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A B S T R A C T   

Reactive oxygen species (ROS) are mainly produced in mitochondria and are involved in various physiological 
activities of the ovary through signaling and are critical for regulating the ovarian cycle. Notably, the imbalance 
between ROS generation and the antioxidant defense system contributes to the development of ovarian diseases. 
These contradictory effects have critical implications for potential antioxidant strategies that aim to scavenge 
excessive ROS. However, much remains to be learned about how ROS causes various ovarian diseases to the 
application of antioxidant therapy for ovarian diseases. Here, we review the mechanisms of ROS generation and 
maintenance of homeostasis in the ovary and its associated physiological effects. Additionally, we have high
lighted the pathological mechanisms of ROS in ovarian diseases and potential antioxidant strategies for 
treatment.   

1. Introduction 

From a historical perspective, 1908 was the first milestone year in 
reactive oxygen species (ROS) biology, revealing the increased oxygen 
consumption of sea urchin eggs after fertilization [1]. The term 
oxidative stress (OS) was formally introduced in 1985 [2]. Numerous 
studies have broadened our understanding of ROS biology in the past 
century. 

ROS are mainly produced by biochemical reactions during the 
cellular respiration process [3] and are a double-edged sword for 
ovarian health. Under normal conditions, the production of ROS and 
the antioxidant system are in balance and the body maintains physio
logically required levels of ROS. ROS play a vital role in ovarian 
physiological activity as a secondary messenger for cellular signaling 
[4] and are involved in the regulation of the ovarian cycle, including in 
meiosis [5], ovulation [6], corpus luteum maintenance [7], and 
regression [8]. However, excessive ROS production might overwhelm 
the antioxidant defense system and induce OS [9], leading to the 
development of ovarian diseases including age-related ovarian 
dysfunction, ovarian cancer, polycystic ovary syndrome (PCOS), and 
ovarian endometriosis. 

In recent years, there has been a growing interest in ROS and 
ovarian diseases and the application of antioxidant strategies. The 
combined efforts of biologists and chemists have uncovered the 
mechanisms by which ROS participate in diseases and the redox po
tential of chemical species, helping us to envisage viable antioxidant 
therapy. Currently, strategies with unique ROS regulatory properties, 
including antioxidant drugs, hormones, and mesenchymal stem cells 
(MSCs), have been extensively studied and are potential therapeutic 
options. However, we lack a comprehensive review of the mechanisms 
by which ROS levels influence ovarian diseases and the potential 
application of antioxidant therapy. Therefore, we comprehensively 
reviewed the role of ROS pathogenesis in various ovarian diseases and 
explored frontier antioxidant therapy for treating such diseases. The 
review begins with a description of ROS generation and the antioxidant 
defense system in the ovary, followed by a brief overview of the 
physiological role of ROS in the ovary and a comprehensive review of 
the available evidence for ROS involvement in ovarian diseases. 
Finally, the latest frontiers in treating ovarian diseases through anti
oxidant strategies are presented. 
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2. ROS generation and antioxidant defense system in the ovary 

2.1. ROS generation 

ROS are the chemical species formed when oxygen is incompletely 
reduced and include mainly superoxide anion (O2

•− ), hydrogen peroxide 
(H2O2), singlet oxygen (1O2), and hydroxyl radical (•OH) [10]. The ROS 
in the ovary are produced through multiple pathways. Mitochondria are 
the most abundant organelles in oocytes [11], and the respiratory 
electron transfer systems for aerobic metabolism are the primary sources 
of ROS production [12] (Fig. 1). Electrons leaking from the mitochon
drial respiratory chain reduce O2 molecules to O2

•− (primary ROS), 
which are further converted to molecules such as H2O2, •OH, and hy
pochlorite (secondary ROS) through various catalytic reactions [10]. In 
this process, chain complexes I and III produce mainly primary ROS 
(O2

