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Abstract

Improved second-tier assays are needed to reduce the number of false positives in newborn 

screening (NBS) for inherited metabolic disorders including those on the Recommended Uniform 

Screening Panel (RUSP). We developed an expanded metabolite panel for second-tier testing 

of dried blood spot (DBS) samples from screen-positive cases reported by the California NBS 

program, consisting of true- and false-positives from four disorders: glutaric acidemia type 1 

(GA1), methylmalonic acidemia (MMA), ornithine transcarbamylase deficiency (OTCD), and 

very long-chain acyl-CoA dehydrogenase deficiency (VLCADD). This panel was assembled 

from known disease markers and new features discovered by untargeted metabolomics and 

applied to second-tier analysis of single DBS punches using liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) in a 3-min run. Additionally, we trained a Random Forest 

(RF) machine learning classifier to improve separation of true- and false positive cases. Targeted 

metabolomic analysis of 121 analytes from DBS extracts in combination with RF classification 

at a sensitivity of 100% reduced false positives for GA1 by 83%, MMA by 84%, OTCD by 

100%, and VLCADD by 51%. This performance was driven by a combination of known disease 

markers (3-hydroxyglutaric acid, methylmalonic acid, citrulline, C14:1), other amino acids and 

acylcarnitines, and novel metabolites identified to be isobaric to several long-chain acylcarnitine 

and hydroxy-acylcarnitine species. These findings establish the effectiveness of this second-tier 

test to improve screening for these four conditions and demonstrate the utility of supervised 
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machine learning in reducing false-positives for conditions lacking clearly discriminating markers, 

with future studies aimed at optimizing and expanding the panel to additional disease targets.
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1. Introduction

Newborn screening (NBS) is an important public health activity for identifying newborns 

with inherited metabolic disorders, but with the corresponding detection of many false- 

positive cases. Confirmatory biochemical and/or genetic testing is required to exclude 

false-positive results, which occur in an estimated 0.02–1.5% of newborns1–4 and place 

excessive burden on patients, families, and the medical system5,6. Reducing the number and 
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impact of false positives remain a central challenge to newborn screening and is the major 

purpose of second-tier testing of the original dried blood spot (DBS) from all newborns with 

a positive NBS result7,8. In contrast to first-tier screening using direct injection analysis, 

second-tier tests often use liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

to increase specificity by distinguishing isomeric compounds9–12 and evaluating additional 

disease-related metabolites3,13.

False-positive cases also be reduced using post-analytic tools applied to first-tier screening 

data with the Collaborative Laboratory Integrated Reports (CLIR), 14–16 and more recently 

using machine learning-based methodologies17–20. However, the improvement in screening 

performance with these approaches varies widely among disorders on the Recommended 

Uniform Screening Panel (RUSP), suggesting that identification and clinical validation of 

additional markers could further improve screening performance. We therefore developed 

a rapid (3 min/sample) LC-MS/MS targeted metabolomics test that measures first-tier 

screening markers, known disease-related metabolites, and metabolites identified by 

untargeted metabolomics in a 121-analyte multiplex panel relevant to NBS disorders on 

the RUSP. To simulate second-tier testing, we used this method to analyze DBS from screen-

positives for four inherited metabolic disorders, three on the RUSP - glutaric acidemia type 

1 (GA1), methylmalonic acidemia (MMA), and very long-chain acyl-CoA dehydrogenase 

deficiency (VLCADD), and one additionally targeted by the California Newborn Screening 

Program - ornithine transcarbamylase deficiency (OTCD), and classified results as true- or 

false-positive using supervised machine learning. Results from this study have implications 

for second-tier screening with broader applicability to additional NBS disorders.

2. Materials and methods

2.1 Study population

Residual dried blood spot (DBS) specimens and their corresponding MS/MS screening 

results were obtained from the California Department of Public Health (CDPH) for 883 

infants born between 2005–2015 comprising 178 true-positive cases of glutaric acidemia 

type I (GA1; n=43), methylmalonic acidemia (MMA; n=70 (22 mut−, 18 mut0, 30 

cblCDF), ornithine transcarbamylase deficiency (OTCD; n=18), and very long-chain acyl-

CoA dehydrogenase deficiency (VLCADD; n=47), as well as 613 false-positive cases (130 

GA1, 334 MMA/PA, 70 OTCD, 79 VLCADD) and 92 true negative samples.

2.2 Standards, reagents, and quality control

Authentic standards were purchased Sigma-Aldrich (MO, USA), Cayman Chemicals (MI, 

USA), Santa Cruz Biotechnologies (SCBT; TX, USA), and IROA Technologies (MA, 

USA), and Labeled Carnitine Standards (NSK-B-1 and NSK-B-G1) and all isotopic internal 

standards were from Cambridge Isotopes (MA, USA). All solvents were LC-MS grade 

from Fisher Scientific. For both untargeted and targeted studies described below, we created 

pooled quality control samples as a mixture of sample extracts from several positive and 

negative samples and injected them at intervals of 12–24 injections. Sample injection order 

was randomized for all unknown samples.
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2.3 Biomarker discovery using untargeted metabolomics

For each DBS, two 1/8-inch diameter circles were punched into a well of a 96-deepwell 

plate, mixed with 200μL of a DBS extraction solution of methanol/water (80:20 v/v). Plates 

were vortexed for 1 h and centrifuged at 1,800×g for 30 sec, and supernatants (180μL) 

transferred to a new 96-deepwell plate and evaporated under nitrogen to dryness. Samples 

were reconstituted with 180μL of a diluent solution containing internal standards (prepared 

as 400mL water, 100mL methanol, 200μL methylmalonic acid-D3 [1 mg/mL], 1mL of NSK-

B-1 (Labeled Carnitine Standards containing free carnitine and C2, C3, C4, C5, C8, C14 

and C16 acylcarnitines), and 0.5mL formic acid). All sample extracts were stored at −80°C. 

