at two regions, aa53-60 and aa216-222 (Figure S2). 

The aa216-222 region is in the noncatalytic C-terminal domain (Figure S3). Although the 

aa53-60 region is within the catalytic N-terminal domain, it is distant to the active site 

(Figure 1A).26 The MPro dimer in these crystals has an open active site whose structure 

rearrangements are not expected to be limited by the protein packaging in crystals (Figure 

S1, PDB ID: 7RVN). Therefore, these crystals are ideal for a soaking-based structural 

determination of MPro-inhibitor complexes. This relatively open form of MPro is considered 

more desired than a closed form in representing MPro in solutions as well since MPro dimers 

in solutions are not expected to interact with each other. Therefore, we have been using 

these apo-MPro crystals and soaking them with different inhibitors for the determination of 

crystal structures of more than 30 MPro-inhibitor complexes.26,30–31 One unique observation 

that we have made for almost all our determined MPro-inhibitor structures was a poorly 

defined conformation for the aa46-50 region. This region is part of the MPro active site, 

serving as a cap of the protein S2 site to bind the P2 residue in a peptide substrate 

(Figure 1A).26,30–31 The electron density of this region was very weak in all determined 

MPro-inhibitor structures indicating a highly flexible conformation (Figure 1B and Figure 

S4). There have been many other MPro-inhibitor complexes whose crystal structures have 

been determined and deposited into the Protein Data Bank.8–24 A lot of them have a clearly 

defined conformation for aa46-50. However, crystals for most of these structures either 

had a closed form around the active site due to the protein packaging in crystals or were 

obtained by co-crystallization with ligands. We reason that in the closed form of the MPro 

crystals the protein packaging limits the structure rearrangement of aa46-50 and prevents it 

from adopting a flexible conformation. However, in solutions this limitation does not apply. 

This structural rearrangement is apparently related to the soaking process since the apo-

MPro crystals that did not undergo soaking show a well-defined confirmation for aa46-50 

and MPro-inhibitor complexes in co-crystalized crystals did not show this rearrangement 

either.8–10, 26

MPro-MPI8 was an early determined MPro-inhibitor complex structure. In this crystal 

structure, besides a structurally undefined aa46-50 region, we noticed the uniquely 

connected electron density at residues C22, C44 and K61. As shown in Figure 2A, 

2Fo-Fc electron density contoured at 1σ around the ends of side chains from all three 

residues clearly merged indicating that the three residues were covalently connected to 

form a Y-shaped tri-residue crosslink. Directly connecting three residues at their terminal 
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heteroatoms to form a Y-shaped S-N-S crosslink did not fit the calculated electron density. 

Although there was no literature report about a Y-shaped crosslink between one lysine 

and two cysteine residues in a protein, a recent Nature article by Wensien et al. described 

a novel posttranslational N-O-S-bridged lysine-cysteine crosslink as a redox switch for 

the transaldolase enzyme from Neisseria gonorrhoeae.32 N. gonorrhoeae transaldolase 

undergoes oxidation to form an N-O-S crosslink in which an oxygen atom covalently 

bridges the K8 side chain amine and C38 side chain thiol. The consequential oxidized 

enzyme has a substantially lower activity than the reduced form. As a newly identified 

posttranslational modification, the N-O-S crosslink via oxidation serves as a regulatory 

mechanism for N. gonorrhoeae transaldolase. Since in MPro-MPI8, the K61 side chain amine 

connected with two side chain thiol groups from C22 and C44, respectively, to form a 

Y-shaped crosslink instead of a linear S-O-N crosslink as observe between K8 and C38 in 

N. gonorrhoeae transaldolase, we suspected that a S-O-N-O-S-bridged, Y-shaped tri-residue 

crosslink in which two oxygen atoms bridged two cysteine thiol groups separately with the 

K61 side chain amine existed in our MPro-MPI8 structure. Adding this crosslink into the 

structure for undergoing the structure refinement fit the calculated electron density perfectly. 

The same S-O-N-O-S crosslink was found for a deposited MPro-inhibitor structure 7JR4.33 It 

was assigned as two methylene-crosslinked lysine-cysteine bonds by the depositors and later 

analyzed as a S-O-N-O-S bond by Tittmann et al.33

Among about 10 early crystal structures of MPro-inhibitor complexes, MPro-MPI8 was the 

only one that contained the Y-shaped crosslink. However, this crosslink was subsequently 

also observed in several MPro-inhibitor complexes determined later. Figures 2B–E show 

crystal structures for four other MPro complexes with MPI12, MPI19, MPI33, and MPI85, 

respectively. They all show a well-defined Y-shaped, S-O-N-O-S-bridged crosslink between 

K61 and two cysteine residues C22 and C44. We suspected that the inhibitor binding process 

might have triggered the formation of the crosslink, however, a careful search of our other 

determined structures revealed four apo-MPro structures that contained this crosslink as well. 

