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Spatial profiling of microbial communities
by sequential FISH with error-robust
encoding

Zhaohui Cao 1,2,3,Wenlong Zuo 1,3, LanxiangWang1, JunyuChen1, ZepengQu1,
Fan Jin 1,2 & Lei Dai 1,2

Spatial analysis of microbiomes at single cell resolution with high multiplexity
and accuracy has remained challenging. Here we present spatial profiling of a
microbiome using sequential error-robust fluorescence in situ hybridization
(SEER-FISH), a highly multiplexed and accurate imaging method that allows
mapping ofmicrobial communities atmicron-scale.We show thatmultiplexity
of RNA profiling in microbiomes can be increased significantly by sequential
rounds of probe hybridization and dissociation. Combined with error-
correction strategies, we demonstrate that SEER-FISH enables accurate taxo-
nomic identification in complex microbial communities. Using microbial
communities composed of diverse bacterial taxa isolated from plant rhizo-
spheres, we apply SEER-FISH to quantify the abundance of each taxon andmap
microbial biogeography on roots. At micron-scale, we identify clustering of
microbial cells from multiple species on the rhizoplane. Under treatment of
plant metabolites, we find spatial re-organization of microbial colonization
along the root and alterations in spatial association among microbial taxa.
Taken together, SEER-FISH provides a useful method for profiling the spatial
ecology of complex microbial communities in situ.

Spatial structure ofmicrobial communities has been observed across
different habitats, ranging from marine biofilms1, human gastro-
intestinal tracts and oral cavities2,3, to plant phyllosphere and
rhizosphere4,5. For example, microbial localization and density vary
widely in animal guts (along both longitudinal and transverse axes),
as well as in plant compartments, due to spatial heterogeneity in
chemical and oxygen gradients, nutrient availability, and immune
effectors6,7. Despite advances in high-throughput sequencing tech-
nologies, understanding of the spatial organization of complex
microbial communities is still limited8. Development of highly mul-
tiplexed methods for system-level, spatially-resolved profiling of
microbial communities is crucial to elucidate principles governing
the assembly and functions of microbiomes, as well as their inter-
actions with the environment and hosts9–12.

Fluorescence in situ hybridization (FISH) with probes targeting
ribosomal RNA (rRNA) has been widely used to identify specific
microbial taxa and allows for in situ spatial analysis of microbiomes at
single cell resolution13–19. One challenge of this spatial profiling is the
huge phylogenetic and functional diversity of free-living and host-
associated microbial communities. Hundreds to thousands of micro-
bial species reside in soil, plant rhizospheres20, and mammalian guts21.
In situ profiling of meta-transcriptomes is even more challenging, as
the estimated complexity ofmetagenomes (e.g., over 20million genes
in the human gut microbiome22) far exceeds the complexity of host
genomes. Multiple methods have been developed to increase multi-
plexity in spatial mapping of microbiomes23–28. Combinatorial labeling
and spectral imaging in CLASI-FISH allowed the number of imaged
species to exceed the number of fluorophores24,25. The two-step
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hybridization scheme and advanced spectral unmixing in HiPR-FISH
further increasedmultiplexity28. However, themultiplexity of currently
available imaging methods for microbiome samples is still inherently
limited by the number of fluorophores, i.e., up to 2F−1 targets with F
fluorophores. Methods based on sequential FISH can significantly
increase multiplexity29–33 and are very much needed for spatially
resolved measurements of microbial communities.

Another challenge of applying FISH methods to profile complex
microbial communities is the accuracy of target identification.
The accuracy of taxonomic identification with FISH depends on the
specificity of probe targeting, yet rRNA sequences of species closely
related phylogenetically are highly similar. In a diverse microbial
community, probes of nonspecific binding cannot be ignored;
therefore, it is difficult to design perfectly selective probes at the
species or sub-species level12,34, and to achieve highly accurate target
identification with multiplexed FISH methods. Error-correction
strategy that can improve accuracy for target identification in the
context of microbiome imaging is highly desirable, but remains lar-
gely unexplored.

Here we introduce sequential error-robust fluorescence in situ
hybridization (SEER-FISH), a highly multiplexed and accurate micro-
biome imaging approach allowing spatial mapping of microbial com-
munities at single cell resolution. We developed an experimental
method that allows for multiple rounds of FISH imaging of microbial
samples. The exponential combination of fluorophore numbers (F)
and hybridization rounds (N) leads to an unparalleled increase in
multiplexity (FN) for labeling microbiome samples. By incorporating

error-robust encoding schemes, we showed that SEER-FISH could
tolerate probe non-specificity to achieve high precision and recall in
taxonomic identification ofmicrobial communities. Finally, we applied
SEER-FISH in imaging Arabidopsis thaliana roots to unravel the
micron-scale biogeography of microbial communities colonizing the
rhizoplane.

Results
Superior multiplexity of SEER-FISH in spatial profiling of
microbiome
Fluorescent in situ hybridization (FISH) with probes targeting riboso-
mal RNA has been widely used for identification of specific microbial
taxa. By encoding each target taxon with a unique barcode through N
rounds of FISH imaging, SEER-FISHprovides a scalable coding capacity
of FN (F-color, N-round) (Fig. 1a). To sequentially label the target taxon
with an N-bit barcode, we developed a protocol that allowed for
iterative labeling of microbial rRNAs with rapid probe hybridization
and dissociation (Supplementary Fig. 1, see Multi-round FISH imaging
in Methods). In each round, probes of F colors were hybridized to
targeted rRNAs, and the sample was imaged and then treated with
dissociation buffer to remove the hybridized probes31,35. After experi-
ments were completed, the images were aligned to eliminate the shift
in position during multiple rounds of imaging. The boundaries of
bacterial cells were segmented using the watershed algorithm, and the
fluorescence intensity of bacterial cells in each round of imaging was
determined to identify their corresponding barcodes (Supplemen-
tary Fig. 2).

Fig. 1 | SEER-FISH allows superior multiplexity in spatial profiling of micro-
biomes. aDesign of SEER-FISH. Each bacterial taxon is encoded by an F-color N-bit
barcode. The spatial distribution of the microbial community can be obtained
through R rounds of FISH. Each round of SEER-FISH includes probe hybridization,
imaging, and probe dissociation (see Multi-round FISH imaging in Methods, Sup-
plementary Fig. 1a). b, c Fluorescence intensity over 26 rounds of SEER-FISH. Lines
indicate the mean fluorescence intensity (log-transformed and normalized by the

maximum pixel value of CCD) of bacterial cells (n = 2257) after hybridization (red
line) and dissociation (black line), respectively. The shadow of each line indicates
the standard deviation. Fluorescence intensity at the 1st and 26th rounds of imaging
is shown in panel c. Scale bar, 25μm. d The multiplexity of SEER-FISH increases
exponentially with the number of rounds. The colors of the circles indicate the
minimal Hamming distance (HD) between barcodes. All codebooks are generated
with three colors (F = 3). Source data are provided as a Source Data file.
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To evaluate the feasibility of our experimental method, we per-
formed multiple rounds of FISH imaging on a mixture of bacterial
species (SynCom12) with the universal probe EUB338 (Fig. 1b, c). The
hybridized probes were efficiently removed by dissociation buffer,
leading to an ~1000-fold decrease in the fluorescence intensity. The
dissociation step in our protocol had little effect on subsequent
rounds of hybridization (Fig. 1b). In contrast, re-hybridization of
probes after photobleaching was inefficient and did not allow for
multiple rounds of imaging (Supplementary Fig. 3). After 26 rounds of
probe hybridization and dissociation, we found that the mean fluor-
escence intensity of bacterial cells was still significantly higher than the
background (Fig. 1c). Only a small fraction of bacterial cells (less than
3%) were lost due to the decrease in fluorescence intensity or the shift
in their location.

