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Abstract

Pannexin channels play fundamental roles in regulating inflammation and have been implicated 

in many diseases including hypertension, stroke and neuropathic pain. Thus, the ability to 

pharmacologically block these channels is a vital component of several therapeutic approaches. 

Pharmacologic interrogation of model systems also provides a means to discover new roles for 

pannexins in cell physiology. Here, we review the state of the art for agents that can be used to 

block pannexin channels, with a focus on chemical pharmaceuticals and peptide mimetics that 

act on pannexin 1. Guidance on interpreting results obtained with pannexin pharmacologics in 

experimental systems is discussed, as well as strengths and caveats of different agents, including 

specificity and feasibility of clinical application.
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Introduction

Pannexins (Panx) are proteins that form large-pore, high conductance membrane channels. 

There are three pannexin isoforms, Panx1, Panx2 and Panx3 [1]. Of these, Panx1 is the most 

ubiquitously expressed and is the focus of this review. Pannexin channels play central roles 

in paracrine and autocrine signaling and are thus critical to the control of several physiologic 

processes, including inflammation [2,3], blood pressure [4,5], pain [6], tumorigenesis [7] 

and function of the central nervous system [8,9]. Considering the diverse roles for pannexins 
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in regulating health and disease, they represent an appealing pharmacologic target. On the 

other hand, this range of pannexin channel functions also represents one of the challenges in 

identifying specific pharmacologic strategies to regulate their function.

Pannexin channels are highly permeable and facilitate the diffusion of a broad array of 

substrates. Classically, Panx1 is most closely associated with ATP secretion and is generally 

considered anion selective [10], although this is not absolute. For instance, Panx1 channels 

have been shown to mediate transport of other biologically active molecules and ions, 

including glutamine, spermidine and possibly calcium, suggesting that they enable general 

permeation for substrates smaller than1 kDa [11,12]. In this respect, pannexin channels 

are functionally equivalent to hemichannels formed by connexin family gap junction 

proteins, however, pannexins and connexins are structurally distinct [1]. Given the functional 

similarity of pannexin channels and connexin hemichannels, it is important to use agents 

with the ability to specifically inhibit pannexins or connexins [13].

To date, no intrinsic extracellular ligands have been identified that regulate Panx1 

permeability. Instead, Panx1 activity is generally controlled by ionotropic and metabotropic 

co-receptors that recognize different ligands [14]. For instance, ATP secretion by Panx1 

can be stimulated by P2X7 purinergic receptors [15], alpha-adrenoreceptors [16] or TNF-

alpha receptors [17,18]. Panx1 has also been associated with N-methyl-d-aspartate (NMDA) 

receptors in the CNS [19]. Because so many different stimuli can induce Panx1 channel 

activity, examining the effect of a pharmacologic agent on an output variable in a native 

system, such as ATP secretion or uptake of fluorescent dyes into cells, does not necessarily 

distinguish between an interaction with the co-receptor and a direct interaction with the 

pannexin channel [15]. Given this, heterologous expression systems, such as Xenopus 
oocytes microinjected with mRNA, have been used to measure the effect of agents on 

pannexin function, using depolarization as a channel opening stimulus [12,20,21].

Chemical agents

There are a number of chemical agents being used to block Panx1 channels (Figure 1; Table 

1). A common theme in the initial discovery of pannexin channel inhibitors was to screen 

previously known ion channel inhibitors, such as chloride channel inhibitors, for the ability 

to inhibit Panx1 [10,22,23]. While this has proven to identify Panx1 inhibitors, these agents 

also will have off target effects that need to be considered.

Probenecid

Probenecid is commonly prescribed to prevent gout, promoting uric acid excretion by 

blocking its reabsorption by transporters present in renal tubules [24]. It was first 

demonstrated to inhibit Panx1 channels by using electrophysiologic analysis of Xenopus 
oocytes expressing mammalian Panx1 [21]. By contrast, probenecid has little effect on 

connexin hemichannels, which increases its utility for the study of Panx1 channel function 

[25–28]. While often used as an agent to inhibit transport activity in Panx1 channels in vitro, 

probenecid is known to broadly inhibit other organic anion transport channels as well [29], 

which can be a confounding factor in interpreting experiments using probenecid.
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Another limitation regarding the use of probenecid is the high dose (in the mM range) 

required for significant inhibition of Panx1, which undermines its potential for therapeutic 

use in humans. The exact mechanism of channel inhibition via probenecid has not yet been 

fully resolved, however biochemical studies have determined the first extracellular loop 

(ECL1) as a key region required for probenecid to inhibit Panx1 by a gating mechanism 

[30].