Untargeted LC-MS analyses were performed on an Acquity H-Class UPLC system (Waters, 

MA, USA) coupled to a Q Exactive Plus mass spectrometer (Thermo Fisher Scientific, 

CA, USA). Chromatographic separation was performed as previously described21 using a 

two-column method coupling a HSS T3 column (2.1 × 50 mm, Waters, MA, USA) in front 

of an AmazeHD column (2.1 × 50 mm, Helix Chromatography, IL, USA). The instrument 

collected positive and negative polarity electrospray ionization full-scan data (MS1) from 

m/z 70–900 and data-dependent fragmentation spectra (MS2). The runtime for each sample 

was 12 minutes.

2.4 Compound verification and blinded validation using targeted metabolomics

DBS from a subset of true-positive (TP) and false-positive (FP) samples (Table S1) were 

blinded and processed in one analytic batch. For each DBS, a single 1/8-inch diameter circle 

was punched into a 96-deepwell plate, mixed with 100 μL of a DBS extraction solution 

containing internal standards (prepared as 90mL methanol, 10mL water, 20μL formic acid, 

40μL methylmalonic acid-D3 [1 mg/mL], 40μL each of NSK-B-1 and NSK-B-G1, 50μL 

of MSK-A2 Amino Acids mix, 8μL ornithine 13C5 [5 mg/mL], 2μL citrulline 13C5 [5 

mg/mL], 2μL dimethylglycine D6 [1 mg/mL], 10μL uridine 13C5 [1 mg/mL], 40μL orotic 

acid D2 [6 mM]) and vortexed for 15 minutes. Following centrifugation at 1,800×g for 

30 sec, supernatants (80μL) were transferred to a new 96-deepwell plate and evaporated 

under nitrogen to dryness, and then reconstituted with 100μL of a diluent solution (80% 

water, 20% methanol, 0.1% formic acid v/v/v). DBS extracts were injected onto an 

Acquity H-Class UPLC system and compounds were detected using a TQ-S Micro tandem 

quadrupole mass spectrometer (Waters, MA, USA) using multiple reaction monitoring 

(MRM). Chromatography was performed on a HSS T3 column (75mm) as previously 

described22 at flow rate 1.0 mL/min, with a 0.5 min isocratic hold followed by 1 min ramp 

from 0–100%B for total runtime of 3 min.

2.5 Characterization of acylcarnitine isobars

Acylcarnitine isobar characterization was performed using liquid chromatography ion-

mobility high-resolution mass spectrometry. DBS extracts were injected onto an Acquity 

H-Class UPLC system and compounds were detected using a Vion ion mobility-qTOF 

mass spectrometer (Waters, MA, USA). The chromatographic setup was the same as in the 

targeted study, but the separation was 10 min. The mass spectrometer acquired MS1 from 

m/z 70–900 or 70–1200 and data dependent MS2 with ion mobility.
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2.6 Statistical analysis

For untargeted studies, Progenesis (Waters, MA, USA) was used to open and align raw data, 

pick peaks, and export a dataset of ion features and their intensities in each sample. Internal 

standards were used for retention time alignment but not for data normalization. The data 

from positive- and negative-ionization acquisition modes were then merged into a master 

dataset, and ion features in the quality control samples with a coefficient of variation (CV) 

≤ 30% were retained for data analysis. We used Random Forest (RF),23,24 a classification 

algorithm that combines the output of many random decision trees, to help identify those 

features that differed the most between true- and false-positive cases. To visualize the 

importance of each metabolite to classification, RF output was plotted as the Mean Decrease 

in Accuracy (MDA), a score chart that lists features in order of importance to the model. We 

manually reviewed this output and selected those features that clearly differed between true- 

and false-positives. Compounds were then identified using an in-house library consisting 

of MS1, MS2, and retention time data for a given chromatography method, and only 

those with tier 1 matches were carried forward for clinical test translation. For targeted 

studies, Targetlynx XS (Waters, MA, USA) was used to open the raw data, review peak 

integration, and export a dataset of compounds and their intensities in each sample. For 

compounds with a matching isotopic internal standard, peak area was normalized to internal 

standard peak area. All other compound responses were reported using raw peak area unless 

otherwise noted. To classify samples in the validation study, RF classification was applied 

as previously described19. Briefly, the performances of the RF models were estimated 

with leave-one-out cross-validation (LOOCV), which uses one sample as testing and all 

others as training to build the model for each disorder. This process was iterated for all 

samples and every sample was used as testing one time. Only RF assignments from testing 

cases (and not from training) were used for final outcome prediction. Positive predictive 

values (PPV=TP/TP+FP) with 100% classification sensitivity (i.e., correctly classify all true 

positives) and area under the receiver operating characteristic curves (AUC) were estimated 

from testing results. To show robustness, we repeated LOOCV 20 times and reported the 

median PPV and AUC results. RF classification analyses were done in R software 4.1.3 

using these R packages: randomForest and pROC. Principal component analyses (PCA) and 

heatmaps with Ward’s hierarchical clustering using Euclidean distance were created using 

Metaboanalyst25. Boxplots were created using Microsoft Excel.