Thus, for the first time as we know of, we developed an efficient
method to label microbial rRNAs using sequential hybridization and
dissociation of probes. Our protocol supports sequential FISH
on microbial samples for more than 25 rounds, and each round of
imaging takes only ~15–30min (Supplementary Fig. 1). In contrast,
other methods of one-round bacterial FISH often require more than
2 h15–17,24–28. The coding capacity of SEER-FISH, similar to sequential
FISH studies in the context of single cell transcriptomics29–31, possesses
great scalability through increasing the roundsof imaging (FN) (Fig. 1d).
A detailed comparison of existing methods for imaging microbiome
samples, including CLASI-FISH25 and HiPR-FISH28, can be found
in Supplementary Table 1. The sequential labeling of microbiome
and error correction strategies developed by SEER-FISH can be com-
plemented by the two-step probe design in HiPR-FISH28 to take
advantage of these complementary approaches in spatial mapping of
microbiomes.

Error-robust encoding enables high accuracy in taxonomic
identification
One challenge for sequential FISH is that detection errors would
increase with rounds of hybridization. Analogous to the strategy pre-
viously proposed in the context of labeling mRNAs in mammalian
cells32,33, we designed an error-robust encoding scheme that used a
subset of the FN barcodes with specified minimal Hamming distance
(HD) (Figs. 2a, 1d, see Codebook generation inMethods). For example,
any twobarcodes fromacodebookwith aminimalHDof 4 (HD4) differ
by at least 4 bits. Therefore, we can correct 1-bit and some 2-bit
detection errors by identifying the observed barcode compared to its
nearest valid barcodes (Fig. 2b). Each bacterial taxon is labeled with a
specificfluorescence color in each round, e.g., FAM/Cy3/Cy5(F = 1/2/3),
which is decoded by comparing brightness across different fluores-
cence channels (see Barcode identification in Methods).

To evaluate the feasibility of error-robust encoding schemes, we
performed SEER-FISH on pure cultures of 12 bacterial species (Sup-
plementary Table 2) with a set of R8HD4 barcodes (rounds = 8, mini-
mal HD= 4, Fig. 2a). The design and selection of probes specifically
targeting 16 S or 23 S rRNA of the corresponding bacterial species are
based on stringent criteria that take into account sequence mismatch
to non-target taxa36 and predicted hybridization efficiency to the tar-
geted taxa37 (Supplementary Fig. 4). Each bacterial species was sepa-
rately coatedonto a coverslip, hybridizedwith probes according to the
codebook and imaged for eight sequential rounds. Finally, bacterial
cells were identified by decoding their barcodes and compared with
ground truth (Fig. 2c, d and Supplementary Fig. 5). We found that
SEER-FISH had excellent precision (median = 0.98, ranging from 0.78
to 0.99) and recall (median=0.89, ranging from 0.61 to 0.97) in taxo-
nomic identification (Supplementary Fig. 5c), as most of the cells were
correctly identified. In particular, we found that recall was significantly
improved via error correction (27% via 1-bit correction, and 14% via
2-bit correction); otherwise, these observed barcodes would be uni-
dentified because of detection errors (Fig. 2d).

Despite the stringent criteria used in probe design, due to the
sequence similarity between closely related bacterial species and
complex effects of sequence mismatch on hybridization efficiency,
non-specific binding in bacterial rRNA FISH is difficult to be com-
pletely eliminated34. To investigate how probe non-specificity influ-
enced the performance of SEER-FISH, we systematically profiled the
specificity matrix (12 probes vs. 12 bacterial species) using conven-
tional one-step hybridization FISH (Fig. 2e, Supplementary Fig. 6).We
found several cases of non-specific hybridization (i.e., off-diagonal
fluorescence signal in the specificity matrix), especially for phylo-
genetically related species. Non-specific binding of probes caused
low precision for species PS and AC (due to false positives) and low
recall for species PD1 and VA1 (due to false negatives) (Supplemen-
tary Fig. 5c, see species list in Supplementary Table 2). Furthermore,
we found that the measured fluorescence intensity was in good
agreement with the predicted hybridization efficiency37 (more
negative ΔG means better probe hybridization) (Fig. 2f).

To systematically evaluate the importance of error-robust
encoding for sequential FISH with probe non-specificity, we per-
formed simulations for randomly generated codebooks with variable
minimal HD (see Codebook generation in Methods). In the simulated
experiments, we classified the probe-species pairs into three groups
based on binding free energyΔG, namely specific binding, non-specific
binding, and background. In particular, non-specific binding of probes
(−13.0 <ΔG < −7.3 kcal/mol) could lead to detection errors. At an
intermediate level of non-specificity (Fig. 2g, see Simulations of SEER-
FISH in Methods), simulation results showed that error-robust
encoding (i.e., increased minimal HD) enabled overall improvements
in precision and recall of bacterial identification. Qualitatively similar
results were observed in simulations at different levels of non-
specificity (Supplementary Fig. 7). In summary, our experimental and
computational results showed that sequential FISH with error-robust
encoding could tolerate probe non-specificity to provide accurate and
sensitive identification of bacterial taxa.

Profiling the composition of microbial communities by
SEER-FISH
To evaluate the reproducibility of taxonomic profiling in microbial
communities using SEER-FISH, we performed benchmarking experi-
ments on synthetic communities consisting of 12 species (SynCom12,
SynCom12_unequal) and 30 species (SynCom30) (Supplementary
Table 2, see Bacterial culture inMethods). Using the R8HD4 codebook
(rounds = 8, minimal HD = 4, the barcodes for a specific set of strains
(S) = 12, Supplementary Table 5), all 12 species were successfully
identified in SynCom12 (Fig. 3a). We found close agreement in the
estimated taxonomic composition based on SEER-FISH across differ-
ent Fields of View and experimental replicates (Pearson correlation
R ≥0.9) (Fig. 3b). Moreover, we altered the relative abundances of four
species in the synthetic community (SynCom12_unequal), where the
proportions of FL1 and AD1 were increased to 15.7% and the propor-
tions of AC and PA were decreased to 1%. We found that SEER-FISH
accurately quantified changes in the community composition (Fig. 3c).