•− ). The O2
•− is then converted to H2O2 by mitochondrial Mn 

superoxide dismutase (SOD2) in the mitochondrial matrix or Cu–Zn 
superoxide dismutase (SOD1) in the intermembrane space [13]. In 
contrast, superoxide dismutase 3 (SOD3) catalyzes the production of 
H2O2 from O2

•− outside the cell [14]. The endoplasmic reticulum (ER) is 
a site of protein synthesis and a source of ROS. The accumulation of 
misfolded proteins leads to ER stress, which activates the unfolded 
protein response (UPR) to restore protein homeostasis [15]. During the 
UPR, the ROS cascade reaction is triggered by the participation of pro
tein disulfide isomerase, ER oxidoreductin 1, and the nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase (NOX) complex 
(especially NOX4) [16]. ER stress also leads to a massive release of Ca2+

into the mitochondria, disrupting normal mitochondrial ROS and lead
ing to an increase in O2

•− [17]. Xanthine oxidase is also involved in the 
production of ROS; it reduces O2 to O2

•− , which is not only converted to 
H2O2 by cytosolic SOD1, but also reacts with nitric oxide to form per
oxynitrite [18–20]. 

Ovarian aging [21], recurrent ovulation [22], and obesity [23] are 
among the physiological causes of ROS accumulation in the ovary, 
whereas environmental factors, including chemotherapeutic agents 
[24], smoking [25], drinking [26], and a high-sugar diet [8], can also 
contribute to the accumulation of ROS. 

2.2. The antioxidant defense system 

Excessive ROS generation can induce OS and lead to the develop
ment of ovarian diseases. The antioxidant defense system in the ovary 
maintains ovarian homeostasis through the timely removal of excessive 
ROS. The antioxidant defense system consists of enzymatic and non- 
enzymatic antioxidants. 

In vivo enzymatic antioxidants, such as SOD, catalase (CAT), gluta
thione peroxidase (GPx), and glutathione reductase (GR), play critical 
roles in ROS homeostasis in the body [27]. The three SOD enzymes, 
SOD1, SOD2, and SOD3, are activated in the presence of a catalytic 
metal (Cu or Mn) and catalyze the conversion of O2

•− to H2O2 [14]. GPx 
and GR are members of the glutathione (GSH) family of enzymes [28]. 
GPx utilizes GSH as a substrate providing H to degrade H2O2 to produce 
H2O, whereas GSH is converted to oxidized glutathione (GSSG). GSSG is 
subsequently reconverted to GSH using protons provided by NADPH, 
catalyzed by GR [4,29]. 

Non-enzymatic antioxidants in vivo mainly include vitamin C (VC), 
vitamin E (VE), β-carotene, carotenoids, selenium, zinc, taurine, and 
GSH [4], which play a vital role in ROS homeostasis in vivo. 

3. Physiological role of ROS in the ovary 

ROS regulates various physiological functions of the ovary through 
signaling, from oocyte growth to fertilization, including meiosis, 
ovulation, corpus luteum maintenance, and regression (Fig. 1). Among 
these regulating ROS, •OH and 1O2 have relatively short diffusion dis
tances and can only exist in separated spaces. In addition, the instability 
of O2

•− and its inability to diffuse across membranes limit its role as a 
signaling molecule. In contrast, H2O2 molecules, owing to their weak 
reactivity, high specificity, high diffusivity, and good membrane 
permeability, are crucial messengers in signaling [10]. 

The interactions between ROS and antioxidants in the ovary are 
complex. During meiosis, ROS and antioxidants play a crucial role in 
precisely regulating the arrest and resumption of oocyte meiosis [5]. 
Each month, only one dominant oocyte completes meiosis I, which is 
accompanied by an increase in ROS levels and inhibited antioxidant 
production [30,31]. Elevated ROS such as H2O2 might induce the 
resumption of meiosis by activating the adenosine 
monophosphate-activated protein kinase A or Ca2+-mediated pathway 
[31]. In contrast, meiosis II requires protection by enzymatic antioxi
dants such as CAT and SOD [30]. 