NPPB

5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) is a chloride channel blocker that 

was also demonstrated to inhibit ATP secretion [31]. Panx1 mRNA microinjected into 

Xenopus oocytes were used to confirm that NPPB directly inhibits Panx1 channels, at a 

lower concentration than probenecid [21]. The effects of NPPB and probenecid were not 

additive, suggesting that they may be competing for the same Panx1 binding sites.

Another limitation of NPPB is that it also has the capacity to inhibit connexin hemichannels 

(e.g. Cx46 and a Cx43/32 chimera), so unlike probenecid, it is not able to be used to 

distinguish between connexin and pannexin channels [21].

Spironolactone

Spironolactone was discovered using a non-biased, flow cytometry-based screen for Panx1 

inhibitors [32,33]. Spironolactone has been used for decades to treat hypertension, and 

known to act as a mineralocorticoid receptor (MR) antagonist [34]. Since Panx1 has 

a demonstrated role in regulation of vasoconstriction [16], it seemed likely that Panx1 

inhibition could also be part of the mechanism of action for spironolactone in the control 

of blood pressure. In fact, smooth muscle cell (SMC) specific MR-deficient mice showed 

decreased blood pressure in response to spironolactone, whereas SMC specific Panx1 

deficient mice were unaffected [33]. This was further confirmed in a model of acute hypoxic 

pulmonary vasoconstriction [35] and spironolactone was also demonstrated to inhibit Panx1 

expressed by vascular endothelial cells [18] and in melanoma cells [36]. These studies do 

not rule out a role for spironolactone in regulating hypertension by attenuating renal MR 

function [37]. Interestingly, spironolactone metabolites that more specifically target MR 

are less potent as pannexin channel inhibitors [33], suggesting the potential to produce 

spironolactone derivatives that more specifically target pannexins.

Carbenoxolone

Carbenoxolone is a derivative of glycyrrhetinic acid, which is known for its anti-

inflammatory capacity [38] as well as being a gap junction inhibitor [39]. Bruzonne et 

al. first showed the micromolar sensitivity of Panx1 and Panx2 to carbenoxolone treatment 

with mRNA microinjected into Xenopus oocytes [20], results that have been confirmed 

in multiple different experimental systems [26,40–42]. More recently, Michalski et al. 

identified a putative binding site for carbenoxolone in a region also targeted by probenecid 

[30]. They then used Cryo-EM to resolve frog Panx1 and determined that the binding site for 

carbenoxolone is between ECLs 1 and 2, which locks the channel in a closed conformation 

[43]. The discovery of this binding site suggests that pore blocking is the main mechanism 

of inhibition of pannexins by carbenoxolone [44]. Although carbenoxolone inhibits both 
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connexin and pannexin channels, the dose responses for these effects are different [45], 

which may enable carbenoxolone to be used to distinguish between these two classes of 

channels [46].

Trovafloxacin

As was the case for spironolactone, trovafloxacin also was discovered using a non-biased 

screen for pannexin channel inhibitors [32]. Trovafloxacin is specific for Panx1 channels and 

does not inhibit Panx2 channels or Cx43 gap junctions [32], suggesting utility for this agent 

as an experimental tool [47]. However, trovafloxacin is known to have serious side effects, 

including hepatotoxicity [48], which preclude its therapeutic use as a pannexin channel 

inhibitor.

Mefloquine

Mefloquine was initially discovered through a screening assay of quinine analogs for 

potential malaria treatments [49]. Its utility as an anti-malarial has diminished due to 

Plasmodium resistance as well as potential neurological complications following mefloquine 

treatment [50]. Nonetheless, it is still employed in the study of gap junctions and pannexins 

[51–53]. Nanomolar doses of the racemic erythro form of mefloquine are sufficient for 

significant inhibition of Panx1 [54], whereas gap junction channels (e.g., Cx36 and Cx50) 

are inhibited with μM to mM doses [55]. Given this difference in IC50, mefloquine as a high 

affinity pannexin inhibitor has allowed researchers to distinguish the importance of Panx1 in 

the context of neurological disorders such as epilepsy and opiate withdrawal [56-58].

