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Abstract

Many flaviviruses are well-known pathogens, such as dengue, Zika, Japanese encephalitis, and 

yellow fever viruses. Among them, dengue viruses cause global epidemics and threaten billions 

of people. Effective vaccines and antivirals are in desperate need. In this review, we focus on 

the recent advances in understanding viral non-structural (NS) proteins as antiviral drug targets. 

We briefly summarize the experimental structures and predicated models of flaviviral NS proteins 

and their functions. We highlight a few well-characterized inhibitors targeting these NS proteins 

and provide an update about the latest development. NS4B emerges as one of the most promising 

drug targets as novel inhibitors targeting NS4B and its interaction network are entering clinical 

studies. Studies aiming to elucidate the architecture and molecular basis of viral replication will 

offer new opportunities for novel antiviral discovery. Direct-acting agents against dengue and other 

pathogenic flaviviruses may be available very soon.

Flaviviruses and Dengue virus

The Flavivirus genus, of the virus family Flaviviridae, is a group of positive-sense single-

stranded RNA viruses (+ssRNA). Most flaviviruses are arboviruses - transmitted through 

ticks and mosquitoes. Notably, the genus includes the dengue virus (DENV), Zika virus 

(ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), West Nile virus 

(WNV), and tick-borne encephalitis virus (TBEV). The combined burden of these viruses is 
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immense and continues to escalate, with millions of people suffering from the diseases they 

cause yearly.

More than a quarter of the human population lives within Dengue-endemic areas today, with 

nearly half a billion people infected with DENV every year, of which hundreds of thousands 

develop severe disease with a fatality rate of ~5% in treated patients [1, 2]. JEV is the most 

significant cause of encephalitis globally, impacting 30–50 thousand cases a year [3], with 

most clinical cases occurring in children and infants. Recently, the re-emergence of other 

flaviviruses such as ZIKV and WNV has also caused significant transmission globally and 

presents a global health threat [4].

DENV causes an acute febrile disease named dengue fever, however, many infected people, 

including a large proportion of children, develop life-threatening forms of the disease 

known as dengue haemorrhagic fever and dengue shock syndrome [5]. Severe dengue is 

characterized by excessive inflammation, with studies showing that viral antigens induce the 

pro-inflammatory responses that underpin pathogenesis.

There is a lack of approved treatments that effectively combat most flaviviral diseases, 

with no drugs currently approved for use [6, 7]. A major impediment in developing drugs 

is that both the morphology and composition of the virus replication complex (RC), the 

interplay between its molecular constituents as well as the precise molecular mechanisms 

remain elusive [8]. Several non-structural proteins of the RC constitute validated drug targets 

because of their crucial functions during viral replication [6, 7].

Flavivirus Replication and Replicase Proteins

The +ssRNA flaviviral genome consists of a single open reading frame as well as 5’ and 3’ 

end untranslated regions (UTR). Due to the positive-sense nature of the flaviviral genome, it 

can hijack host cell translation machinery to produce a single polyprotein. This polyprotein, 

which is anchored to the ER membrane [9], is co and post-translationally cleaved by both 

viral and host proteases into the structural proteins - capsid (C), precursor membrane (prM), 

and envelope (E) proteins, as well as non-structural (NS) proteins NS1, NS2A, NS2B, NS3, 

NS4A, 2k peptide, NS4B and NS5 (Figure 1).

The NS proteins then assemble to form the viral replication complex or replicase, resulting 

in the formation of replication organelles (RO) through ER membrane invagination. These 

non-structural proteins perform crucial functions in viral replication. Elements of their 

structures are highly conserved among different flaviviruses or serotypes of flaviviruses. 

Targeting these elements, rather than the less conserved envelope protein, may provide the 

key to finding treatments for flaviviral infections. With known structures and predicted 

models of these NS proteins and protein complexes, we provide a structural proteomic view 

of the non-structural proteins and introduce a few highlights of the recent progress in anti-

flaviviral drug development. We utilised AlphaFold 2 (AF2) [10] to predict the structures 

of unknown flaviviral transmembrane protein structures, NS2A, NS4A and NS4B, and 

discussed the prediction accuracy and differences to biochemical characterization studies 

that were reported.
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NS1 structures and antibody-based protection.