Ovulation is one of the most crucial functions of the ovary, and this 
process is similar to inflammation. Increased secretion of the luteinizing 

Fig. 1. Schematic illustration of ROS generation, its natural scavenging 
mechanisms, and physiological role in the ovary. ROS produced by the mito
chondrial electron transport chain (Mito-ETC), the endoplasmic reticulum 
system, XO, and the NOX complex are eliminated by various antioxidant en
zymes, thereby maintaining redox homeostasis in the ovary. Hydrogen peroxide 
(H2O2) can be converted to hydroxyl radicals (•OH) in the presence of transition 
metals, such as Fe2+. Nitric oxide (NO•) can react with superoxide (O2

•− ) to form 
peroxynitrite (ONOO− ), a non-radical species that can modify the structure and 
function of proteins. 
ROS, reactive oxygen species; Mito-ETC, mitochondrial electron transport 
chain; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; 
GPx, glutathione peroxidase; NOX, nicotinamide adenine dinucleotide phos
phate oxidase; NADPH, nicotinamide adenine dinucleotide phosphate; GSH, 
glutathione; GSSG, oxidized glutathione; XO, xanthine oxidase; PDI, protein 
disulfide isomerase; ERO1, endoplasmic reticulum oxidoreductin 1; ER, endo
plasmic reticulum. 
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hormone before ovulation leads to increased inflammatory precursors in 
the ovary, which results in excessive ROS production [8]. The increased 
ROS are involved in cumulus expansion, progesterone production, the 
expression of preovulatory genes, and the activation of signals contrib
uting to ovulation [6]. Conversely, the use of antioxidant enzymes could 
significantly reduce ovulation efficiency and prolong ovulation time 
[32], which further demonstrates the role of ROS in ovulation. In the 
ovary, the corpus luteum which forms after ovulation can produce 
progesterone. If fertilization occurs after ovulation, progesterone 
maintains the pregnancy by improving the uteroplacental circulation, 
suppressing the immune response, and inhibiting uterine contractions 
[33]. Conversely, an absence of fertilization after ovulation requires 
corpus luteum regression and a decline in progesterone to create the 
conditions for follicular development in the next physiological cycle 
[34]. ROS and scavenger SOD are vital in regulating the corpus luteum 
function. Increased expression of the antioxidant enzyme SOD enhances 
the ability to scavenge ROS, thereby prolonging the function of the 
corpus luteum and progesterone secretion [7,35]. Conversely, under 
reduced SOD activity, ROS induce the corpus luteum regression by 
apoptosis of luteinized granulosa cells (GCs) through OS [8]. ROS and 
SOD are involved in ovarian cycle control through these steps, demon
strating their crucial roles in ovarian physiology. 

4. Pathological role of ROS in ovarian diseases 

ROS are essential for ovarian physiological function; however, 
excessive ROS levels can induce the development of ovarian diseases 
(Fig. 2). Increased ROS production owing to factors such as aging and 
drinking, beyond the antioxidant capacity can induce OS and lead to the 
oxidative damage of lipids, proteins, and DNA [36–38]. Excessive ROS 
production can directly affect the target of signaling pathways and also 
induce abnormal results by interacting with intermediate reaction steps 
as second messengers [39]. This oxidative damage and the abnormal 
signaling pathways finally manifest in age-related ovarian dysfunction, 
ovarian cancer, PCOS, and ovarian endometriosis. 