Furthermore, we profiled a more complex microbial community
(SynCom30) to evaluate the performance of SEER-FISH under different
encoding schemes. We chose two codebooks, R8HD4 (rounds = 8,
minimal HD=4, S = 30) and R12HD6 (rounds = 12, minimal HD=6,
S= 30) with high F1 scores (i.e., the harmonic mean of precision and
recall) predicted by simulations (Supplementary Fig. 8, Supplementary
Table 5). All 30 specieswere successfully identifiedby SEER-FISH in both
R8HD4 and R12HD6 codebooks (Fig. 3d), and the estimated composi-
tional profiles were highly correlated (Fig. 3e, Pearson correlation
R =0.93). In both codebooks, SEER-FISH identified ~80% of the bacterial
cells in the community (Fig. 3f). For R12HD6 codebooks, the increase in
imaging rounds led tomoredetectionerrors, yet itsminimalHDallowed
for error correction up to 3 bits and a higher F1 score than R8HD4
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codebooks (Supplementary Fig. 8d). Similar to the simulation results for
12 species (Supplementary Fig. 7), we found that error-robust encoding
led to enhanced accuracy in taxonomic identification for the 30-species
microbial community (Supplementary Fig. 8). Overall, we found that
SEER-FISH can be used to quantify the composition of complex micro-
bial communities and that such profiling is highly reproducible.

Spatial mapping of microbial biogeography on Arabidopsis
rhizoplane
Previous studies have shown that the composition and spatial dis-
tribution of rootmicrobiome are associated with plant physiology and

development7,38,39. Rhizosphere microbiomes were found to vary
across different root types (e.g., primary and secondary roots) and
regions40,41. Imaging-based approaches have further confirmed the
spatial variation in root-colonized microbes16,42–44.

To demonstrate the power and usefulness of our method, we
implemented SEER-FISH on Arabidopsis roots to map the biogeo-
graphy of microbial communities colonized on the rhizoplane. Axe-
nically grown Arabidopsis plants were inoculated with a synthetic
community consisting of 12 bacterial species (including ten species
isolated from Arabidopsis roots45 and two Pseudomonas strains46)
and co-cultured for 7 days under hydroponic conditions (Fig. 4a).
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Root-colonized bacterial cells were detected by the universal FISH
probe EUB338, and further validated by nucleic acid staining with
SYBR Safe42,47 (Supplementary Fig. 9). We imaged roots colonized by
two different bacterial communities (SynCom13, n = 3; SynCom22,
n = 3). In total, we found that 97.8 ± 1.5% EUB338 labeled cells were
labeled by SYBR, and 95.5 ± 2.0% SYBR labeled cells were labeled by
EUB338 (Supplementary Fig. 9b). Also, therewas no signal for negative

control FISH probe NON338 on bacteria-colonized roots. Thus we
demonstrate that bacteria cells colonizing on rhizoplane can be cor-
rectly identified by FISH7,42. Thenwe imagedmultiple regions on 3 root
samples (within ~5mm to the root tip) and quantified the community
composition by SEER-FISH (Fig. 4b–d). Roughly 15% of bacterial cells
were lost after eight rounds of imaging (Supplementary Fig. 10). In the
regions that we imaged on 3 root samples, a total of ~15,000 bacterial

Fig. 2 | SEER-FISH enables highly accurate taxonomic identification. a The
codebook used for the validation experiment on the synthetic community con-
sisting of 12 bacterial species (Supplementary Table 5, R8HD4 codebook). b Illus-
tration of the decoding scheme for the codebook shown in panel a. Crosses (or
question marks) indicate errors that can (or cannot) be corrected by mapping to
the nearest neighbor in the codebook. c Identification of bacterial species grown in
pure culture by eight rounds of imaging (R8HD4 codebook). The pseudocolor of
eachbacterial species is indicatedby its acronym. Scale bar, 25μm.dQuantification
of results in panel c. For each species, cells correctly identified (including perfect
match, 1-bit correction, and 2-bit correction) are true positives (Green); cells
incorrectly identified as other 11 species aremarked asmisidentified (Orange); cells
that cannot be classified to any of the 12 species are marked as unidentified (Gray).
Cells of other 11 species incorrectly identified as the corresponding species are false
positives (Red). Ratios are normalized by the total cell number of each species.
e Analysis of probe specificity. The measured fluorescence intensity of bacterial

cells (pure culture, average of ~1000 cells) hybridized with probes designed to
target individual species. The species are clustered by the phylogenetic distance
between full 16 S sequences (Minimum-Evolution Tree, MEGA-X v10.1.8). Probes (y-
axis) follow the same order as the targeted species (x-axis). f The relationship
between themeasured fluorescence intensity and the change in free energy (ΔG) of
each probe-species pair. The light and dark green circles indicate the measured
fluorescence intensity of diagonal and off-diagonal probe-species hybridization
shown in panel e, respectively. The black line indicates the predicted hybridization
efficiency E (see Probe design inMethods). g Simulations show that both precision
and recall of taxonomic identification are improved by error-robust encoding. The
coloredboxplot indicates thepredicteddistributionof precision and recall of SEER-
FISH with n = 5000 randomly generated codebooks (F = 3, R = 8, S = 12) with dif-
ferent minimal HD (HD≥ 1, 2, 4). The height of the box indicates the first and third
quartiles. Source data are provided as a Source Data file.

Fig. 3 | SEER-FISH gives robust estimates of the composition of complex
microbial communities. a Representative image, profiling of SynCom12 based on
R8HD4 codebook. Scale bar, 50μm. b Quantification of 12 species relative abun-
dance in SynCom12 in three independent imaging experiments (n = 15818, 33365
and 24503 cells, respectively). Pearson correlation between different Fields of View
(2 and 3) andbetween experimental replicates (1 and 2, 1 and 3) are indicated. cBars
of the same color indicate the relative abundance of a given species in SynCom12
(left) and SynCom12_unequal (right) quantifiedby SEER-FISH. The expected relative

abundance after adjustment in SynCom12_unequal is labeled by the stripes.
dRepresentative images, profiling of SynCom30based on twodifferent codebooks
(R8HD4, n = 93,596 cells vs. R12HD6, n = 101,084 cells). Scale bar, 50 μm.
e Correlation between the relative abundance profiles estimated by two imaging
experiments using codebook 1 (R = 8, HD≥ 4, S = 30) and codebook 2 (R = 12,
HD≥ 6, S = 30). f The ratios of identified and unidentified cells. Left bar: SynCom12
(a); middle and right bars: SynCom30 (d). Source data are provided as a Source
Data file.
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cells (of 12 species) were successfully identified (including error cor-
rections), and only ~10% cells were unidentified. While we observed
variations across different regions (Supplementary Fig. 11), the overall
community composition estimated by SEER-FISH were highly similar
across 3 roots (Pearson correlation R >0.97, P < 10−5). There was also
close agreement between the community composition estimated by
SEER-FISH and by 16 S rRNA amplicon sequencing of root sam-
ples (Fig. 4e).