NS1 is a ~48-kDa multi-functional glycoprotein that is found circulating in high levels 

during acute infection, is highly immunogenic, and exerts tissue-specific pathogenic effects 

of vascular permeability and pro-inflammatory responses [11] consistent with the flaviviral 

disease tropism [12]. Hence, secreted NS1 (sNS1) as a prognostic and diagnostic marker 

of different flavivirus infections using monoclonal antibodies or detection of anti-NS1 

antibodies is well established. More recently, a new generation of NS1-based diagnostics 

based on DNA aptamers that can detect sub-serotype DENV variants was reported [13]. 

However, it does not serve well as a marker of disease severity due to confounding reports 

such as sNS1 levels being serotype-dependent in a mouse model [14], and no significant 

difference being observed between sNS1 levels in DENV2-infected patients with disease 

state in a study in Mexico [15] and Vietnam [16]. In the case of sNS1 biotherapeutic 

potential using small molecules, anti-NS1 antibodies, and in NS1-based vaccines, they 

remain vigorously pursued with a rapidly changing landscape of NS1 structures and the 

mechanistic basis for antibody-mediated protection.

The crystal structure of NS1 revealed a three-domain architecture, a hydrophobic β-roll 

(residues 1–29), an a/b wing (38–151), and a β-ladder (181–352). The connector segments 

between the wing and β-ladder domains, residues 30–37 and 152–180, form a 3-stranded 

β-sheet [17–19]. The dimer has a distinct crossed shape with the wings extending from 

the central β-ladder which has an extended β-sheet that faces the β-roll as the membrane-

associated surface and a “spaghetti loop” on the opposite hydrophilic outer face that lacks 

structured elements (Figure 2A). Upon synthesis, It is translocated into the ER lumen where 

it is glycosylated and dimerizes [20, 21] and drives the biogenesis of the viral replication 

complex with known interactions to the NS4A-2K-4B precursor for viral RNA replication 

[22–24]. Extracellularly, the dimers are found associated with lipid rafts on the plasma 

membrane [25] and secreted in a presumed hexameric form (Figure 2C) that is barrel-shaped 

with a lipid-cargo held together by hydrophobic interactions based on results from native 

PAGE gel, analytical size-exclusion chromatography, electron microscopy models at low-

resolution, and crystallographic contact analysis [26–28]. Recent virological studies show 

that secreted NS1 (sNS1) is associated with HDL which can trigger pro-inflammatory 

responses [29, 30] and uses scavenger receptor B1 (SRB1) as a cell receptor in cultured 

cells [31]. There is now definitive and direct evidence that sNS1 are found predominantly 

as dimers in complex with HDL (Figure 2D) and unlikely exists as hexamers in infected 

supernatants or patients’ blood as reported in our preprint [32]. This view is supported 

by the first direct evidence of hexameric sNS1 but they were only found in low numbers 

(~3.1%, 37,422 out of 1,219,277 particles) and the major form is tetrameric (Figure 2B) 

in their sample, his-tagged NS1 expressed in Expi293 HEK cells, which is reflective of 

the recombinant form of NS1 [33]. The direct interaction of sNS1 with SRB1 or indirectly 

as a complex with HDL for its internalisation to support viral replication and disruption 

of endothelial glycocalyx could help explain altered lipoprotein metabolism observed in 

Dengue patients [34] and hence offer new therapeutic routes. While it is unclear how the 

sNS1-SRB1 interaction may influence flaviviral disease tropism, a recent study identified 

the NS1 wing domain (residues 91 to 93) as the primary determinant for cell binding 

specificity while the β-ladder is involved in inducing endothelial hyperpermeability [35]. 
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Correspondingly, the use of monoclonal antibodies against NS1 were able to counter 

NS1 pathogenesis and their binding to the β-ladder domain sterically hinders NS1 from 

interacting with the lipid membrane [36, 37] (Figure 2E). The development of anti-NS1 

monoclonal antibodies for treatment is promising.