4.1. ROS and age-related ovarian dysfunction 

The delayed childbearing age of modern women can lead to the 
development of age-related ovarian dysfunction and the simultaneous 
failure of pregnancy aspirations. OS is a critical factor in the decline of 
ovarian function with age, driving the ovarian aging process [40]. 
Ovarian aging is manifested by a progressive decrease in the quantity 
and quality of oocytes [41–43]. The occurrence of intracellular 
OS-induced damage is attributed to the downregulation of ovarian 
enzymatic antioxidant defenses and increased ROS accumulation. 
Antioxidant enzymes in follicular fluid, GCs, and cumulus cells play a 
key role in protecting oocytes from OS [40,44]. However, compared to 
younger women, the older women show reduced activity of enzymatic 

antioxidants such as CAT and glutathione transferase in follicular fluid 
[45], decreased mRNA and protein levels of antioxidants in GCs, and 
decreased SOD activity and SOD1 levels in the cumulus cells [40]. These 
overall decreases in age-related ROS scavenging capacity contribute to 
OS development. In addition, aging, smoking, high-sugar diet, stress, 
superovulation, chemotherapy, pollution, and inflammation contribute 
to the overproduction of ROS, resulting in an imbalance between ROS 
and the antioxidant system [8,46]. 

The increased ROS promote ovarian aging through various signaling 
pathways. Ovarian GCs play a crucial role in the maturation of oocytes 
and maintenance of the ovarian cycle through the secretion of steroid 
hormones, estradiol and progesterone [47]. ROS can reduce isocitrate 
dehydrogenase-1 expression through activation of the 
mitogen-activated protein kinase signaling pathway to inhibit GCs 
proliferation and accelerate their aging [48]. Furthermore, H2O2 can 
cause GCs oxidative damage and apoptosis via the hypoxia-inducible 
factor-1α (HIF-1α)-vascular endothelial growth factor (VEGF) 
signaling pathway [49]. The formation of these oxidative damage 
signaling pathways promotes ovarian aging, while the absence or 
impairment of protective pathways also accelerates ovarian aging. The 
nuclear factor erythroid 2-related factor 2 (Nrf2) and sirtuins (SIRT) 
signaling pathways are involved in the synthesis of antioxidant enzymes 
and the regulation of OS; their absence or impairment can lead to 
ovarian OS [8]. OS leads to oxidative damage to lipids, proteins, and 
DNA, as well as chromosomal abnormalities and telomere shortening, 
ultimately leading to a decrease in the quantity and quality of oocytes 
[21,50]. There are currently no clinical treatments for age-related 
ovarian dysfunction and the application of antioxidant therapy may be 
an effective strategy. 

4.2. ROS and ovarian cancer 

Ovarian cancer is a common gynecological tumor with the highest 
mortality rate among gynecological malignancies [51]. ROS are active 
contributors to the development, progression, and metastasis of ovarian 
cancer [52]. Excess ROS in the body induce DNA mutations and 
pro-oncogenic signaling pathways through complex biochemical re
actions promoting tumor formation [53]. Tumor cells produce higher 
levels of ROS than normal cells mainly through mitochondria and NOX 
[54]. These increased ROS act as signaling molecules, thereby contrib
uting to cancer progression and metastasis through several mechanisms. 

ROS activate the extracellular signal-related kinase 1 and 2 signaling 
pathways in ovarian cancer cells to promote cell proliferation [55]. 
Angiogenesis, which transports nutrients and removes metabolic waste, 
is essential for the survival and development of tumor cells and plays a 
vital role in tumor metastasis [56]. H2O2 production in ovarian cancer 
cells promotes tumor angiogenesis by activating the protein kinase B 
(AKT) and p70S6K1 to regulate the expression of HIF-1α and VEGF [57, 
58]. Additionally, ROS are strongly associated with the occurrence of 
chemoresistance in ovarian cancer. Under normal conditions, Nrf2 binds 
to the Kelch Like ECH Associated Protein 1 (KEAP1)/Cullin 3/RING box 
protein 1 E3-ubiquitin ligase complex that targets Nrf2 for proteasomal 
degradation. However, under OS conditions, ROS binds to KEAP1, 
inducing its conformational change that leads to Nrf2 nuclear trans
location and increased expression of antioxidant enzymes; this is one of 
the most critical mechanisms for developing chemoresistance, especially 
for platinum drugs [24,59]. Notably, ROS production also induces 
apoptotic signaling in cancer cells when the cytotoxicity threshold is 
exceeded [38]. The above study illustrated that ROS are also a 
double-edged sword for ovarian tumor cells, as low levels of ROS can 
promote tumor cell proliferation and development, whereas excessive 
ROS can induce apoptosis. This suggests that eliminating or enhancing 
ROS production may be a potentially effective therapeutic approach for 
ovarian cancer. 