As shown in Figures 2F–H, all four structures showed clearly connected electron density 

at the ends of three residues C22, C44 and K61. These four apo-MPro structures were 

determined from apo-MPro crystals that were soaked with chemical fragments, but no bound 

ligands were observed. So far, all structures that showed this crosslink were determined from 

crystals that were exposed to the air due to the soaking process.

We also determined X-ray crystal structures for several apo-MPro crystals that were not 

exposed to the air. They all had a structurally defined aa46-50 region and exhibited no 

crosslink between C22, C44 and K61 (PDB entry: 7UU6, 7UU7, 7UU8, 7UU9). One of 

these structures was previously deposited into the Protein Data Bank (PDB entry: 7JPY).26 

As shown in Figure 3A, the superposition of 7JPY over an apo-MPro structure with the 

Y-shaped crosslink reveals a large structural rearrangement at the region aa43-52 between 

two structures. In 7JPY, the side chain of C44 points toward the active site. The small 

aa46-51 helix tucks C44 toward the active site and makes it a key component to form 

the S2 binding pocket for a substrate P2 residue. The thiol group of C44 is 9.1 Å away 

from the K61 side chain amine (Figure 3A in limon). This distance is too far to form 

any possible direct interaction between the two residues. For C44 to physically meet K61 

for a covalent interaction, the C44 backbone α-carbon moved 4.1 Å closer to K61 and 
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rotated its side chain almost 180° to adopt a conformation to form a covalent adduct with 

the K61 side chain amine as shown in the crosslinked apo-MPro (Figure 3A in light teal). 

This structural rearrangement also pushed the whole aa43-52 region away from the MPro 

active site, making the active site much more open. For C44 to translocate and rotate, a 

large structural rearrangement for the whole aa43-52 region is required. This explains why 

the Y-shaped S-O-N-O-S crosslink was observed in our crystal structures but not in most 

other determined MPro structures since the protein packaging in our MPro crystals allowed 

the large structure rearrangement at aa43-52. In 7JPY, C22 and K61 are in a close distance 

to each other. This close distance will likely make them form an N-O-S-bridged crosslink 

first and then a structurally flipped C44 will be engaged to generate the second N-O-S 

bridge. Since all our MPro structures that contained the Y-shaped posttranslational crosslink 

were determined from crystals that were exposed to the air, the molecular oxygen was most 

likely the reagent that generated the Y-shaped S-O-N-O-S bridge. Although how exactly 

the molecular oxygen oxidizes the three residues to form the crosslink needs to be further 

explored and confirmed, we propose a likely mechanism as shown in Figure 3B. In this 

mechanism, the C22 thiolate reacts with oxygen to form a peroxysulfane that then reacts 

with lysine to generate the first S-O-N crosslink. After C44 flips toward K61, its thiolate 

can react with oxygen to form the second peroxysulfane that then reacts with the first S-O-N 

crosslink to form the Y-shaped, S-O-N-O-S-bridged tri-residue crosslink. One puzzling fact 

was that all crystals were preserved in 1 mM DTT even in the soaking environments to 

maintain a highly reductive environment. How this crosslink formed in this highly reductive 

condition is intriguing.

Since there is no information such as chemical stability about the S-O-N-O-S crosslink in 

the literature, we conducted a native mass spectrometry analysis of the freshly purified MPro 

to keep the potential S-O-N-O-S crosslink intact. Our collected spectrum of MPro at 25°C 

clearly showed the MPro dimer, the MPro dimer with two additional oxygen atoms, and the 

MPro dimer with four additional oxygen atoms (Figures 4 and S5). The MPro dimer with four 

additional oxygen atoms is equivalent to MPro with the Y-shaped crosslink. The MPro dimer 

with two additional oxygen atoms is likely an intermediate state that has either just one 