Small molecules.—Celgosivir, an iminosugar, that causes NS1 to misfold and accumulate 

in the ER [38] did not reduce the disease burden in DENV patients in a Phase I proof-of-

concept trial [39]. A Phase II clinical trial (NCT02569827) was subsequently approved when 

further dose regimen optimization of Celgosivir from 2 to 4 times daily was shown to reduce 

viremia significantly even on day 2 or 3 post-infection [40]. Unfortunately, the clinical trial 

has been withdrawn due to the lack of funding.

NS1-based vaccines.—There is evidence of autoimmunity from cross-reactive anti-

NS1 antibodies especially in the case of Zika virus infection [41], and inflammatory 

activation and apoptosis induction via a proposed molecular mimicry mechanism [42], 

recently reviewed by Carpio and Barrett (2021) [43]. Overall, the use of NS1 for vaccine 

development remains doubtful.

NS2A

NS2A is the first NS protein that has multiple transmembrane helixes (Figure 1C). Its 

N-terminus is liberated from NS1 by a host protease and is therefore localized on the 

endoplasmic reticulum (ER) lumen. Its C-terminus is cytoplasmic as it is cleaved by viral 

NS2B-3 protease. A detailed model of the NS2A topology that was proposed [44] differed 

from the AF2-predicted model which was also of low confidence scores, with predicted 

Local Distance Difference Test (plDDT) scores ranging from 50–90. Existing literature 

has placed the third transmembrane segment (TMS) of NS2A within the membrane, with 

the other 6 TMS associated peripherally [45], with the N-terminus region including the 

first 2 TMS residing in the ER lumen, and TMS4-TMS7 at the C-terminus residing in the 

cytoplasm. This is in contrast to the AF2-predicted structures, which proposed multiple 

membrane-spanning segments (Figure 1C).

It is well understood that NS2A functions in both flaviviral RNA synthesis and virion 

assembly [46–49]. NS2A may act as a membrane-embedded platform to bring viral RNA 

and viral structural/nonstructural proteins to the virion assembly site. NS2A is not only an 

essential component of the viral replication complex but also a viral antagonist of the host 

immune response [50–52]. Given its critical role in the virus life cycle, it could be a good 

drug target. However, there has not been a promising compound targeting NS2A reported so 

far.

Inhibitors targeting NS2B-3 protease-helicase

NS3 is an essential protein in both polyprotein processing and viral replication. It has an 

MW of ~69kDa and its structure and function have been extensively studied and are well 

characterized [53]. It is multifunctional and contains 2 key domains: protease and helicase. 

Additionally, NS3 plays a role in viral assembly and the production of infectious particles 
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[54–56]. The protease domain, of which the NS2B is a crucial cofactor, is instrumental in 

structural polyprotein processing and cleaves junctions between many of the viral proteins 

[57]. The helicase unwinds the RNA [58] secondary structures of the duplex formed 

during replication to preface the synthesis of new strands of viral RNA [59]. Finally, the 

5’terminal RNA triphosphatase subdomain is presumably required for the synthesis of the 

5’ cap structure which is a structure on the terminus of the RNA that mimics that of the 

host. This prevents degradation and allows for efficient translation by cellular machinery 

[60]. These two proteins and the interaction between them perform pivotal roles in the 

replication of flaviviruses and are therefore potential targets for therapeutics [61, 62]. 

High-resolution structures of the NS2B-NS3 protease structures from DENV, WNV, and 

ZIKV have been determined with various ligands and inhibitory compounds [63–65]. Many 

protease inhibitors have been reported, yet none has advanced into clinical stages [7, 8, 62, 

66–68]. Additionally, several promising compounds have been identified by the Christian 

Klein group, but haven’t yet been tested in vivo [69–72]. The NS3 helicase domain, given its 

dynamic nature upon RNA binding, translocation, and unwinding activities coupling to ATP 

binding and hydrolysis, is considered a less attractive target to develop specific inhibitors 

[61, 73, 74].