Brilliant Blue FCF

Brilliant Blue FCF is a food additive used to color several consumer goods, including 

processed foods, drinks, and medications. Using the Xenopus model system, it has been 

shown that Brilliant Blue FCF inhibits Panx1 with very high affinity and lacks an effect on 

connexin hemichannels [59]. Critically, Brilliant Blue FCF does not directly inhibit P2X7 

receptors, in contrast to the parent compound Brilliant Blue G which acts on both P2X7 and 

Panx1 [60]. Although Brilliant Blue FCF has high affinity for the ability to inhibit Panx1, 

the dark blue color has the potential to interfere with some types of experiments. Also, since 

Brilliant Blue FCF is a strong pannexin inhibitor, it is not an inert food additive. Given 

this, efforts are underway to find natural compounds that can be used in consumer products 

instead of Brilliant Blue FCF [61].

Peptide mimetics

In contrast to chemical agents, peptide mimetics have the potential to specifically target 

proteins by recognizing specific motifs (e.g., Figure 2; Table 1). This approach has 

successfully been used to manipulate connexins [13,62]. By analogy, peptides have also 

been developed that have the capacity to interfere with pannexin function.

10Panx1

The synthetic peptide 10Panx1 was first introduced in 2006 by Pelegrin and Surprenant [63], 

in which Panx1 was shown to be the functional link between P2X7 receptor large pore 
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formation and the caspase 1 cascade [63]. The short synthetic 10Panx1 peptide works by 

blocking amino acid residues 74-83 present in the extracellular loop 1 (ECL1) domain of 

Panx1. As discussed previously, ECL1, and more specifically the W74 residue in each of 

the Panx1 subunits, is an essential region for channel function. To date, 10Panx1 has been 

used in micromolar doses to investigate effects of this ECL1 blockade in a wide variety of 

cell types including neurons, erythrocytes, T cells, as well as in vivo [19,64-66]. Although 

the peptide sequence is specific to Panx1, current through Cx46 channels was shown to be 

moderately inhibited by 10Panx1 [67], comparable to the cross reactivity of the connexin 

mimetic peptides gap26 and gap27 with the ability to block pannexin channels [67]. The 

cross-reactivity of these peptides underscores the need to interpret studies using 10Panx1 

with caution, and the need to use complementary methods to ensure that pannexin channels 

are involved.

PxIL2P and Panx308

In contrast to peptides made against the Panx1 extracellular loop, both PxIL2P and Panx308 

were made against regulatory regions of Panx1 on intracellular Panx1 domains. Given 

this, both PxIL2P and Panx308 require modifications to be cell permeable. This has been 

accomplished by creating peptide chimeras where the N terminus is conjugated to the cell 

penetrating TAT (GRKKRRQRRRPQ) sequence. Both PxIL2P and Panx308 fused to TAT 

were shown to enter cells without any other chemical modification or assistance [16,68].

Interestingly, both peptides cover tyrosine residues that were shown to be important in Panx1 

channel opening depending on the tissue, PxIL2P targeting the intracellular loop (ICL) 

domain [16], and Panx308 targeting the COOH-tail [68]. PxIL2P covers 10 amino acids 

starting at K191 and was first described by Billaud et al in a screening for peptides that 

block alpha-adrenergic constriction of arteries [16]. After multiple peptides were mapped to 

different intracellular regions of Panx1, PxIL2P was found to provide significant inhibition 

of vasoconstriction analogous to genetic deletion of Panx1 from smooth muscle cells [16]. 

The peptide was also found to block Panx1 current and ATP release in a heterologous 

system, with the Y198 amino acid being of critical importance to the Panx1 channel opening 

[16]. Further work determined that this effect was due to Src dependent phosphorylation of 

Y198 [69]. PxIL2P has been used to block Panx1 channel function in multiple cell types 

[11,33,70].

The Panx308 peptide covers 14 amino acids starting at L306 on the COOH tail of the Panx1 

monomer [68]. As was the case for Y198, the Y308 residue of Panx1 is also a target for 

Src phosphorylation, although it is induced in response to neuronal NMDA activation after 

stroke [68]. Whether Src phosphorylation of Y308 is sufficient to activate Panx1 opening is 

an open question. Of note, Panx1 is phosphorylated immediately upon NMDA stimulation, 

however, Panx1 channel activity only occurs after a 10 minute latent period [68]. This 

suggests a model where Y308 phosphorylation may render Panx1 to be more sensitized to 

a second stimulus that is required for complete channel opening. Also, the common theme 

of Src phosphorylation in regulating these two distinct Panx1 domains suggests that both 

of the PxIL2P and Panx308 peptides might act as competitive inhibitors that will prevent 

phosphorylation of both Y198 and Y308. Whether this is the case has not been directly 
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tested although it could be determined through the use of phospho-specific anti-Panx1 

antibodies.