MPro monomer with the S-O-N-O-S crosslink or both MPro monomers with just the S-O-N 

crosslink. An interesting observation was also made during the native mass spectrometry 

analysis of MPro when we did the in-instrument heating of MPro by sequentially increasing 

the temperature by 5°C and waiting for 30 min before the native mass spectrometry analysis 

was conducted. When the temperature was increased to 40°C, the majority of the MPro 

dimer was converted to the one containing four additional oxygen atoms. When 5 mM DTT 

was used during the analysis, the oxidation was not observed indicating that the oxidation 

is reversible (Figure S6). To demonstrate this oxidation is related to the crosslink formation, 

we generated the MPro K61A mutant and used it for the same mass spectrometry analysis 

without adding 5 mM DTT. Since K61 bridges the S-O-N-O-S crosslink with C22 and C44, 

its mutation to alanine was expected to destroy the crosslink formation. As expected, the 

MPro K61A mutant did not show any oxidation during the temperature treatment associated 

with the native mass spectrometry analysis (Figure S7), supporting the direct involvement 

of K61 in the crosslink formation. One likely explanation of all mass spectrometry results 

is that the protein at 40°C has enhanced structural dynamics that assists the formation 
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of the Y-shaped S-O-N-O-S crosslink. One needs to caution that the mass spectrometry 

results provide indirect support of the S-O-N-O-S formation. The definitive formation of 

the S-O-N-O-S bridge will still need to be further confirmed. Since the bond is weak, we 

have not been able to use tandem mass spectrometry analysis to independently validate the 

S-O-N-O-S bridge formation between the three residues.

In summary, we have observed a uniquely Y-shaped, S-O-N-O-S-bridged crosslink between 

three residues C22, C44 and K61 in the SARS-CoV-2 MPro. As a novel posttranslational 

modification, this crosslink significantly changes the SARS-CoV-2 MPro structure. Our 

finding is important in assisting the development of MPro inhibitors as SARS-CoV-2 

antivirals. The generation of the crosslink leaves a more open, larger active site allowing 

for the design and testing of many new inhibitors. One significant benefit of inhibitors 

that target this more open active site is their potential synergy in driving and stabilizing 

the crosslink formation together with small molecules that could permanently lock C22, 

C44 and K61 in their crosslinked form. Exploring this direction will likely lead to the 

development of a totally new group of SARS-CoV-2 antivirals.

Methods

Recombinant MPro protein expression and purification.

The pET28a-His-SUMO-MPro expression and purification are according to our previous 

report.26 The pET28a-His-SUMO-MPro construct was transformed into E. coli BL21(DE3) 

cells. Transformed cells were cultured at 37°C in 2xYT medium with kanamycin (50 g/mL) 

until OD600 reaching 0.6, then induced with 1 mM isopropyl-D-1-thiogalactoside (IPTG) 

at 37 °C. After 3 hours, cells were harvested and lysed in buffer A (20 mM Tris, 100 

mM NaCl, 10 mM imidazole, pH 8.0). The supernatant was loaded onto a nickel-chelating 

column (GenScript) washed with buffer A, followed by elution with buffer B (20 mM Tris, 

100 mM NaCl, 250 mM imidazole, pH 8.0). The eluted protein solution was desalted to 

buffer C (20 mM Tris, 10 mM NaCl, pH 8.0) by HiPrep 26/10 desalting column (GE 

Healthcare). The His-SUMO-MPro proteins were digested with SUMO protease overnight 

at 4°C. The digested protein was applied to nickel-chelating column again to remove the 

His-tagged SUMO protease, the His-SUMO tag, and the expressed protein with uncleaved 

His-SUMO tag. The tag-free MPro protein was loaded to the size exclusion column HiPrep 

16/60 Sephacryl S-100 HR (GE Healthcare) pre-equilibrated with buffer D (20 mM Tris, 

100 mM NaCl, 1 mM EDTA, pH 7.8). The eluted MPro protein was stored with buffer D in 

−80 °C for further use. Site directed mutagenesis was used to introduce the K61A mutation 

into the plasmid pET28a-His-SUMO-MPro. The afforded plasmid was used to express MPro 

K61A by following the same procedures as for the wildtype MPro.

X-Ray Crystallography Analysis.