A drug screening and chemical synthesis produced a range of compounds with antiviral 

properties targeting the flaviviral protease. One of the most potent of these compounds, 

which also had minimal activities against human proteases, was designated compound 9 

(Figure 3A) [75]. This compound showed activity against the proteases of Zika virus, 

Dengue virus 2 and 3, and West Nile virus. The authors determined a crystal structure 

of the molecule bound to DV2pro, revealing that it binds to an allosteric pocket (Figure 

3A). This acts to ‘lock’ NS3 in an open conformation, blocking it from binding NS2B 

or the substrate to perform its function. However, the crystal structure suffers from poor 

refinement, probably due to largely disordered regions in the structure. Compound 9 was 

shown to have strong antiviral activity against the aforementioned viruses in cell culture 

experiments, inhibiting viral replication at a high level with no significant cytotoxicity. 

The Compound had an IC50 as low as 120nM and an EC68 of 300–600nM in a mouse 

model of ZIKV infected cells, with no significant toxicity. In-vivo experiments were also 

performed in mice, showing good tolerance and a significant survival benefit [75]. Similar 

ideas of targeting the open conformation using allosteric inhibitors have also yield some new 

compounds of different chemical classes [76, 77]. Further analysis to confirm the binding 

model of these compounds is required.

Flaviviral proteases share a similar dibasic peptide substrate recognition pocket next to 

the active site. Substrate peptide-based protease inhibitors reported so far suffer from 

weak cellular activities due to the positive charges. Nonetheless, some most potent 

cyclic peptide inhibitors have been reported recently following a series of structure-based 

peptide chemistry studies [78–81]. Compound 12 shown in Figure 3B is one of the best 

characterised cyclic peptide inhibitors. These highly charged inhibitors suffer from poor 

membrane permeability and weak antiviral efficacy in cell-based Zika virus infection assays. 

Future efforts should focus on the chemical modification of substrate-like peptide scaffolds 

to produce potent, specific, cellularlyactive non-peptidic inhibitors [71, 82].
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NS4A

NS4A is a small membrane protein (~16kDa) that has crucial roles in RNA replication 

and the formation of the RO [24, 83–87]. It acts as a scaffold for the replication complex, 

and is sufficient to induce membrane curvature alone, likely through a wedge mechanism. 

AlphaFold2 model shows this wedge-shaped structure. However, this prediction also 

contains inconsistencies when compared to the biochemical data. Notably, the protein’s 

C-terminus is located on the luminal side of the ER membrane in the AF2 prediction (Figure 

1C), which is incompatible with the fact that NS3 cleavage is known to occur on the 

cytoplasmic side.

Several NS4A inhibitors have been identified and present a promising avenue for further 

development, considering the importance of NS4A in the viral life cycle. In particular, the 

drug SBI-0090799 is a potent and selective inhibitor of ZIKV and has been shown to block 

the formation of ROs de novo [88]. Currently, no flavivirus NS4A inhibitors has progressed 

to clinical trials.

NS4B inhibitors/ polyprotein processing and RC

NS4B is the largest transmembrane protein (~27kDa). The expected topology of NS4b from 

a range of biochemical studies and bioinformatic predictions disagree on the number of 

transmembrane helices and their arrangement [86]. The AF2 models also differ significantly 

from the biochemical data, predicting 9 helices rather than around 5 helices (Figure 4A). 