3. Results

3.1 Untargeted metabolomics identifies additional markers for second-tier analysis

To search for new screening markers in the four conditions, we performed untargeted 

metabolomics using NBS dried blood spots from 178 cases with a true-positive screen for 

GA1, MMA, OTCD, or VLCADD, as well as 613 false-positive screens for one of these 

conditions and 92 true-negative controls (see Materials and Methods). Following acquisition 

and processing of LC-MS raw data, we obtained a dataset of approximately 9,000 ion 

features, ranked the importance of each ion feature using RF, and manually reviewed the 

score matrix and feature abundance as described in Material and Methods. This identified 14 

metabolites important to disease classification, including the primary NBS markers for the 

four conditions (C5DC, C3, citrulline, and C14:1), seven metabolites used in confirmatory 
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testing (two saturated and unsaturated C14-acylcarnitines, glutaric acid, methylmalonic acid, 

methionine, glutamine, and orotic acid), proline and uridine associated with OTCD19,26, and 

one new metabolite, dimethylglycine, which was elevated in MMA subtype cblCDF. Patient 

data were normalized to true-negative group data to visualize metabolic differences (Figure 

S1). Results from the false-positive samples were not used for statistical comparisons, since 

these samples were processed separately and showed measurable batch effects.

3.2 Compound verification using targeted metabolomics

To verify discovery study results in a setting applicable to second-tier testing, we 

initially developed a high-throughput, targeted LC-MS/MS method capable of analyzing 

an expanded set of markers relevant to newborn screening in DBS, including 45 first-tier 

metabolic screening markers detected by California NBS and more than 50 additional 

analytes relevant to NBS disorders on the RUSP (Table 1). This method also separates many 

clinically important isomers including succinic/methylmalonic acids, isoleucine/leucine, 

and 2-hydroxyglutaric /3-hydroxyglutaric acids, at a runtime of 3 minutes per sample. 

Reanalyzing the same DBS extracts as above by targeted metabolomics resulted in 

chromatographic peaks for all amino acids and acylcarnitines analyzed in first tier screening 

and verified the relative intensities of the 14 metabolites from the discovery study.

3.3 Targeted metabolomics reveals important acylcarnitine isobars

From this initial verification study, LC-MS/MS testing uncovered additional compounds 

isobaric to known targets, including two peaks eluting at 1.25 and 1.4 min at Multiple 

Reaction Monitoring (MRM) transition 276.2/85 (monitored to detect C5DC) among GA1 

screen-positive samples. The first of these, identified as C5DC, was higher in true positive 

cases and the second, identified as C6-OH, was higher in false positives. New peaks 

were also seen at MRM transitions for several of the targeted long-chain acylcarnitine 

and hydroxy-acylcarnitine species. We characterized these compounds in VLCADD 

screen-positive samples using liquid chromatography ion-mobility high-resolution mass 

spectrometry to capture accurate mass and collisional cross section (CCS), a distinguishing 

property of ions. Extracted ion chromatograms (5-ppm window) revealed additional peaks 

for m/z representing C14-OH, C14:1-OH, C14:2-OH, C16-OH, C16:1-OH and C18:1-OH 

(Figure S2, S3). The peaks isobaric to C14-OH and C16-OH were distinct from their known 

3S and 3R stereoisomers by both retention time and CCS measurements, despite having 

accurate masses within 5-ppm of their authentic standards. These compounds are therefore 

not the same as the authentic standards of C14-OH and C16-OH although they share major 

ion fragments in common with authentic standards including m/z 85, which is also shared by 

other acylcarnitine species (Figure S3).

3.4 Validation of targeted metabolomics for second-tier screening

To evaluate the performance of our targeted metabolomics assay as a second-tier test, we 

designed a blinded validation study using a subset of 285 screen-positive cases for each 

of the four target conditions, and 100 true-negative controls (Table S1). As configured for 

this study, the test targets 121 analytes comprising all metabolites from method verification 

including 24 features representing the uncharacterized isobars described above (Table 1). All 

DBS were processed and analyzed together to prevent batch effects. Principal component 
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analysis of the resulting data showed tight clustering of quality control samples, indicating 

good technical reproducibility (Figure S4). On initial data review, two of the GA1 true-

positive samples had C5DC peak areas indistinguishable from true negative controls (Patient 

1: 0.32; Patient 2: 0.55; TN mean=0.27, SD=0.27) with normal levels of glutaric and 

3-hydroxyglutaric acids and elevated C6, C8, C10 and C10:1-acylcarnitines, and likely were 

mislabeled cases of glutaric acidemia type II (multiple acyl-CoA dehydrogenase deficiency). 