SEER-FISH allowed us to map spatial patterns of the microbiome
along plant roots at single cell resolution. We quantified the distribu-
tion of bacterial cells and community composition along the roots
(Fig. 5a, b). The imaged regions covered four developmental zones of
the root tip48,49, including the root cap, the meristematic zone, the
elongation zone and the differentiation zone (or maturation zone).
The two most abundant species, AD1 (Acidovorax sp.) and AG1 (Agro-
bacterium sp.) accounted for ~80% of the community (Supplementary
Fig. 11). We further analyzed the clustering of bacteria cells using the

linear dipole algorithm4,50(Fig. 5c–f, see Clustering analysis in Meth-
ods). Indeed, the auto-correlation function revealed that microbes on
the root surface clustered at distance up to ~30 µm, which was con-
sistent across 3 root samples and in agreement with visual inspections
(Figs. 4 and 5f). Furthermore, we analyzed the pair cross-correlation of
the two most abundant species AD1 and AG1 (Supplementary Fig. 12).
We foundclusteringofAD1 andAG1on root 3, nevertheless, therewere
substantial variations among the regions that we imaged. The root-to-
root variations in spatial patterns suggest stochasticity in bacteria
colonization, which should be taken into account in future studies. We
identified clusters of bacterial cells ranging from tens to hundreds of
squaremicrometers (Fig. 5e) and found that someclusters consistedof
bacterial cells from multiple species (Fig. 5f). Furthermore, we per-
formed contact frequency analysis to identify non-random intertaxon
associations24 (Fig. 5g, see Contact frequency analysis in Methods).
Compared to the contact frequency between randomly distributed
cells, there were 15 significant spatial associations among 9 species
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colonized on roots (Supplementary Fig. 13). For example, we found
non-random cross-correlation and contact frequency between AD1
(Acidovorax sp.) and AG1 (Agrobacterium sp.). Visual inspections of
high-magnification images (Fig. 5f) also showed clustering of AD1 and
AG1 cells. Moreover, AH1 (Achromobacter sp.) and AC (Acinetobacter
sp.) cells appeared frequently in clusters and had significant associa-
tions with AD1 and AG1 cells.

Perturbation on the spatial organization of root-colonized
microbial communities by plant metabolites
Plant metabolites have been shown to modulate the composition and
function of plant-associated microbiome51–57. Camalexin is one of the
alkaloid phytoalexin produced and secreted by Arabidopsis in
response to pathogen invasion and has been reported to affect plant-
microbe interactions58,59. Fraxetin belongs to the group of coumarin
and is typically synthesized and secreted by Arabidopsis roots under

iron deficiency60. Fraxetin is also recognized for its antimicrobial
function52,54.

Here we applied SEER-FISH to study the effects of camalexin and
fraxetin on the spatial organization of root-colonized microbial com-
munities (Supplementary Fig. 14a). The 30-strainmicrobial community
(SynCom30.2) spanned the phylogenetic diversity of Arabidopsis rhi-
zosphere microbiome and included members that were previously
shown to respond to plant metabolites52,54. Our in vitro growth
experiments also confirmed selective growthmodulation of camalexin
and fraxetin on members of the community (Supplementary Fig. 14c).
For each root, ~80 FOVs were captured (within ~4mm from the tip)
(Fig. 6a–c). The compositional profiles given by SEER-FISH imaging
(n = 10 roots) were in good agreement with the profiles given by 16 S
amplicon sequencing (Supplementary Fig. 14b). For camalexin-treated
and fraxetin-treated plants, root-colonized microbiota showed clear
shifts in composition compared to plants in the control group (Fig. 6c,
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and AD1 are found in clusters (white arrows). Scale bar, 100μm. d The spatial
correlation of root-colonized bacterial cells is analyzed by linear dipole algorithm
(see Contact frequency analysis inMethods). The solid lines indicate themean auto
correlation between bacterial cells, the shadows indicate the 95% confidence

intervals estimated by sampling different regions on each root. The horizontal dash
line (g(r) = 1) refers to the expected valueof a randomizedspatial distribution.eThe
distribution of cluster area. f Representative images of clusters. Scale bars, 10μm.
The clusters are surroundedbywhite lines and cells outside clusters are shownwith
a dimmer color. g Intertaxon spatial contacts observed for 12-species bacterial
communities colonized on roots. Each edge shows non-random contact between
two species (Supplementary Fig. 13, Methods). The width of edges is proportional
to the fold increase in contact frequency compared to randomly distributed cells.
The size of nodes is proportional to the relative abundance (log-transformed) of
each species. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-37188-3

Nature Communications |         (2023) 14:1477 7



Supplementary Fig. 14c). For example, the abundance of Mesorhizo-
bium sp. decreased under camalexin/fraxetein treatment, consistent
with the observation that its growthwas strongly inhibited by the plant
metabolites in vitro.

We examined the spatial distribution of microbial colonization
along the root and the perturbations imposed by plant metabolites
(Fig. 6d, e and Supplementary Fig. 15). For example, Sinorhizobiumwas

abundant in the control group andmostly colonized the region within
1mm to the tip. We found that the abundance and the spatial pattern
of Sinorhizobium strains were significantly altered by camalexin and
fraxetin (Fig. 6d, Supplementary Fig. 15c). In contrast, the spatial dis-
tribution of Agrobacterium sp. was uniform in the control group; in
fraxetin-treated plants, Agrobacterium sp. showed preferential colo-
nization near the maturation zone (Fig. 6e). These non-uniform and
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taxon-specific spatial patterns of root-colonized microbes indicate
strong heterogeneity in root environments (e.g. region-specific exu-
dates) as well as diverse microbial traits43,44,61. Furthermore, we found
that plant metabolites disrupted the spatial associations between
several bacterial taxa (Fig. 6f and Supplementary Fig. 16, see Spatial
association analysis in Methods). Camalexin treatment significantly
increased spatial association between Acidovorax sp. and Arthrobacter
sp. 2 (Supplementary Fig. 16a), while fraxetin treatment altered spatial
associations between Lysobacter sp. and Sinorhizobium strains (Sup-
plementary Fig. 16b). Taken together,wedemonstrate the utility of our
methods in host-associated microbiome samples and highlight the
need for comprehensive analysis of spatial heterogeneity in microbial
communities (e.g. colonization on plant roots).

Discussion
In this study, we demonstrated that SEER-FISH is a highly multiplexed
and accurate imaging technique for investigating the spatial organi-
zation of microbiomes. We developed an iterative hybridization and
imaging method for microbiome samples. Using error-robust encod-
ing schemes, we showed that SEER-FISH provided accurate spatial
profiling of microbial communities. The application of multiplexed
FISHmethodswill greatly facilitate the understandingof biogeography
of host-associated bacteria communities at single-cell resolution. The
superior multiplexity of sequential labeling in SEER-FISH combined
with the two-step labeling probe design of HiPR-FISH can be used in
future studies to take advantage of these complementary approaches,
reducing probe costs and pushing spatial mapping of microbiomes to
new frontiers. One exciting prospect is to profile meta-transcriptomes
in situ, as simultaneous labeling of mRNA and rRNA is feasible for
single bacterial strains14. The labeling strategy of HiPR-FISH requires a
high abundance and uniform distribution of microbial RNA, but this is
not necessarily required for SEER-FISH. In addition, the complexity of
meta-transcriptomes (> 107 genes in human gut microbiomes) require
an increase in multiplexity, which can be achieved by sequential
labeling. The multiplexity of SEER-FISH can be readily extended by
increasing the number of fluorophores and the rounds of imaging.
While only three fluorophores were used in this study, ourmethod can
easily incorporate more colors and spectral imaging24,28.