These discrepancies may be due to the intrinsically disordered nature of NS4b. The extra 

helices may unfold when the protein interacts with lipids or other proteins and exhibit a 

dynamic structure. This is consistent with molecular modelling, which predicts that the 

N-terminus has a disordered structure, the C-terminus order is dependent on the presence 

of lipids and the cytosolic loop may adopt a partially ordered state [89]. In situ structural 

studies are needed to clarify the structures of these proteins in conjunction with lipids, RNA 

and binding partners to be more certain of their topologies. NS4b is known to dimerise 

in vivo and when purified [90]. It has been demonstrated that the cytoplasmic loop is 

critical for dimerisation. The C-terminus (TM4–5) alone can dimerise, which may also 

mediate dimerisation alongside the cytoplasmic loop, although deletion of this region does 

not prevent dimerisation. It too colocalizes with other proteins of the RC, specifically NS3 

and NS4A, as well as the viral RNA. It is involved in dissociating the RNA from the NS3 

helicase domain, working cooperatively with NS4A [91–93]. Additionally, NS4B putatively 

inhibits interferon signalling, seriously impeding the host’s immune response to the virus. 

Inducing alterations in NS4B hampers replication of viral RNA significantly, indicating that 

its function is much more than just structural [94].

Previous studies have identified several compounds which showed activity against NS4b 

and some showing effectiveness in vivo. These inhibitors generally had EC50s in the 

micromolar range. The more recently identified compounds discussed below have EC50s 

in the nanomolar range, all show strong potency in vivo and pan-flaviviral or pan-serotype 

activity [95–97]. Understanding NS4B and its crucial functions in viral replication better 

could shed light on several viral processes that are currently beyond our knowledge. It is also 
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an attractive target for antiviral development as it is well-conserved among flaviviruses and 

takes a central role in the replication complex.

JNJ-A07.

A recent study identified a new compound in an anti-DENV screen, JNJ-A07, which is 

shown to be a potent inhibitor of DENV replication in all serotypes, with nanomolar to 

picomolar activity [98]. The study demonstrated that the compound blocks the interaction 

between NS4B and NS3, preventing the formation of NS3-NS4B complexes but does not 

disrupt after its formation, therefore attenuating the cleavage of the polyprotein (Figure 4B). 

JNJ-A07 was found to have a high barrier to resistance, with three mutations in conjunction 

being necessary to attain a prominent resistance. Additionally, these drug-resistant mutants 

are no longer able to replicate in mosquito cells, suggesting that transmission would be 

abolished. NS4B is known to dissociate NS3 from the viral RNA and increase the NS3 

helicase activity [92]. The findings of the study suggest that JNJ-A07 allosterically alters the 

conformation of the cytosol facing loop 3 of NS4B, blocking the formation of the complex. 

In-vivo experiments showed that the drug is well tolerated and was efficacious in lowering 

viral load and disease[98].

NITD-688.

There is a strong necessity for antivirals that can target all four dengue serotypes, and 

currently, no approved drugs meet this need. In 2021, Moquin et al [99] reported the 

discovery of NITD-688, a potent inhibitor of pan-serotype dengue replication introduced by 

NOVARTIS. Using NMR, the authors demonstrated that the molecule binds to NS4b, further 

reinforced by resistance mutational studies which found that resistance-conferring mutations 

take place in NS4b (Figure 4A). These mutations are contained in TM helices 4 and 5, a 

possible indication that the drug affects dimerisation, which would need to be demonstrated 

by further study. These residues are all conserved across dengue serotypes, accounting for 

the compound’s effectiveness in all four. The drug has a good pharmacokinetic profile, is 

well tolerated and reduced viremia in in vivo studies.

BDAA.

A small molecule inhibitor of the yellow fever virus, BDAA, has also been found to also 

target NS4B [100]. This is a benzodiazepine compound that was discovered to present 

significant antiviral activity against the yellow fever virus. The mutational resistance profile 

showed that the compound targets P219 located in TM5 of NS4B (Figure 4A). This may 

indicate that NITD-688 shares a similar mechanism of action. The compound was found to 

inhibit viral replication in infected cells with high potency with corresponding significant 

increase in the innate immune system response via cytokine release. The use of electron 

microscopy images of the infected and treated cells reveal a significantly altered morphology 

of the ROs when compared to the infected-untreated cells. NS4b is thought to influence 

the morphology of the RO and may induce curvature in the ER membrane to produce 

these, indicating this action may be compromised. BDAA was also reported to have potent 

antiviral activity in vivo and was well tolerated. Subsequent reported mechanistic results led 

to a dual antiviral model whereby BDAA inhibits viral RNA replication by disrupting the 
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NS4B-driven integrity of YFV ROs which also causes the release of viral RNA from ROs 

resulting in RIG-I and MDA5 activation [101].