These samples were therefore removed from further analysis. For the remaining dataset, 

heatmap analysis with Ward’s hierarchical clustering revealed clear separation along the 

horizontal axis between the true- and false-positive cases of GA1, VLCADD, and OTCD 

(Figure 1), suggesting that our expanded metabolite panel contained and detected the 

necessary markers to reduce false positive cases for multiple disorders.

3.5 Metabolic Pattern Analysis Using Random Forest

To demonstrate that machine learning using data from our expanded metabolite panel 

could improve discrimination between true- and false-positive cases without compromising 

sensitivity, we trained an RF classifier using our targeted metabolomics data (as either 

analyte peak areas or response ratios) for 285 screen-positive cases. With all true positives 

correctly identified (100% sensitivity), RF reduced the number of false positives by 83% 

for GA1, 84% for MMA, 100% for OTCD, and 51% for VLCADD (Table 2). Accordingly, 

AUC ranged from 0.93 (VLCADD) to 1.00 (OTCD) and PPV ranged from 36% (VLCADD) 

to 100% (OTCD). To evaluate precision of the classifier models we performed leave-one-out 

cross-validation 20 times to estimate the variation of AUC. The largest standard deviation of 

AUC results was 0.007 (GA1), demonstrating good stability and reproducibility (Figure S5).

3.6 Ranking of Metabolic Analytes

To identify the important analytes driving classification, we examined the Mean Decrease 

in Accuracy (MDA) rankings for the top-10 ranked analytes for each condition. This 

identified primary screening markers, additional known disease-associated metabolites (3-

hydroxyglutaric acid [GA1], methylmalonic acid [MMA], uridine and proline [OTCD]), and 

several long-chain acylcarnitine and hydroxy-acylcarnitine isobars in VLCADD and MMA 

(Figure 2). In examining the top-3 analytes in each MDA chart, 3-hydroxyglutaric acid had 

the largest relative difference in importance, indicating that removal of this metabolite would 

substantially decrease GA1 classification accuracy. GA1 classification was also facilitated 

by chromatographic separation of C5DC from C6-OH, which was elevated in the false 

positives and could account for the overlap in C5DC between true- and false-positive cases 

in first-tier screening (Figure S6). For OTCD, proline, citrulline, and uridine showed clear 

separation between true- and false-positive cases supporting RF classification accuracy. For 

MMA, classification was driven by methylmalonic acid, long-chain acylcarnitine isobars, 

and free carnitine, although no single marker showed clear separation between true- and 

false-positive cases (Figure 2). Among MMA subtypes, homocystine was higher in MMA 

cblCDF than MMA mut− and mut0 by visual inspection of boxplots (Figure S7). In 

contrast, dimethylglycine, identified in the discovery study as a potential marker for cblCDF, 

was not among the top metabolites in the blinded validation study, possibly due to the 

small sample size. Finally, for VLCADD, the top features included saturated, and mono- 

and di-unsaturated C14-acylcarnitine along with several C14 and hydroxy-C14 isobars 
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(Figure 2). None of the compounds showed complete group separation, suggesting that 

RF reduced false positives by recognizing complex patterns of multiple analytes. The top 

features for MMA and VLCAD included compounds isobaric to C18-OH and C14:2-OH 

respectively, although their identities could not be confirmed due to lack of available 

standards (fragmentation data is shown in Figure S8).

4. Discussion

Reducing the rate of false-positive results remains an important challenge in newborn 

screening for inborn metabolic disorders. Here we present an approach for second-tier 

testing using multiplex targeted metabolite profiling in combination with machine learning 

for the analysis of four metabolic disorders (GA1, MMA, OTCD, and VLCADD), each 

compromised by high false-positive rates and delays in case resolution following a positive 

newborn screen, with the goal of reducing parental anxiety and the costs of follow-up testing 

and management. At a screening sensitivity of 100%, our integrated approach of targeted 

metabolomics and RF classification reduced false positives for GA1 by 83%, MMA by 84%, 

OTCD by 100%, and VLCADD by 51% (Table 2). This performance was driven by (1) 

incorporation of additional disease markers, including those currently analyzed in reference 

metabolic testing; (2) chromatographic separation and measurement of clinically relevant 

isobars; and (3) analysis of complex metabolite profiles through machine learning. Here 

we show that chromatographic separation and incorporation of additional screening markers 

improves screening performance for the four target conditions and likely others. These 

results also support previous findings for improved prediction performance by utilizing the 

entire set of metabolites in machine learning-based disease classification19.

In this project, we had first set out to expand the number of markers available for second-

tier screening of the four target conditions. Despite deep metabolic profiling, untargeted 

metabolomics contributed little beyond what was already known, such as the primary 

screening markers (C5DC, citrulline, C3 and C14:1), and additional known disease markers 

routinely used in confirmatory testing (e.g., orotic acid, MMA) and two recently described 

markers for OTC (proline, uridine)19,26. In turn, several known metabolites routinely used 

in confirmatory testing (e.g., 3-hydroxyglutaric acid, homocystine, methionine) escaped 

detection in the discovery study, which could be attributed to the age of some DBS 

specimens and potential degradation issues27,28. Consequently, we prioritized a list of 121 

metabolites that included all known disease markers from primary screening, metabolites 

identified using untargeted metabolomics, and isobaric species revealed by chromatographic 

separation. To mimic a second-tier screening environment and rigorously evaluate our 121-

plex metabolite panel, we then tested samples using a rapid and high-throughput LC-MS/MS 

method. Using this method, screen positives for the four target disorders can be followed up 

using a single instrument run (3-minute runtime/sample), highlighting the applicability for 

newborn screening settings. Additional studies will allow for refinement and focusing of this 

panel to include only those features needed for optimal screening performance for these and 

other disorders.