Recently, a sequential FISH method reported as par-seqFISH
spatially profiled the expression of ~100 marker genes in bacterial
populations of Pseudomonas aeruginosa at single-cell resolution62. par-
seqFISH focused on spatial transcriptomics within a bacterial popula-
tion (of one species), while SEER-FISH was developed to study spatial
metagenomics of a multi-species microbial community. In par-seq-
FISH,mRNAswere labeled oncewith a nonbarcoded approach (i.e., the
multiplexity scales linearly with the number of imaging rounds); while
in SEER-FISH, rRNAs were labeled repeatedly with error-robust
encoding (i.e., the multiplexity scales exponentially with the number
of imaging rounds). Inspired by the dimensionality reduction
approaches commonly used in single cell transcriptomics analysis, we
visualized the multi-round, multi-color SEER-FISH imaging data in
dimension reduced maps by t-SNE (Supplementary Fig. 17). For both
simulated and real imaging data, we found that bacterial cells of
the same species were clustered in the dimension reduced map,

and different species were clearly separated. In future studies, the
dimensionality reduction approach may be used to identify unknown
microbial taxa.

The incorporation of error-correction strategies, originally
implemented in MERFISH for multi-round mRNA profiling32,33, is
expected to improve the accuracy of target identification, but has not
been studied in the context of microbiome. By incorporating error-
robust encoding schemes in SEER-FISH,we show that theprecisionand
recall of taxonomic identification can be improved, particularly in
scenarios where non-specific hybridization is unavoidable. In mRNA
labeling, non-specific calling is less common than dropout errors32,63.
Thus, inMERFISH,modifiedHD4 codes (with only four “1” bits in 16-bit
barcode) were used to minimize dropout errors (1→0). In contrast,
detection errors in bacterial rRNA FISH are mainly caused by non-
specific (i.e., off-target) labeling of phylogenetically related rRNA
sequences; dropout errors 1→0 are negligible due to the high abun-
dance of rRNA. While non-specific binding cannot be completely
avoided for rRNA FISH probes (the target region for probe design is
limited), the fluorescence intensity of the specific probe is on average
much higher than nonspecific probes (Fig. 2f). Therefore, in our image
analysis, the color code of each cell in each round was determined by
the brightest fluorescence channel in the corresponding round (see
Image analysis inMethods). Because F→ F’ errors canbebetter avoided
than 0→F’ errors, we chose to exclude the non-fluorescent code in the
codebook (i.e., color code = 0) tominimize detection errors caused by
non-specific labeling (color code 0→F’). For a given set of FISH probes,
codebooks can be optimized to account for non-specificity of probes
and improve precision and recall. Here we provide an illustration of
codebook optimization and its practical use in design of barcodes. We
used themeasured probe specificity (Supplementary Fig. 6) to predict
the F1 score of codebooks for the 12-species synthetic community
SynCom12. The codebook that we used for imaging SynCom12 had
high predicted F1 score (predicted F1 score = 0.92); we found that the
fraction of unidentified cells was 0.11 ± 0.01 in experiments, consistent
with simulation results (Supplementary Fig. 18). In comparison, we
randomly picked a codebookwith lowpredicted F1 score (predicted F1
Score=0.12) and performed an independent imaging experiment on
SynCom12;we found that the fraction of unidentified cells increased to
0.19 ± 0.01, and the recall rate of PD1 species was substantially lower
(Supplementary Fig. 18a–c). To label a community with 12 targets,
there are more than 6.7 × 1020 sets of R8HD4 (S = 12) possible code-
books, which cannot be enumerated for evaluation. Thus, we used a
genetic algorithm to optimize codebooks of SEER-FISH to achieve high
F1 score (Supplementary Fig. 18d, e, see Codebook optimization in
Methods). Given the information of non-specificity of FISH probes
(experimentally measured or predicted), this computational approach
can guide the design of error-robust encoding schemes. Other
experimentalmodifications to reduce non-specific hybridization, such
as increasing hybridization stringency15, adding competitor probes
for off-target taxa28 or dual probes with overlapping specificity34, can
also be used to improve accuracy and are readily compatible with
SEER-FISH.

Depending on the samples, particularly for complex commu-
nities, the workflow of SEER-FISH can be improved in several aspects.

Fig. 6 | Perturbation on the spatial organization of root-colonized microbial
communities by plant metabolites. a Representative images of microbial com-
munities in the meristem and elongation zone (~200μm from the tip, top panels)
and in the differentiation zone (~1.7mm from the tip, bottom panels). Scalebar,
50μm. b The number of imagedmicrobial cells and the community compositional
profiles given by SEER-FISH. The number of cells imaged by SEER-FISH for a root
sample in the control group, the camalexin-treated group and the fraxetin-treated
group were 2.7 ± 0.8 × 104, 3.1 ± 1.3 × 104, and 2.5 ± 1.2 × 104, respectively. For each
experimental group, 10 roots were imaged. For each root, ~80 FOVs were captured
(within ~4mm from the root tip). c Principal Coordinate Analysis (PCoA) based on

Bray-Curtis dissimilarity of community compositional profiles given by imaging.
Solid square indicates the compositional profile averaged over 10 root samples.
d, e Spatial distribution of Sinorhizobium sp. 2 (d) and Agrobaterium sp. (e) along
the root. Error bars are SEMs (n = 10 roots). fDifferential spatial association analysis
on root-colonized microbial taxa between camalexin-treated (or fraxetin-treated)
plants and control plants (see Spatial association analysis inMethods). Fold change
refers to log2[(association frequency on camalexin-treated (or fraxetin-treated)
roots/simulated random frequency in treated roots)/(association frequency on
control roots/simulated random frequency in control roots)]. Gray areas indicate
that the analysis is not applicable. Source data are provided as a Source Data file.
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Firstly, to improve the hybridization efficiencyof FISHprobes, samples
can be pretreated with lysozyme to increase the permeability of cells
(especially for gram-positive bacteria)7 and/or incubation with high-
concentration formamide for thorough denaturation of rRNA. With
the optimizations above, we applied SEER-FISH to image a highly
complex community composed of 130 strains colonized on Arabi-
dopsis roots (Supplementary Fig. 19). The 130 strains were grouped
into 90 target taxa based on the similarity of 16 S rRNA sequences.
Similar to the validation experiments that we performed on 12 taxa
(Fig. 2 and Supplementary Fig. 5), we used pure cultures of 90 taxa to
evaluate the performance of taxonomic identification by SEER-FISH in
highly complex communities (Supplementary Fig. 19a–c). We found
excellent precision (median =0.87) and recall (median =0.78) formost
taxa. As a proof-of-concept experiment, we used these 90 FISH probes
to image a synthetic community of 130 strains colonized on Arabi-
dopsis root (Supplementary Fig. 19d, e) and correctly identified ~65%
bacterial cells. Further improvement in probe design would be helpful
in the application of multiplexed FISH methods to profile highly
complex communities. Secondly, the segmentation algorithm that we
used is potentially limited to samples with a clean background. Ima-
gingmore complicated samples or densemicrobial communities (e.g.,
biofilms) may require improvements in the image analysis workflow.
Thirdly, a general nucleic acid dye could be incorporated in multi-
round imaging to label bacterial cells with a uniform signal42.