NS5 MTase-RdRp and the RdRp inhibitors

NS5 is the largest protein (~104kDa) and is highly conserved across flaviviruses. The 

N-terminal methyltransferase (MTase) domain is globular with 3 sub domains (Figures 1 

and 5). These include a GTP-binding pocket, SAM binding pocket, and MTase activity 

[102]. This domain is involved in the capping of the viral RNA alongside NS3 [103]. The C 

terminal RNA dependant RNA polymerase (RdRp) domain is the final portion of the viral 

polyprotein and has a critical function [104]. It catalyses the synthesis of the viral RNA 

strand from the duplex RNA templates. It has a structure that is common among many RdRp 

proteins with a cupped right-hand architecture with subdomains termed: the fingers, palm, 

and thumb [104]. It also contains a GDD motif for incorporating nucleotides. The structure 

of NS5 as well as its functioning has been well characterised [105]. Among several known 

full-length NS5 structures, there are different relative conformations between MTase and 

RdRp [104, 106–111]. The MTase and RdRp are connected via a flexible and less conserved 

linker, which seems to help regulate the virus replication process [112] There is no structure 

of NS5 RdRp bound with RNA and the molecular understanding of the RNA polymerization 

process is based on the homology of flaviviral RdRp to the RdRp of the related positive 

sense RNA viruses.

Using a structure-guided fragment-based screening method, allosteric inhibitors targeting 

the N pocket of DENV/ZIKV NS5 RdRp have been developed [113–116] (Figures 

5B–C). These compounds represent a novel class of pan-serotype and cell-active Non-

nucleoside Inhibitors against NS5 RdRp (Figures 5C). Enzyme kinetics study suggests these 

compounds may be uncompetitive inhibitors and primarily inhibit the de novo initiation step 

of RNA synthesis. Interestingly, resistance mutations have been identified using a replicon 

cellline, which suggests that the N pocket may also affect the replication complex formation. 

Given the subtle difference of the N pocket among flaviviral NS5, the authors suggest that it 

is possible to develop selective N pocket inhibitors for difference subgroups of flaviviruses 

[117].

Nucleotide analogue inhibitors remain the most attractive candidate for an RdRp, given the 

successful track record in inhibiting RNA polymerases of several other viruses such as HIV, 

HCV, and SARS-COV-2.

NITD008

NITD008 is an adenosine analog inhibitor against pan-flaviviruses that is developed by 

Novartis (Figures 5D) [118, 119] It functions as a chain terminator during viral RNA 

synthesis. However, NITD008 is tested to be too toxic in pre-clinical animal testing. As 

a proof-of-concept inhibitor to treat flavivirus infections, it is also commonly used as a 

research tool for antiviral research for emerging viral diseases.
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AT-752.

In 2021, Good et al reported the discovery of a guanosine nucleotide analogue with potent 

anti-dengue activity, AT-752 9 (Figures 5E). In vitro, the compound was potent in its 

activity against both DENV 2 and 3, as well as HCV. It inhibited viral replication with an 

EC50 of 0.48 and 0.77μM in DENV2 and 3 respectively and was able to inhibit all other 

flaviviruses potently. The drug is orally available and was found to significantly increase the 

longevity of infected mice in-vivo and lower viremia. As a nucleotide analogue, the drug is 

presumed to target the viral RdRp. To confirm this and establish the mechanism of action, 

the authors performed an incorporation and elongation assay. They found that, during RNA 

synthesis, AT-752 is incorporated into the viral RNA by the RdRp, consequently terminating 

synthesis [120]. Atea Pharmaceuticals, the company which developed AT-752, is conducting 

clinical trials to access the safety, antiviral activity, and pharmacokinetics of the drug in 

dengue-endemic regions.