Targeted metabolomics analysis and machine learning revealed that long-chain acylcarnitine 

isobars were among the top features driving classification of true- and false-positives for 
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all four conditions (Figure 2). Isomers (compounds with the same molecular formula) are 

well recognized for short- and medium-chain acylcarnitines including C5 and C5-OH 10, and 

long-chain acylcarnitine isomers or isobars (compounds differing in atomic number) have 

also been described for long-chain species in patients with various metabolic disorders 29–31. 

Most of our uncharacterized ion features (Table 1) likely represent isobars based on their 

CCS values compared with authentic standards for C14- and C16-acylcarnitines and their 

mono- and di-unsaturated forms, and C18:1-OH (Figures S2 and S3). In total, long-chain 

acylcarnitines and their isobars account for over half of the top-ten discriminating features 

for GA1, MMA and VLCADD (Figure 2) and represent a potential source of interference 

in first-tier screening. The identity and biologic significance of these isobars are currently 

unknown but could be investigated with additional studies of DBS metabolomic profiles and 

corresponding clinical and demographic data.

Second-tier analysis of MS/MS newborn screening data using machine learning has 

been shown to decrease false positives for the four disorders19, although the degree 

of improvement varied widely suggesting that measurement of additional markers could 

further improve screening performance. While the differences in sample size preclude direct 

comparison of our results with prior studies, our data indicate that the additional analytes 

detected in targeted metabolomics allowed machine learning to improve classification. For 

example, the combination of targeted metabolomics analysis with RF reduced false-positives 

by 51% for VLCADD and by 83% for MMA (Table 2), as compared to a 2% and 45% 

reduction, respectively, using RF analysis of first-tier screening data alone19. However, 

results also suggest that machine learning may not be necessary for every disorder and its 

use should be investigated for each screening marker. We used RF to classify all samples 

and corresponding conditions in this study, but closer examination of 3-hydroxylglutaric 

acid levels led us to question why RF did not eliminate all false-positive GA1 cases 

despite the clear differences in levels (Figure 2). We hypothesized that the RF model may 

have underperformed due to the combination of having only one fully discriminant marker 

(3-hydroxyglutaric acid) and small sample size, a known limitation to machine learning32. 

Since elevated 3-hydroxyglutaric acid has been measured in dried blood spots and dried 

urine spots, even in samples with lower levels of glutarylcarnitine, we predict that machine 

learning may not be needed to classify GA1 screen-positives33,34. Similarly, the presence 

of multiple clearly discriminant metabolites (proline, citrulline, and uridine) in OTCD 

suggests that machine learning has limited utility for improving classification of OTCD 

screen-positives. However, in contrast to cut-off-based methods, machine learning can be 

used to identify complex relationships among metabolites, such as in MMA and VLCADD. 

Furthermore, machine learning can be used to recognize metabolite level differences in 

relation to continuous and categorical covariates such as gestational age, birth weight, age at 

blood collection, sex, parent-reported ethnicity, nutritional therapy, or season of birth, which 

have been shown to reduce the accuracy of screening35–40.

Our study has several limitations. First, untargeted metabolomics analysis was performed 

using dried blood spots that were stored for a period of 7–17 years, and some extracts for 

up to 2 years. This may have led to degradation of some anticipated analytes including 

3-hydroxyglutaric acid, homocystine, and methionine, and may have limited the discovery 

of novel metabolites. Future studies using fresh blood spots from screen positives could 
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generate data that expand the number of candidate second-tier markers. Second, the 

processing of false-positive samples separately from true positives and true negatives in 

the discovery study led to measurable batch effects, which limited the statistical analysis 

and potential discovery of metabolite level differences between these groups. In contrast, 

samples for the validation study were processed in a single batch and incorporated 

numerous isotopic internal standards to prevent batch effects and reduce analytic variability. 

However, due to limitations in sample availability, the validation could not be performed 

on a completely independent set of samples as otherwise would be required. Full clinical 

implementation of this method will require independent validation as well as the use of as 

many isotopic standards as possible to enable long-term inter-laboratory comparisons. Third, 

false positives were reduced by 51–84 % for three of our four disorders with only OTCD 

achieving 100% PPV (Table 2), suggesting that there are additional factors influencing 

screening performance. Finally, our study cohort was relatively small and did not reflect the 

natural variability of the general population. Future studies should generate data from babies 

from different ancestries and consider other covariates that could lead to false-positive 

screens. 35–40

5. Conclusion

In performing effective second-tier testing for inborn metabolic disorders, NBS laboratories 

require a single, comprehensive panel of disease markers that can be assayed at high 

sensitivity and specificity from newborn dried blood spots. Here we developed a 121-

metabolite panel and provide proof-of-principle that targeted metabolomics analysis can 

significantly improve screening performance for four metabolic disorders targeted by the 

California Newborn Screening Program. This metabolite panel is flexible, customizable, 

and expandable, allowing for insertion of additional markers, which will enhance the 

development of a larger panel, one that optimizes the multiplexing of additional markers 

for second-tier testing of other metabolic disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding support:

This work was in parts funded by a grant from the National Institute of Child Health and Human Development 
(R01HD102537).