The production of crystals of apo MPro and MPro-inhibitor complexes was following the 

previous protocols with the crystal growing condition of 0.1 M Bis-tris, pH6.5, 16% w/v 

PEG10k.26 The data of MPro with MPI12 was collected on a Rigaku R-AXIS IV++ image 

plate detector, the data of MPro with MPI19 was collected at the Advanced Light Source 

(ALS) beamline 5.0.2 using a Pilatus3 6M detector, all the other data were collected on 
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a Bruker Photon II detector. The diffraction data were indexed, integrated and scaled with 

iMosflm or PROTEUM3.34 The structure was determined by molecular replacement using 

the structure model of the free enzyme of the SARS-CoV-2 Mpro [Protein Data Bank (PDB) 

ID code 7JPY] as the search model using Phaser in the Phenix package.26, 35 JLigand and 

Sketcher from the CCP4 suite were employed for the generation of PDB and geometric 

restraints for the inhibitors. The inhibitors were built into the Fo-Fc density by using Coot.36 

Refinement of all the structures was performed with Real-space Refinement in Phenix.35 

Details of data quality and structure refinement are summarized in Table S1. All structural 

figures were generated with PyMOL (https://www.pymol.org).

Native Mass Spectrometry Materials.

Ammonium acetate (99.999% trace metals basis) was purchased from Sigma Aldrich (St. 

Louis, MO). MPro was expressed as described. Sample aliquots were stored at −80°C before 

freshly thawed for immediate analysis. MPro was buffer exchanged to 200 mM ammonium 

acetate (pH = 6.8) by using Micro Biospin P-6 gel column (BioRad) with final concentration 

4 μM. The exchanged MPro solution was equilibrated for 15 min at room temperature prior 

to mass spectrometry analysis.

Native Mass Spectrometry.

Native mass spectrometry (nMS) analysis was performed on a Q Exactive UHMR Hybrid 

Quadruple-Orbitrap Mass Spectrometer (ThermoFisher) with m/z range was set from 1,000 

to 10,000 and with resolution set to 12,500 (at m/z 400). 10 μL of the sample was loaded 

to a borosilicate glass capillary tip (Sutter, CA) with 1100 to 1500 V spray voltage supplied 

by an inserted platinum wire. Important parameters to reduce non-specific adducts include 

capillary temperature 100°C, in-source trapping and activation −10 V, ion transfer high 

m/z, collision-induced dissociation (CID) 10 eV, and higher energy dissociation (HCD) 

30 V. In variable-temperature electrospray ionization (vT-ESI) experiment, the temperature 

of solution was controlled as previously described.37 The temperature was varied from 

25°C to 40°C with 5°C increments and the equilibrium time at each temperature was 5 

min. Additional characterizations were performed on an Exactive Plus EMR orbitrap mass 

spectrometer (ThermoFisher) with set from 1,000 to 10,000 and with resolution set to 17, 

500 (at m/z 400). 10 μL of the sample was loaded to a borosilicate glass capillary tip (Sutter, 

CA) with 1.0 to 1.2 kV spray voltage supplied by an inserted platinum wire. Important 

parameters to reduce non-specific adducts include: capillary temperature 50°C, collision-

induced dissociation (CID) 10 eV, higher energy dissociation (HCD) 50 V, and trapping gas 

set to 5 (arbitrary unit). In variable-temperature electrospray ionization (vT-ESI) experiment, 

the temperature of solution was controlled as previously described.37 The temperature was 

varied from 25°C to 40°C with 5°C increments and the equilibrium time at each temperature 

was 5 min.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) The MPro active site based on the pdb entry 7JPY. C145 is the catalytic cysteine. 

Residues that form the binding sites for P1 and P2 residues in a substrate are labeled. The 

aa46-51 and aa53-60 are highlighted. (B) The low electron density map around aa46-50 in 

a representative MPro-inhibitor complex. The ligand MPI8 that is covalently bound to C145 

is shown in a color code in which carbon atoms are shown in red. For the protein, carbon 

atoms are shown in light teal. The aa46-50 flexible region is indicated in a dashed square. 

The electron density was contoured at 1σ.
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Figure 2. 
Five MPro-ligand complexes and four apo enzyme structures show a SONOS-bridged 

crosslink between three residues including C22, C44 and K61. The electron density was 

contoured at 1 σ.
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Figure 3. 
(A) The superposition of two different apo-MPro structures. One doesn’t have the S-O-N-O-

S-bridged triresidue crosslink (limon) and the other one does (light teal). (B) A proposed 

scheme for the formation of the S-O-N-O-S-bridged triresidue crosslink in MPro.
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Figure 4. 
Native mass spectra of MPro that was freshly purified without a reducing reagent in lysis and 

purification buffers and sequentially treated in the instrument by increasing the temperature 

by 5°C and waiting for 30 min.
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