Conclusion and Future Perspectives

This review summarises recent advances in flavivirus antivirals, with a focus on those that 

target non-structural proteins. These proteins have great potential as drug targets, as their 

functions are crucial to viral replication and their structures are often conserved. The above 

studies highlight the possibility of a pan-dengue and even a pan-flavivirus antiviral due to 

the structural similarity between key non-structural proteins. In particular, NS4B seems to 

be a lucrative target, with high similarity among flaviviruses and its importance in viral 

replication. Additionally, pharmacological targeting of the NS3 protease and the RdRp 

NS5 have shown to be promising in arresting viral replication. Targeting the non-structural 

proteins gives a key advantage; the NS proteins are well conserved, and therefore, the 

activity of drugs that bind to them is generally less affected by resistance mutations. 

Structural studies provide crucial information that can guide the development of drug 

candidates and further structural studies are needed to produce safe and potent flavivirus 

antivirals. As outlined above, the structures and interactions of the non-structural proteins 

provide key information to producing new drugs and understanding how they work. The 

structural details of the full replication complex would be instrumental in achieving a 

complete understanding of the arranging of the viral RNA, viral and host proteins, and 

their interactions, which would provide the key to producing molecules that block these 

interactions and effectively halt replication across flaviviruses [24, 88, 121–123].
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Highlights

1. Molecular structures and predicated models of flaviviral NS proteins.

2. Recent advance in antiviral development targeting NS proteins.

3. Inhibitors targeting NS4B entering clinical studies.
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Figure 1. Molecular and structural flavivirology.
(A) Genome organization of the flavivirus genome. Flaviviral RNA is composed of a 

5′UTR, one single open reading frame, and a 3′UTR. Translation of the flavivirus genomes 

produces a single polyprotein, later cleaved to structural and non-structural proteins by 

both host (in yellow) and viral NS2B-3 (in black) proteases. Capsid protein (C protein), 

pre-membrane protein (prM protein), and envelope protein (E protein) are structural 

proteins, whereas the remaining (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) are 

non-structural proteins (B) Diagrammatic representation of the membrane topology of the 

flaviviral polyprotein, as well as the polyprotein cleavage sites. NS2A, NS2B, NS4A, 

and NS4B contain transmembrane domains, while NS1 contains conserved residues that 

interact with the ER membrane [19]. NS5 is indirectly associated with the ER membrane 

through binding to NS3, which is in turn bound to transmembrane proteins NS2A, NS4A, 

and NS4B [124]. (C) Respective solved protein structures predicted models, and their 

structural organization in the ER membrane are illustrated. Each structure is annotated with 

a representative PDB ID, where appropriate, and visualized in cartoon. AlphaFold 2 (AF2) 

was used to predict the structures for NS2A, NS4A, and NS4B transmembrane proteins as 

they remain unresolved. NS1 (PDB: 4O6B) consists of a homodimer, annotated as NS1/A 

and NS1/B. The diagram is rotated 90 degrees to depict NS1 interaction with the membrane. 

NS2B-NS3 protease (NS3pro) interacts with E60 (2-sulfanylidene-1,3-thiazolidin-4-one) 

(PDB: 6L50). NS2B-3, NS4A, 2k peptide and NS4B were predicted with high confidence 

by AF2 (pLDDT score > 70). NS2B anchors the NS2B-3 complex to the ER membrane. 

While NS4A has been predicted with high confidence, the structural organization within 
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the membrane appears to differ from the literature, with the C-terminus of AF2-predicted 

NS4A residing in the ER lumen. NS5 (PDB: 5DTO) consists of an N-terminal MTase and a 

C-terminal RNA-dependent RNA polymerase (RdRp). Figures were created with Biorender.
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Figure 2. The landscape of NS1 structures.
(A) Dimeric NS1 cartoon model in a simulated transparent map at 2.5 Å at a low contour of 

0.2. One of the monomers is colored by its three-domain architecture, a hydrophobic β-roll 

(residues 1–29, orange), an a/b wing (residues 38–151, blue), and a rigid β-ladder (residues 