Data Sharing Statement:

The data used in this study were obtained from the California Biobank Program (CBP) 

under SIS request 886. The California Department of Public Health is not responsible for 

the results or conclusions drawn by the authors of this publication. Data can be obtained by 

others after submitting a new request to the CBP coordinator. Requests for data should be 

directed to CaliforniaBiobank@cdph.ca.gov.

Mak et al. Page 10

J Inherit Metab Dis. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Schulze A, Lindner M, Kohlmuller D, Olgemoller K, Mayatepek E, Hoffmann GF. Expanded 
newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass 
spectrometry: results, outcome, and implications. Pediatrics. 2003;111(6 Pt 1):1399–1406. 
[PubMed: 12777559] 

2. Tarini BA, Christakis DA, Welch HG. State newborn screening in the tandem mass spectrometry 
era: more tests, more false-positive results. Pediatrics. 2006;118(2):448–456. [PubMed: 16882794] 

3. la Marca G, Malvagia S, Casetta B, Pasquini E, Donati MA, Zammarchi E. Progress in expanded 
newborn screening for metabolic conditions by LC-MS/MS in Tuscany: update on methods to 
reduce false tests. J Inherit Metab Dis. 2008;31 Suppl 2:S395–404. [PubMed: 18956250] 

4. Lund A, Wibrand F, Skogstrand K, et al. Danish expanded newborn screening is a successful 
preventive public health programme. Dan Med J. 2020;67(1).

5. Schmidt JL, Castellanos-Brown K, Childress S, et al. The impact of false-positive newborn 
screening results on families: a qualitative study. Genet Med. 2012;14(1):76–80. [PubMed: 
22237434] 

6. Goldenberg AJ, Comeau AM, Grosse SD, et al. Evaluating Harms in the Assessment of Net Benefit: 
A Framework for Newborn Screening Condition Review. Matern Child Health J. 2016;20(3):693–
700. [PubMed: 26833040] 

7. Matern D, Tortorelli S, Oglesbee D, Gavrilov D, Rinaldo P. Reduction of the false-positive rate 
in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic 
experience (2004–2007). J Inherit Metab Dis. 2007;30(4):585–592. [PubMed: 17643193] 

8. Ombrone D, Giocaliere E, Forni G, Malvagia S, la Marca G. Expanded newborn screening by mass 
spectrometry: New tests, future perspectives. Mass Spectrom Rev. 2016;35(1):71–84. [PubMed: 
25952022] 

9. Oglesbee D, Sanders KA, Lacey JM, et al. Second-tier test for quantification of alloisoleucine and 
branched-chain amino acids in dried blood spots to improve newborn screening for maple syrup 
urine disease (MSUD). Clin Chem. 2008;54(3):542–549. [PubMed: 18178665] 

10. Carling RS, Burden D, Hutton I, Randle R, John K, Bonham JR. Introduction of a Simple Second 
Tier Screening Test for C5 Isobars in Dried Blood Spots: Reducing the False Positive Rate for 
Isovaleric Acidaemia in Expanded Newborn Screening. JIMD Rep. 2018;38:75–80. [PubMed: 
28631226] 

11. Wojcik M, Morrissey M, Borden K, et al. Method modification to reduce false positives 
for newborn screening of guanidinoacetate methyltransferase deficiency. Mol Genet Metab. 
2022;135(3):186–192. [PubMed: 35120844] 

12. Monostori P, Godejohann M, Janda J, et al. Identification of potential interferents of methylmalonic 
acid: A previously unrecognized pitfall in clinical diagnostics and newborn screening. Clin 
Biochem. 2022.

13. Hu Z, Yang J, Lin Y, et al. Determination of methylmalonic acid, 2-methylcitric acid, and 
total homocysteine in dried blood spots by liquid chromatography-tandem mass spectrometry: 
A reliable follow-up method for propionylcarnitine-related disorders in newborn screening. J Med 
Screen. 2021;28(2):93–99. [PubMed: 32615850] 

14. Marquardt G, Currier R, McHugh DM, et al. Enhanced interpretation of newborn screening results 
without analyte cutoff values. Genet Med. 2012;14(7):648–655. [PubMed: 22766634] 

15. Tortorelli S, Eckerman JS, Orsini JJ, et al. Moonlighting newborn screening markers: the incidental 
discovery of a second-tier test for Pompe disease. Genet Med. 2018;20(8):840–846. [PubMed: 
29095812] 

16. Minter Baerg MM, Stoway SD, Hart J, et al. Precision newborn screening for lysosomal disorders. 
Genet Med. 2018;20(8):847–854. [PubMed: 29120458] 

17. Baumgartner C, Bohm C, Baumgartner D, et al. Supervised machine learning techniques for 
the classification of metabolic disorders in newborns. Bioinformatics. 2004;20(17):2985–2996. 
[PubMed: 15180934] 

18. Chen WH, Hsieh SL, Hsu KP, et al. Web-based newborn screening system for metabolic diseases: 
machine learning versus clinicians. J Med Internet Res. 2013;15(5):e98. [PubMed: 23702487] 

Mak et al. Page 11

J Inherit Metab Dis. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Peng G, Tang Y, Cowan TM, Enns GM, Zhao H, Scharfe C. Reducing False-Positive Results in 
Newborn Screening Using Machine Learning. Int J Neonatal Screen. 2020;6(1).