Conclusion and perspectives

Panx1 has been the focus of this review due to its ubiquitous expression and function. Less 

is known about the pharmacology of Panx2, which is predominantly expressed in the central 

nervous system or Panx3 which has been found in bone, cartilage and, potentially, blood 

vessels [71,72]. To date, there have not been any pharmacologic agents developed that have 

been shown to specifically block Panx2 or Panx3 and not Panx1. Another caveat related 

to the pharmacologic manipulation of pannexins is that it has been demonstrated that there 

are several subconductance states for Panx1 that can be revealed by dose response studies 

[10,47,73,74] and which are likely to reflect different functional conformations. Panx2 and 

Panx3 are likely to also have subconductance states and they may differ from those observed 

for Panx1. Finally, there is a lack of agonists with the ability to stimulate pannexin channel 

activity. The ability to enhance channel function would certainly have experimental value 

and could also have therapeutic application.

Thus, considerable caution should be taken when using pharmacologic approaches to 

assign a functional role for pannexins. Specifically, using a single inhibitor is not 

sufficient, especially if the experiment does not render definitive inhibition. This problem is 

compounded in whole animals where Panx1 expression is ubiquitous. For example, Panx1 

inhibition in renin secreting cells causes a large release of renin which will increase blood 

pressure [70], whereas inhibition of Panx1 on smooth muscle cells lowers blood pressure 

through adrenergic activity [16]. These two processes could offset and give an erroneously 

negative finding. This also underscores the importance of transgenic mouse models to assist 

in interpreting pharmacologic studies, especially the use of tissue targeted gene knockouts.

Although the agents described here all have caveats, when their limitations are considered, 

they can provide insights into roles for pannexins in physiologic processes. We suggest as a 

best practice to always use multiple complementary pannexin inhibitors (e.g. spironolactone 

and PxIL2P) to assign a role for pannexin channels in a physiologic process. If the aggregate 

data (with genetic knockout in cells or animals) still supports an effect of Panx1 channel 

inhibition, then this provides a strong accumulation of evidence in support of pannexin 

channels having a functional role.
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Figure 1. Chemical pannexin inhibitors.
Shown are the structures of representative pannexin channel inhibitors. The structure of 

trovafloxacin was used under a CC BY-SA 3.0 license (https://commons.wikimedia.org/

wiki/File:Trovafloxacin.svg), all other structures were from public domain images.
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Figure 2. Pannexin domains corresponding to peptide mimetics used to block active Panx1 
channels.
The schematic represents one monomer from the heptameric Panx1 channel in blue. Red 

represents the number of amino acids composing a mimetic peptide made in that region, 

with the starting amino acid and position noted. ICL is intracellular loop, and ECL is 

extracellular loop. Note that each circle does not correspond to an individual amino acid.
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Table 1.
Current described Pannexin channel inhibitors.

IC50 values are from [21,23]

Chemical agents IC50 First shown to inhibit Pannexin1

Probenecid 150 - 360 μM Silverman, et al., 2008 [21]

NPPB 21 μM Silverman, et al., 2008 [21]

Spironolactone 10 μM Good, et al., 2018 [33]

Carbenoxolone 5 μM Bruzzone, et al., 2005 [20]

Trovafloxacin 4 μM Poon, et al., 2014 [32]

Mefloquine 0.05 μM (erythro)
0.8 μM (threo)

Iglesias, et al., 2008 [15]

Brilliant Blue G 3 μM Qiu and Dahl, 2009 [60]

Brilliant Blue FCF 0.27 μM Wang, et al., 2013 [59]

Peptide mimetics Working concentration First shown to inhibit Pannexin1

10Panx1 74-WRQAAFVDSY-83 10 μM Pelegrin and Surprenant, 2006 [63]

PxIL2P 191-KYPIVEQYLK-200 3-20 μM Billaud, et al., 2015 [16]

Panx308 306-LKVYEILPTFDVLH-319 1-10 μM Weilinger, et al., 2016 [68].
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