Fig. 2. The imbalance between ROS generation and the antioxidant defense 
system contributes to ovarian diseases, including age-related ovarian dysfunc
tion, ovarian cancer, PCOS, and ovarian endometriosis. 
ROS, reactive oxygen species; GCs, granulosa cells; PCOS, polycystic 
ovary syndrome. 
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4.3. ROS and PCOS 

PCOS is one of the most common complex endocrine disorders and a 
major cause of anovulatory infertility [60]. PCOS is often associated 
with insulin resistance (IR), hyperandrogenemia, and obesity, and its 
pathogenesis remains poorly elucidated, but it is known that ROS play 
an essential role [61–63]. Patients with PCOS exhibit more robust OS 
than that in healthy people [64,65], which can be attributed to several 
reasons. IR is closely associated with hyperandrogenemia, obesity, and 
ovulatory dysfunction and is a central factor in PCOS pathogenesis [66]. 
Hyperglycemia and IR are critical factors for increased OS in PCOS pa
tients [67]. Hyperglycemia in IR patients leads to increased ROS pro
duction via the p47(phox) component of the NADPH oxidase [68,69]. In 
addition, hyperglycemia promotes the release of tumor necrosis 
factor-α, a known mediator of IR, from mononuclear cells and increases 
the nuclear factor kappa-light-chain-enhancer of activated B cells 
(NF-κB) [70,71]. NF-κB further contributes to OS by activating NADPH 
oxidase, promoting ROS production and sustaining inflammatory 
response [63]. Hyperandrogenemia sensitizes leukocytes to hypergly
cemia and contributes to OS [72]. NADPH oxidase also plays a vital role 
in ROS production in obese patients. In adipocytes, elevated fatty acid 
levels increase OS through NADPH oxidase activation [73]. Conversely, 
ROS production can be reduced by inhibiting NADPH oxidase, which 
can improve symptoms of diabetes, hyperlipidemia, and hepatic stea
tosis [73]. 

The increased ROS through these mechanisms can promote the 
development of PCOS. OS reduces the sensitivity of skeletal muscle to 
insulin, resulting in the development of IR [67]. Additionally, OS im
pairs glucose uptake in muscle and adipose tissue and induces pancreatic 
β-cell dysfunction [68,74]. Elevated OS exacerbates PCOS progression 
by increasing the size of mature adipocyte, inducing obesity-promoting 
preadipocyte proliferation and adipocyte differentiation [74]. These 
associations suggest that ROS play a crucial role in the pathogenesis of 
PCOS, thereby providing a novel perspective into the treatment of PCOS 
patients: the inhibition of ROS production through antioxidant therapy 
to alleviate PCOS symptoms. 

4.4. ROS and ovarian endometriosis 

Ovarian endometriosis is the most common lesion of endometriosis, 
which causes not only severe menstrual pain but also infertility [75]. 
The monthly conception rate in healthy women is 15–20% compared 
with 2–10% in women with endometriosis [76]. OS plays a vital role in 
endometriosis-related infertility [77]. In patients with ovarian endo
metriosis, endometriotic tissue causes increased expression of OS 
markers in the surrounding normal ovarian cortex, suggesting that OS 
was occurring [78]. This result is consistent with the following reports: 
most OS-related genes are upregulated in endometriotic oocytes 
compared with those from healthy donors [79]; a possible explanation 
for this is that the cysts stimulate an ovarian inflammatory response or 
that components of the cysts (e.g. iron) diffuse into the surrounding 
tissue, leading to ROS production [80]. The previous section described 
the critical role of ROS in various physiological stages of the oocytes; 
however, these supraphysiological ROS levels negatively impact oocytes 
and fertilization outcomes [81,82]. Excessive ROS induce apoptosis and 
autophagy in oocytes [83,84], which may at least partly explain the poor 
oocyte quality and infertility associated with ovarian endometriosis. 
Endometriosis-related infertility might result from a combination of 
factors [77], suggesting that a single model is insufficient to describe its 
pathogenesis. However, treatment targeting OS-induced infertility 
mechanisms might improve the associated symptoms. 