20. Zaunseder E, Haupt S, Mutze U, Garbade SF, Kolker S, Heuveline V. Opportunities and 
challenges in machine learning-based newborn screening-A systematic literature review. JIMD 
Rep. 2022;63(3):250–261. [PubMed: 35433168] 

21. Le A, Mak J, Cowan TM. Metabolic profiling by reversed-phase/ion-exchange mass spectrometry. 
J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1143:122072.

22. Waters. Metabolomics & Lipidomics Application Notebook. https://wwwwaterscom/waters/
libraryhtm?locale=en_US&lid=134841740. 2015.

23. Breiman L Random Forests. Machine Learning. 2001;45(1573–0565):5–32.

24. Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002;2(3):18–22.

25. Pang Z, Chong J, Zhou G, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and 
functional insights. Nucleic Acids Res. 2021;49(W1):W388–W396. [PubMed: 34019663] 

26. Burrage LC, Thistlethwaite L, Stroup BM, et al. Untargeted metabolomic profiling reveals 
multiple pathway perturbations and new clinical biomarkers in urea cycle disorders. Genet Med. 
2019;21(9):1977–1986. [PubMed: 30670878] 

27. Golbahar J, Altayab DD, Carreon E. Short-term stability of amino acids and acylcarnitines in the 
dried blood spots used to screen newborns for metabolic disorders. J Med Screen. 2014;21(1):5–9. 
[PubMed: 24531510] 

28. Drolet J, Tolstikov V, Williams BA, et al. Integrated Metabolomics Assessment of Human Dried 
Blood Spots and Urine Strips. Metabolites. 2017;7(3).

29. Peng M, Fang X, Huang Y, et al. Separation and identification of underivatized plasma 
acylcarnitine isomers using liquid chromatography-tandem mass spectrometry for the differential 
diagnosis of organic acidemias and fatty acid oxidation defects. J Chromatogr A. 2013;1319:97–
106. [PubMed: 24169039] 

30. Minkler PE, Stoll MS, Ingalls ST, Yang S, Kerner J, Hoppel CL. Quantification of carnitine and 
acylcarnitines in biological matrices by HPLC electrospray ionization-mass spectrometry. Clin 
Chem. 2008;54(9):1451–1462. [PubMed: 18678604] 

31. Luna C, Griffin C, Miller MJ. A clinically validated method to separate and quantify underivatized 
acylcarnitines and carnitine metabolic intermediates using mixed-mode chromatography with 
tandem mass spectrometry. J Chromatogr A. 2022;1663:462749. [PubMed: 34954532] 

32. Han S, Williamson BD, Fong Y. Improving random forest predictions in small datasets from 
two-phase sampling designs. BMC Med Inform Decis Mak. 2021;21(1):322. [PubMed: 34809631] 

33. Al-Dirbashi OY, Kolker S, Ng D, et al. Diagnosis of glutaric aciduria type 1 by measuring 
3-hydroxyglutaric acid in dried urine spots by liquid chromatography tandem mass spectrometry. J 
Inherit Metab Dis. 2011;34(1):173–180. [PubMed: 20978942] 

34. Shigematsu Y, Yuasa M, Ishige N, Nakajima H, Tajima G. Development of Second-Tier Liquid 
Chromatography-Tandem Mass Spectrometry Analysis for Expanded Newborn Screening in 
Japan. Int J Neonatal Screen. 2021;7(3).

35. Ryckman KK, Berberich SL, Shchelochkov OA, Cook DE, Murray JC. Clinical and environmental 
influences on metabolic biomarkers collected for newborn screening. Clin Biochem. 2013;46(1–
2):133–138. [PubMed: 23010448] 

36. Hall PL, Marquardt G, McHugh DM, et al. Postanalytical tools improve performance of newborn 
screening by tandem mass spectrometry. Genet Med. 2014;16(12):889–895. [PubMed: 24875301] 

37. Clark RH, Kelleher AS, Chace DH, Spitzer AR. Gestational age and age at sampling influence 
metabolic profiles in premature infants. Pediatrics. 2014;134(1):e37–46. [PubMed: 24913786] 

38. Peng G, Tang Y, Gandotra N, et al. Ethnic variability in newborn metabolic screening markers 
associated with false-positive outcomes. J Inherit Metab Dis. 2020;43(5):934–943. [PubMed: 
32216101] 

39. Peng G, Tang Y, Cowan TM, Zhao H, Scharfe C. Timing of Newborn Blood Collection Alters 
Metabolic Disease Screening Performance. Front Pediatr. 2020;8:623184. [PubMed: 33553077] 

40. Henderson MPA, McIntosh N, Chambers A, et al. Biotinidase activity is affected by both seasonal 
temperature and filter collection cards. Clin Biochem. 2022.