The application of SEER-FISH on plant samples has revealed the
micron-scale spatial organization of root-colonized microbial com-
munities, including clustering of multiple species and intertaxon spa-
tial associations. The clustering of bacterial cells colonized on plant
surface has been previously reported4,42,64. Clusters can form via the
growth of microcolonies upon successful colonization65. Formation of
clusters on plant surface may be critical for bacterial fitness under
environmental stress66. For example, it has been proposed that phyl-
losphere bacteria form clusters to deal with desiccation stress64. Pre-
ferential attachment is another potential mechanism for the formation
of clusters, as previous studies have shown co-localization of immi-
grant and resident bacterial cells67. Our observation of multiple bac-
terial species in clusters may lend support to the hypothesis of
preferential attachment67,68. Furthermore, the micron-scale intertaxon
spatial associations may be indicative of short-range interactions69

(e.g., quorum sensing, metabolic cross feeding, niche competition,
contact-dependent inhibition) and will guide mechanistic studies on
the ecology of complex microbial communities. Lastly, alterations in
the spatial structure of microbiome during host development16, stress
response (biotic and abiotic)70,71 and diseases could lead to novel
insights in host-microbiome interactions. Root-secreted metabolites
have been found to regulate the composition of rhizosphere micro-
biome, but their effects on the spatial organization of microbiome
remain largely unknown. Future investigations along these lines will
deepen our understanding of microbiome assembly in rhizosphere/
phyllosphere and its implications to plant fitness72.

Finally, we envision that the integration of SEER-FISH with other
spatially resolved technologies will have broad impacts on micro-
biology/microbiome research. For example, SEER-FISH can be com-
bined with expansion microscopy to profile the transcriptome of
single bacterial cells73. Together with mass spectrometry imaging74 or
multiplexed protein maps75, SEER-FISH can unravel the functions of
complex microbial communities in space and their interactions with
the host at the molecular level.

Methods
Bacterial culture
A full list of bacterial strains used in this study is included in Supple-
mentary Table 2 and Supplementary Table 3. Strains isolated from
Arabidopsis root microbiota were kindly provided by Professor Paul
Schulze-Lefert at theMax Planck Institute for Plant Breeding Research.

Pseudomonas strains PP (WCS358) and PS (WCS417) were kindly pro-
vided by Professor Corné Pieterse at Utrecht University. All strains
were cultured in ½ Tryptic Soy Broth (TSB) medium (HuanKai
Microbial, 024051) (28 °C, shaken at 200 rpm under a normal aerobic
atmosphere) and harvested at ~0.8 OD600 (BioTek, Synergy H1 Hybrid
Multi-Mode Reader). Bacterial cells were centrifuged at 5000 × g for
5min, resuspended and washed with 1× PBS (Boster, AR0030). For
fixation, cells were resuspended and incubated in 4% paraformalde-
hyde (DF0135-2; Leagene) at 4 °C for 3 h, followed bywashing with PBS
and resuspension in 50% ethanol (for permeabilization of gram-
positive cells)76. Then cells in 50% ethanol were stored at−20 °Cbefore
FISH imaging. For the synthetic community of 12 bacterial strains, two
different compositions were created: 1) SynCom12 (mixed with equal
OD600): 8.3% for each strain. 2) Syncom12_unequal (mixed with
unequal OD600): the proportions of Flavobacterium sp. (FL1) and
Acidovorax sp. (AD1) were 15.7%; the proportions of Acinetobacter sp.
(AC) and Paenibacillus sp. (PA) were 1%; and the proportions of other
strains were 8.3%. For the synthetic community of 30 bacteria strains
(SynCom30), all strains were mixed at equal OD600.

Probe design
All probes used in this study are listed in Supplementary Table 3. Oli-
gonucleotide probes were conjugated with three different types of
fluorophores at the 5’ terminus: FAM, Cy3, and Cy5 (ordered from
General Biol). Oligonucleotide probes were designed to target 16 S
rRNA or 23 S rRNA using a custom pipeline (Supplementary Fig. 4).
rRNA sequences of the bacterial strains used in this study (Source
Data) were extracted from whole genome sequencing data using
Prokka77, built into a local database and imported to the ARB program
(www.arb-home.de). The ‘Probe Design’ function of ARB was used
(parameter settings: 18–21 nucleotides, 45–60% GC content)36. Probes
with fewer than three mismatches to non-target sequences were
excluded. The change in free energy (ΔG) for probe-target binding was
calculated by mathFISH37 and probes with ΔG < −13.0 kcal/mol were
chosen as candidate probes.Alternatively, probes can also bedesigned
by DECIPHER34 (Supplementary Table 3). The database of aligned 16 S
rDNA sequences with phylogenetic group information were imported
and using DesignProbes function in DECIPHER package for probe
design.

The hybridization efficiency E is predicted as (Fig. 2f):

E =
eð�ΔG=RTÞCp

1 + eð�ΔG=RTÞCp

ð1Þ

whereCp is the probe concentration of, R is themolar gas constant and
T is the temperature.

Codebook generation
The codebook is named according to the number of imaging rounds
(R), colors (F), and theminimal Hamming distance (HD). All codebooks
used in this study contain three colors (F = 3); the color code equals 1,
2, and 3 for FAM, Cy3 and Cy5 fluorophores, respectively. First, all FR

barcodes for R rounds of hybridization were generated. Then, the
error-robust codebook was generated by repeated removal of bar-
codes whose distance to the seed barcode was less than the specified
minimalHD. Each barcode in the codebookwas taken as the seed code
until the distance between any two barcodes in the codebook was
equal to or larger than the specified minimal HD. The barcodes for a
specific set of strains (S) were randomly drawn from the codebook.
The codebooks used in the experiments of this study are included in
Supplementary Table 5.

Coverslip functionalization
Coverslips (40-mm, #1.5; Bioptechs) were immersed in potassium
dichromate concentrated sulfuric acid cleaning solution for 2 h,
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washedwithwater and then rinsedwith distilledwatermore than three
times, soaked in 95%ethanol for 12 h, and then air-dried. 50XAnti-Slice
Escaping Agentia APES (Sangon Biotech, E676003) was diluted 1:50
with acetone and the prepared working solution was used immedi-
ately. The coverslips were dipped into the freshly prepared working
solution for 20–30 s, then removed, followed by a pause before they
were washed three times with distilled water to rinse unbound APES.
Adhesive processed coverslips were put in a dust-free environment
and kept dry.