5. Antioxidant therapeutic strategies in ovarian diseases 

ROS levels are closely associated with the development of several 
ovarian diseases. Concordantly, we can treat ovarian diseases by 

modulating the levels of ovarian ROS. In contrast to conventional ap
proaches, antioxidant therapy efficiently interferes with disease devel
opment directly at the signaling mechanism. The following sections 
describe the action mechanism of representative antioxidant strategies 
and recent studies on treating ovarian diseases using antioxidant ther
apy, including antioxidant drugs, hormones, and MSCs (Fig. 3A). 

5.1. Antioxidant drugs 

Antioxidant drugs have been widely studied owing to their high 
safety profile in humans and low threshold for use. They are used to treat 
ovarian diseases by scavenging excess ROS through various pathways 
and have undergone animal and human trials (Table 1). In recent years, 
developments in materials science have further advanced the use and 
efficacy of antioxidant drugs; notably, combining some antioxidant 
drugs and materials has demonstrated promising results. 

5.1.1. Resveratrol 
Resveratrol is a plant-derived polyphenol with antioxidant and 

anticancer effects [85]. The antioxidant activity of resveratrol is related 
to the promotion of antioxidant enzyme synthesis and the involvement 
of its hydroxyl group in ROS scavenging, as well as to the reduction of 
copper-mediated oxidation and the prevention of low-density lipopro
teins and cell membrane lipid peroxidation [86]. In addition, resveratrol 
can also protect mitochondrial function by activating the SIRT1 and 
SIRT3 signaling pathways and reduce oxidative damage by regulating 
mitochondrial ROS homeostasis in vivo [87,88]. 

The antioxidant properties of resveratrol have been demonstrated in 
animals. Mice fed resveratrol for 12 months exhibited improved repro
ductive capacity, follicular pools, telomerase activity, and telomere 
length compared with that in control mice, and these results highlight 
the role of resveratrol in delaying ovarian aging [89]. In another study, 
researchers lavaged premature ovarian failure (POF) model mice with 
resveratrol. They observed elevated levels of GPx, SOD2, and CAT, and a 
significant increase in ovarian weight as well as follicle number in POF 
mice, suggesting that resveratrol is a potential anti-POF agent [90]. 
Resveratrol can also be administered by intraperitoneal injection. 
Intraperitoneal injection of resveratrol reduced serum malondialdehyde 
(MDA, a major biomarker for the assessment of lipid peroxidation) levels 
and IR, increased serum total antioxidant capacity (TAC), and alleviated 
complications in PCOS mice [91]. In human-controlled trials, the 
resveratrol-treated PCOS group had reduced pro-inflammatory and ER 
stress markers [92], and improved menstrual cyclicity [93], suggesting 
that resveratrol might reduce complications in PCOS patients. In addi
tion to these antioxidant effects, resveratrol might also inhibit human 
ovarian cancer progression and angiogenesis by inhibiting HIF-1α and 
VEGF expression, providing a new potential therapy for the treatment of 
ovarian cancer [94]. 

Notably, resveratrol is a low water-soluble drug, which limits its 
efficacy [95]. The therapeutic efficiency of resveratrol in hamster 
ovaries may be improved using synthesizing phosphate monoester 
anionic surfactant-mesoporous silica nanoparticles as drug carriers [96], 
thereby expanding the application of the drug. These findings suggest 
that resveratrol is a promising antioxidant with potential clinical 
applications. 