181–352, cyan). The dimer has a distinct crossed shape with the wings extending from 

the central β-ladder which has an extended β-sheet that faces the β-roll as the membrane-

associated surface (side view) and a “spaghetti loop” on the opposite polar outer face that 

lacks structured elements. (B) Tetrameric and (C) hexameric recombinant secreted NS1 

(sNS1) forms as confirmed by Bo et al. (2021) cryoEM structures [1], modelled using the 

dimeric NS1 structure coupled with a simulated transparent map at 2.5 Å at the high contour 

of 1.0 and at 6.0 Å at the low contour of 0.3 respectively. The second NS1 dimer is coloured 

in yellow and blue for each monomer chain. The third NS1 dimer for the hexamer model 

is coloured in light and dark purple. (D) Immunoaffinity-purified sNS1 form from infected 

cell cultures as reported by Chew et al (2022) [2]. Model of sNS1wt: Fab56.2 predicted 

structures rigid body fitted in the CryoEM map (transparent grey, contoured at 0.14) with 

a correlation value of 0.75 to the fitted regions (map simulated from atoms at 5 Å). The 

antibody Fab56.2 domain is coloured in dark and light green for the Heavy (H) and Light 

(L) chains respectively. The predicted apoA-I, major protein component of HDL, model is 
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coloured in intervals of grey and light purple representing its 11 and 22 residue alpha helical 

repeats. ApoA-I model is fitted in the spherical map region with its orientation informed by 

cross-linking mass spectrometry. (E) Comparison of the NS1 binding by anti-Denv Fab56.2 

to earlier published NS1:Fab structures namely 2B7 (PDB ID: 6WER) [3] and 1G5.3 (PDB 

ID: 7BSC) overlayed on the lipid membrane cartoon for the side view and the top view 

shown at the bottom depicting the differing angles that they bind to the β-ladder. Figure 

prepared using ChimeraX.
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Figure 3. Selected flavivirus Protease Inhibitors.
(A) Structure of a small molecule compound 9, formula 4-(NH2CH2)-Ph, in complex with 

the NS2B-NS3 protease from Dengue 2 virus. (B) Structure of a cyclic peptide compound 

12 in complex with the NS2B-NS3 protease from Zika virus. Colour code: compounds light 

blue, partially unfolded NS2B cofactor magenta, and NS3 protease domain yellow.

van den Elsen et al. Page 21

Curr Opin Virol. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Predicted protein structure of NS4B and its inhibitors.
(A) Comparison between NS4B topology derived from biochemical data, adapted from 

Bhardwaj, et al., and topology of the AF2 model. (B) Schematic of AF2-predicted structural 

organisation of NS4B in the ER membrane, with proposed transmembrane domains 

based on biochemical studies labelled and colored in dark green and cytoplasmic facing 

regions coloured in cyan. Sites of interaction between NS4B and the compounds JNJ-A07, 

NITD-688, and BDAA are annotated. JNJ-A07 alters the conformation of loop 3 of NS4B, 

occurring between TM3 and TM4. BDAA, a small molecule inhibitor of YFV, binds P219 

in TM5 of NS4B. NITD-688 has also been identified to bind to NS4B. (C) Effect of JNJ-

A07 binding on the interaction of NS2B3-NS4B. JNJ-A07 blocks NS3-NS4B interaction 

and complex formation but does not disrupt existing NS3-NS4B complexes. Created with 

Biorender.
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Figure 5. Structure of NS5 MTase-RdRp and its inhibitors.
(A) Overall structure of DENV3 full length NS5. MTase domain is colored in yellow. 

Fingers Palm and Thumb domains of the RdRp are colored in green, cyan, and pink. Linker 

region is colored in orange. (B) View of the RdRp active site, marked with a triangle. The 

allosteric inhibitors binds a novel pocket on the Thumb domain next to the active site. 

Chemical structure of the (C) Compound 29 [114], (D) NITD008. (E) AT-752.
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