Multi-round FISH imaging
An adhesive coverslip coated with sample was assembled into a
Bioptechs FCS2 flow chamber with temperature control (Supplemen-
tary Fig. 1b). Fixed samples were first adhered onto adhesive coverslips
(40mm round, 0.15mm thick); then a silicone gasket (40mm round,
0.75mm thick) with a central rectangle cavity was placed on the cov-
erslip; and then the micro-aqueduct slide was placed on the gasket.
The coverslip, gasket and micro-aqueduct slide constitute a sandwich
structure. Samples were in the cavity where buffers passed through.
Fluidics was controlled via a peristaltic pump (LongerPump, BT100-2J)
and set at a constant flow velocity of 500 µl/min (10 rpm). Buffers were
warmed by a metal bath at 50 °C to get rid of dissolved oxygen before
passing through the flow chamber. Multiple rounds of probe hybridi-
zation, imaging, and probe dissociation were performed as follows
(Supplementary Fig. 1a):
1) Probe hybridization and washing: 1mL of hybridization buffer

(0.9M NaCl, 0.02M Tris-HCl (pH 7.6), 0.01% SDS, and 20%
formamide (Aladdin, F103362)) with probes was flowed through
the sample for 2min and then incubated for 3min at 46 °C. Probes
used in each round were determined by the codebook. Samples
were washed by washing buffer (0.215M NaCl, 0.02M Tris-HCl
(pH 7.6), 0.01% SDS, 5mM EDTA) for 2min at 46°C to eliminate
residual and nonspecific binding of the probes.

2) Imaging: Images were acquired by a confocal laser scanning
microscope (Nikon, A1) with a Plan Apo λ 100 x oil objective
lens (Nikon, 1.45 NA). Multiple (~4–36) fields of view (125 µm
by 125 µm) were collected by sequential excitation with laser
lines 488 nm, 561 nm, and 640 nm. Phase-contrast images
were acquired by a transmitted detector using a 640 nm laser.
The constant focus during imaging was achieved by Nikon
PFS autofocus. The image acquisition settings are listed in
Supplementary Table 4.

3) Probe dissociation: dissociation buffer (70% formamide, 0.02M
Tris-HCl (pH 7.6), 0.01% SDS, 5mMEDTA)was flowed through the
samples at 46 °C for 2min to strip off hybridized probes.

Image analysis
First, phase contrast images of each round were used for alignment.
The images were aligned to the position with maximum cross corre-
lation by customMATLAB scripts to eliminate the position shift during
multiple rounds of imaging. Then, the phase contrast image (for
in vitro bacterial communities) or inverted fluorescence image with
the universal probe EUB338 (for root-associated bacterial commu-
nities) were segmented into binary mask images using an adaptation
threshold78 followed by the watershed algorithm79 (Supplementary
Fig. 2). Finally, thefluorescence intensity of each cell was obtainedwith
the mask generated by image segmentation. The color code of each
cell in each round was determined by the brightest fluorescence
channel in the corresponding round (color codes equal 1, 2, or 3 for
FAM, Cy3, or Cy5 channels, respectively). If the fluorescence intensity
was not significantly brighter than the background in all fluorescence
channels (p >0.05, t-test), the code of the corresponding bacterial cell
wasmarked as 0. A bacterial cell is labeled as “lost” if it is not detected
in any fluorescence channel for more than 3 rounds (Supplemen-
tary Fig. 10).

Barcode identification
The barcode of each bacterial cell was mapped to the codebook (Sup-
plementary Table 5) to find the nearest neighbor. For barcodes with
minimal HD of 2k (k = 1, 2,…), if the observed barcode was the same as
(perfectmatch) or had less than n-bit difference (n-bit correction, n < k)
from the nearest neighbor, the bacterial cell was successfully identified.
If the observed barcode had k-bit difference from the nearest neighbor
in the codebook and the nearest neighbor was unique, the cell was also
successfully identified (k-bit correction). Otherwise, the cell was labeled
as unidentified. For example (Fig. 2b), if there was a 1 bit difference
between the observed barcode and the nearest candidate barcode, the
corresponding cell was identified by 1-bit correction. If there were 2bit
differences between the observed barcode and the nearest candidate
barcode, the error could be corrected only when there were 3 or more
bits of difference for other candidate barcodes. The cell was marked as
unclassified (unidentified) for other conditions.

Precision and recall calculation
The precision and recall of each bacterial species are calculated by the
following equations:

Precision=
TruePositive

TruePositive+ FalsePositve
ð2Þ

Recall =
TruePositive

TruePositive+ FalseNegative
ð3Þ

F1 score is calculated as the harmonicmean of precision and recall

F1 =
2 � Precision � Recall
Precision+Recall

ð4Þ

Imaging of bacterial communities on Arabidopsis roots
Surface sterilized Arabidopsis seeds of wild-type (Col-0) were sown on
1× Murashige and Skoog (MS) medium (Solarbio, M8520) with 3%
sucrose and 0.6% agar. After 2 days of cold-stratification at 4 °C under
darkness, the plates were then kept in a growth chamber (22 °C, 16 h
light/8 h dark, 50% humidity) for 7 days. Meanwhile, bacteria to be
inoculated were pre-cultured with ½ TSB respectively as previously
described. Cells were collected by centrifuging and then washed with
1× PBS. TheOD600 of each strain was determinedwith the BioTek plate
reader. The synthetic bacterial community (OD600 = 0.01) containing
all strains at equal proportions was inoculated in 1× MS liquid media
(for treatment groups, camalexin or fraxetin was introduced at con-
centration of 100μM). 7-day-old (for SynCom12 and SynCom130) or 5-
day-old (for SynCom30.2) seedlings were transferred into 12-well or
6-well culture plates using sterilized tweezers to co-culture with bac-
terial communities. After 7 days (for SynCom12 and SynCom130) or
5 days (for SynCom30.2) of bacteria-plant co-culture, the roots of
seedlings were fixed with 4% paraformaldehyde (PFA) in 1× PBS at 4 °C
for 3 h, then rinsed and stored in 50% ethanol at −20 °C. Then samples
were taken out and assembled into FCS2 flow chamber before SEER-
FISH imaging. In particular, for imaging Arabidopsis root colonized
with SynCom130 or SynCom30.2, fixed roots in FCS flow chamber
were pretreated for the improvement of probe hybridization efficiency
before SEER-FISH imaging. To increase the permeability of cells,
sample was flowed by lysozyme solution (10mg/mL) for 2min and
with 3min incubation at 37 °C. After PBSwashing, sampleswereflowed
by 85% formamide for 2min and with 8min incubation at 46 °C for
thorough denaturation of rRNA. These sample pretreatments greatly
improved the probe hybridization efficiency and the concentration of
each target probe is decreased to 15 nM accordingly, which avoids
background residual caused by the high total concentration of all
probes in each round. Multi-round FISH imaging was carried out as
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described above. All bacteria were labeled with the universal bacterial
probe EUB338 during the first round of imaging. The concentration of
each target probe in each round was 250 nM for SynCom12 root
samples, and reduced to 15 nM for SynCom30.2 and SynCom130 root
samples. The duration of probe hybridization was 8min for SynCom12
root samples, and extended to 15min for SynCom 30.2 and
SynCom130 samples. We extended the hybridization time to account
for potential effects of reduced probe concentration on hybridization
efficiency.