5.1.2. Epigallocatechin-3-gallate 
Epigallocatechin-3-gallate (EGCG) is the most physiologically active 

catechin in green tea, containing potent antioxidant properties [97]. 
EGCG acts as an antioxidant through several mechanisms: chelation of 
free transition metals to reduce ROS production, scavenging of ROS by 
groups on EGCG, inhibition of inducible nitric oxide synthase, inhibition 
of pro-oxidant enzyme production, activation of antioxidant enzymes, 
and inhibition of inflammation [98]. Green tea extract improved IR and 
increased follicle number in a rat model of PCOS [99], demonstrating 
the role of EGCG in the ovary. Angiogenesis is widely believed to play a 
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crucial role in the development of endometriosis lesions. Levels of VEGF 
A and C mRNA decreased after EGCG therapy, which suggested that 
EGCG inhibited angiogenesis to reduce endometriosis damage [100, 
101]. However, EGCG is easily oxidized in neutral or alkaline environ
ments, and its bioavailability in humans is low [102]. 

Research is currently focused on improving the bioavailability of 
EGCG. Combining poly(acrylic acid) and EGCG to form poly(acrylic 
acid)-EGCG conjugates, produces nanoparticles with stronger oxidative 
stability and ROS scavenging ability than natural EGCG [103]. EGCG 
also has potent anticancer potential [104], and its combination with 
materials for cancer treatment is gaining research interest. Nanogels 
consisting of hyaluronic acid-EGCG conjugate, the cytotoxic protein 
Granzyme B (GzmB), and linear polyethyleneimine could be used for 
intracellular delivery of GzmB in targeted cancer therapy [105]. In 
another study, researchers mixed hyaluronic acid-EGCG conjugate with 
cisplatin to form micellar nanocomplexes with a spherical core-shell 
structure, in which the antioxidant effect of the EGCG molecules pro
tected non-target organs from cisplatin-induced OS [106]. These studies 
demonstrate the promising potential of EGCG for treating ovarian 
diseases. 

5.1.3. Curcumin 
Curcumin is a phenolic compound of plant origin and a natural 

antioxidant [107]. The antioxidant properties of curcumin are due to the 
direct involvement of its functional group in the scavenging of ROS and 
the upregulation of gene expression of the antioxidant enzymes SOD, 
CAT, GR, and GPx through the Nrf2 pathway [108]. Curcumin can 
reduce OS to postpone ovarian aging in mice [109] and improve com
plications in PCOS patients [110]. In addition, curcumin reportedly 
exerts anticancer properties through multiple biological pathways 
involved in cancer apoptosis, progression, and metastasis [111]. Cur
cumin is lipophilic and can freely cross cell membranes, meanwhile, it 
has a substantially low water solubility, resulting in considerably low 
bioavailability [112]. Therefore, improving the bioavailability of cur
cumin for cancer treatment has attracted research interest. Nanocarriers 
such as polymeric micelles, nanoparticles, liposomes, conjugates, and 
peptide carriers have been developed to improve the bioavailability of 
curcumin [112]. Encapsulation of curcumin in poly(lactic-co-glycolide) 
nanoparticles by nano-precipitation techniques can effectively enhance 

the bioavailability and pharmacokinetics of curcumin, thereby 
improving drug uptake and retention in A2780CP ovarian cancer cells (a 
cisplatin-resistant/metastatic ovarian cancer cell line) [113]. 
Super-paramagnetic iron oxide nanoparticles loaded with curcumin 
reduce degradation during drug transport, increase bioavailability, and 
reduce ovarian damage and apoptosis in PCOS [114]. These studies 
highlight the potential therapeutic value of curcumin in ovarian 
diseases. 