Mak et al. Page 12

J Inherit Metab Dis. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://wwwwaterscom/waters/libraryhtm?locale=en_US&lid=134841740
https://wwwwaterscom/waters/libraryhtm?locale=en_US&lid=134841740


Synopsis

Robust, targeted metabolomics analysis with supervised machine learning reduces false-

positive metabolic screening results.
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Figure 1. Heatmap analysis of targeted validation results.
Profiles of the top 108 metabolites are shown for true-positive (TP) and false-positive (FP) 

cases from the four disorders. For each metabolite, data from each group were autoscaled to 

the data of the true-negative samples and the median response of each group was used.
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Figure 2. Analytes important for true- or false-positive classification.
For each condition, a bar chart shows the Mean Decrease in Accuracy values (MDA; x-axis) 

for the 10 most important analytes for accurate random forest classification, with higher 

values representing higher importance for model accuracy. Corresponding boxplot analyses 

of the top-3 analytes for each condition show analyte peak area or response ratio (peak area 

divided by the peak area of the matching isotopic internal standard) for the true-positive 

(TP) and false-positive (FP) sample groups. The horizontal line indicates the group median, 
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and the X indicates the group mean. Ion features are denoted by RT_MRM. Underlined 

analytes are those with a matching isotopic internal standard.
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Table 1.
Analytes included in the 121-plex targeted metabolomics panel.

The multiplex panel includes first-tier screening markers, additional organic acids, acylcarnitines and 

acylglycines, and uncharacterized isobars. First-tier screening markers are defined as those included in our 

California Newborn Screening dataset.

First-tier newborn screening markers and their isomers (n=45)

Alanine C0 (free carnitine) C10

Arginine C2 C10:1

Citrulline C3 C12

Glycine C3DC C12:1

Isoleucine/Alloisoleucine C4 C14

Leucine C4DC (Methylmalonylcarnitine) C14:1

Methionine C4DC (Succinylcarnitine) C14:2

Ornithine C5 (Isovaleryl/Valerylcarnitine) C14-OH

Phenylalanine C5 (Pivaloyl/2-methylbutyrylcarnitine) C16

Proline C5:1 C16:1

Pyroglutamic acid C5DC C16-OH

Succinylacetone C5-OH C18

Tyrosine C6 C18:1

Valine C8 C18:1-OH

C8:1 C18-OH

C18:2

Additional analytes (n=52)

2-aminobutyric acid C6-OH Methylmalonic acid

2-hydroxy-3-methylbutanoic acid Creatine Methylsuccinic/ethylmalonic acid

2-hydroxyglutaric acid Dimethylglycine Octadecanedioic acid

2-hydroxy-methylbutyric acid Dodecanedioic acid Orotic acid

2-methylbutyrylglycine Glutamic acid Propionylglycine

3-hydroxy-2-methylbutanoic acid Glutamine Sebacic acid

3-hydroxyglutaric acid Glutaric acid Serine

3-hydroxyisovaleric acid Guanidinoacetic acid Suberic acid

3-hydroxypropionic acid Hexadecanedioic acid Suberylglycine

3-methylcrotonylglycine Hexanoylglycine Succinic acid

3-methylglutaconic acid Histidine Sulfocysteine

Acetoacetic acid Homocitrulline Tetradecanedioic acid

Adipic acid Homocysteine Threonine

Asparagine Homocystine Tryptophan

Aspartic acid Hydroxyproline Uridine

Butyryl/Isobutyrylglycine Lactic acid Valeryl/Isovaleryl/Methylbutyrylglycine

C14:1-OH Lysine

C16:1-OH Methylcitric acid
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Uncharacterized ion features (isobaric to) (n=24)

0.34_269/136 (homocystine) 1.72_414.4/85 (C16:1-OH) 1.91_384.3/85 (C14:2-OH)

1.3_276.2/85 (C5DC) 1.75_384.3/85 (C14:2-OH) 2.0_386.3/85 (C14:1-OH)

1.52_262.2/85 (C5-OH) 1.75_442.3/85 (C18:1-OH) 2.03_428.4/85 (C18)

1.54_386.3/85 (C14:1-OH) 1.78_416.4/85 (C16-OH) 2.1_370.4/85 (C14:1)

1.59_444.4/85 (C18-OH) 1.79_444.4/85 (C18-OH) 2.1_386.3/85 (C14:1-OH)

1.65_384.3/85 (C14:2-OH) 1.8_288.3/85 (C8) 2.1_414.4/85 (C16:1-OH)

1.66_386.3/85 (C14:1-OH) 1.8_442.3/85 (C18:1-OH) 2.18_414.4/85 (C16:1-OH)

1.69_388.4/85 (C14-OH) 1.86_444.4/85 (C18-OH) 2.26_424.4/85 (C18:2)
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Table 2.
Targeted metabolomics reduces false-positive cases.

Number of true- and false-positives from first tier screening, and subsequent reduction of false positives, 

area under the receiver operating characteristic curve (AUC), and positive predictive value (PPV) following 

second-tier analysis using 121-analyte panel testing and RF classification at 100% sensitivity.

First-Tier Analysis Second-Tier Analysis (100% sensitivity)

Disorder True Positives False Positives False Positives Eliminated % Reduction of False Positives AUC PPV

GA1 6 29 24 82.8% 0.97 54.5%

MMA 13 58 49 84.5% 0.98 59.1%

OTCD 3 16 16 100.0% 1.00 100.0%

VLCADD 13 47 24 51.1% 0.93 36.1%
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