16 S amplicon sequencing of synthetic bacterial communities
Roots ofArabidopsiswereharvested, rinsed in 1× PBSbuffer and stored
at −80 °C until further analysis. Each sample of ten frozen roots was
treated in liquid nitrogen briefly beforemanual homogenization using
plastic pestles.GenomicDNAwas extractedwith theDNeasy PlantMini
Kit (QIAGEN GmbH, 69106). The sample was amplified with barcode
primers 799 F (5′AACMGGATTAGATACCCKG-3′) and 1193 R (5′ACGT-
CATCCCCACCTTCC-3′) against the V5-V7 region of the bacterial 16 S
rRNA gene. The 25μl PCR reaction contained 12.5μL of 2× PrimeSTAR
Max Premix (TaKaRa, R045A), 0.4μM of each primer (Genewiz), and
1 ng genomic DNA. PCR conditions were set as: 1) 98 °C for 5min; 2) 35
cycles of 98 °C for 10 s, 50 °C for 15 s, and 72 °C for 15 s; 3) elongation at
72 °C for 5min. PCR products were purified using a Gel Extraction Kit
(OMEGA, D2500-01) and quantified with Qubit 4 fluorometer (Invi-
trogen). The amplicon library was sequenced by Illumina MiSeq (500-
cycle, V2 kit). Raw 16 S rRNA amplicon sequence data were processed
by QIIME280. The forward and reverse reads were merged by
VSEARCH81. Reads were demultiplexed and aligned to a reference set
of 16 S amplicon sequences to calculate the relative abundance of each
taxon using custom Python scripts.

Simulations of SEER-FISH
The intensity of each bacterial cell of species i in channel k at each
round is

Iik =
Xn

p= 1

PpiCpk ð5Þ

Ppi is the fluorescence intensity when probe p is hybridized to
species i. Cpk (=1 present, 0 absent) indicates the code status of probe p
in fluorescence channel k. The strength of hybridizationwas assumed to
be the same in different fluorescence channels and classified into three
groups (specific binding, non-specific binding, and background),
according to the overall Gibbs free energy change (ΔG) when probe p
hybridized to species i. The log-transformed fluorescence intensity
(log(Ppi)) is drawn from a normal distribution. The mean log-
transformed fluorescence intensity is set to −0.3, −0.9 and −2 for spe-
cificbinding, non-specificbinding andbackground, respectively (Fig. 2g,
Supplementary Fig. 6c. The standard deviation of log(Ppi) was set as 0.3
(Supplementary Fig. 6d). For simulations shown in Supplementary
Figs. 7, 8, the mean log-transformed fluorescence intensity for non-
specific binding was set to −0.6 for strong non-specificity, −1.2 for weak
non-specificity. The fluorescence intensity of each cell in each fluores-
cence channel was drawn independently during each round according
to the codebook, and the barcode was identified as described above.

To predict the F1 score with measured probe specificity, the log-
transformed fluorescence intensity (log(Ppi)) is drawn from a normal
distribution

f ðxÞ= 1

σ
ffiffiffiffiffiffi
2π

p e
1
2ð

x�μ
σ Þ2 ð6Þ

where μ and σ is set as the mean and standard deviation of the log-
transformed intensity when probe (with corresponding fluorophores)
p is hybridized to species i.

Codebook optimization
We used the genetic algorithm to optimize codebooks to achieve high
F1 score. Briefly, for the first round, 200 sets of codebooks were ran-
domly generated and 15 codebooks with highest F1 score were selec-
ted. For each codebook selected from the previous round, 12 mutated
codebookswere generated by randomshuffling of the barcode for one
of the 12 species. The 15 selected codebooks from the previous round,
180 mutated codebooks, and 5 randomly generated codebooks, were
evaluated together to select for 15 codebooks with highest F1 score for
the next round. This process can be repeated until the codebook with
desired F1 score has been found.

Clustering analysis
The clustering of bacterial cells is analyzed by the linear dipole algo-
rithm as previously described4,50. Briefly, the pair cross-correlation
function between two bacterial populations is defined as

gðrÞ= Pr

2DiDj
ð7Þ

where Pr is the probability for a dipole with length r hit the bacteria
from the two populations.Di indicated the density of population i.
To analyze bacterial cells belonging to the same population, the cor-
relation function is defined as

gðrÞ= Pr

D2
ð8Þ

whereD is the density of the population of interest. If bacterial cells are
randomly distributed at distance r, g(r) =1; in contrast, if bacterial cells
clustered at distance r, g(r) > 1.

For each image, amaskof the root ismanually drawnas the region
of interest based on the phase-contrast image. Linear dipoles are
evaluated only if both ends fall into the masked regions, therefore,
bacterial cells not on the root surface are excluded from the analysis.
The cell density is calculated as the area cover by the bacteria cells
divided by the area of the root.

Contact frequency analysis
For each pair of bacteria species, contact events between cells from
each species were counted. The contact frequency was calculated as
the number of contact events divided by the area of the root. In
simulation s, cells were randomly placed and the density of each spe-
cies was determined by the measured density on root samples. Model
cells were simulated as an ellipse, and the single-cell images of each
bacteria species were analyzed to determine the length of major and
minor axes of ellipses.

Spatial association analysis
The spatial association between two taxawas calculated as the number
of co-occurrenceevents inside the association rangeof 10μm in planta
compared to a randomly generated co-occurrence test28. The test was
done by randomly assigning the taxa in the same measured images
while keeping the abundance unchanged. For each root, 100 random
tests were performed, and the association was calculated as the fold
change between the measured co-occurrence and the mean value of
random simulated tests. If the measured co-occurrence events were
too low, the corresponding measurements are dropped. The spatial
association analysis was performed for each experimental group, and
differential spatial association was calculated as the fold change
between the treatment group and the control group. The statistical
significancewas determinedby independent t-test and the significance
threshold level was adjusted by Bonferroni correction. The number
of hypotheses tested was calculated as the number of unique
taxon–taxon associations detected across all roots.
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Statistics & reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. Statistical significance was deter-
mined by unpaired one-side or two-side Student t-test. Correlation
coefficient was calculated using Pearson correlation or Spearman
correlation. P-value < 0.05 was considered as statistically significant.
Bonferroni correction was used for multiple hypotheses testing. For
repeated experiments and biological replicates, the exact number is
indicated in the figure legends. For results shown in Fig. 2c and Sup-
plementary Fig. 1c, 3, 19, representative images and analysis was based
on a single imaging experiment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data generated in this study have been deposited in Zenodo
[https://doi.org/10.5281/zenodo.5100490]. Source data are provided
with this paper.

Code availability
The source code used for SEER-FISH image analysis have been
deposited in Github [https://github.com/JacobZuo/SEER-FISH/] and
achieved at Zenodo [https://doi.org/10.5281/zenodo.7656027]82.
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