5.1.4. N-acetylcysteine 
N-acetylcysteine (NAC) is a potent antioxidant. It can act as a pre

cursor to increasing levels of GSH in vivo, which act as a direct anti
oxidant and a substrate for several antioxidant enzymes [115,116]. 
NAC-fed mice have higher quality oocytes and telomerase activity as 
well as longer telomere length, demonstrating that it can delay the onset 
of ovarian aging [117]. NAC increased the expression of antioxidant 
enzymes such as SOD1 and CAT and decreased pro-inflammatory cyto
kines and apoptotic factors, suggesting that NAC can treat OS injury in 
mice transplanted with human ovarian tissue [118]. The therapeutic 
effect of NAC has also been demonstrated in controlled clinical trials. In 
patients with endometriosis, NAC reduced the mean diameter of ovarian 
cysts compared to the control group [119]. NAC treatment increased 
GSH levels in follicular fluid and improved blastocyst quality in older 
women [120]. In addition, a systematic evaluation and meta-analysis 
revealed that NAC significantly improved pregnancy and ovulation 
rates in patients with PCOS [121], suggesting its potential as an anti
oxidant in treating ovarian diseases. 

5.1.5. Other antioxidant drugs 
In addition to the antioxidant drugs mentioned in the earlier sec

tions, VC, VE, coenzyme Q10 (CoQ10), and astaxanthin are used in 
ovarian disease treatment. VC is a water-soluble natural antioxidant 
[122]. In mice, VC increased TAC and alleviated OS damage in PCOS by 
upregulating the expression of antioxidant enzymes, suggesting a 
possible use in treatment [123]; VE is a fat-soluble antioxidant that 
protects tissues from lipid peroxidation [124]. Co-administration of VE 
and selenium alleviated ovarian OS, increased the anti-Müllerian hor
mone index and antral follicle count in women with occult premature 
ovarian insufficiency, and partially restored ovarian function [125]; 

Fig. 3. (A) Classification of antioxidant strategies and 
their antioxidant mechanisms. (B) Melatonin’s anti
oxidant cascade and mechanisms of protection against 
oxidative damage. We have listed only well-studied 
melatonin metabolites that have significant antioxi
dant effects. The direct and indirect antioxidant ef
fects of melatonin and its metabolites are presented 
with dashed and solid arrows, respectively. 
EGCG, epigallocatechin-3-gallate; MSCs, mesen
chymal stem cells; ROS, reactive oxygen species; 3- 
OHM, cyclic 3-hydroxymelatonin; AFMK, N(1)- 
acetyl-N(2)-formyl-5-methoxykynuramine; AMK, N 
(1)-acetyl-5-methoxykynuramine; GSH, glutathione.   
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CoQ10 is a potent lipophilic antioxidant [126]. In controlled clinical 
trials, glucose and lipid metabolism were improved in PCOS patients in 
the CoQ10 treatment group, demonstrating a beneficial effect [127]; 
Astaxanthin is a carotenoid with unusual antioxidant activity [128]. In a 
controlled human trial, astaxanthin supplementation increased serum 
CAT and TAC levels in PCOS patients, while increasing high-quality 
embryo rates [129]. 

5.2. Hormones 

Over the last two decades, hormone replacement therapy (HRT) has 
gained much attention as a new strategy to reduce OS and treat ovarian 
diseases. The main hormones used as antioxidants include melatonin 
and growth hormone, with melatonin being the most interesting to 
researchers. 

5.2.1. Melatonin 
Melatonin is an endogenous radical scavenger, synthesized and 

secreted mainly by the pineal gland and distributed in various tissues 
[130]. Melatonin can reduce OS by scavenging ROS in several ways 
(Fig. 3B). Melatonin can be directly involved in ROS scavenging through 
electron donation, and its derivatives also have an antioxidant capacity 
[131]. In addition, melatonin metabolites such as N(1)-acetyl-N 
(2)-formyl-5-methoxykynuramine and N(1)-acetyl-5-methoxykynuram 
ine also have a strong ROS scavenging capacity and form an antioxi
dant cascade with melatonin to maintain redox homeostasis [131,132]. 
In addition to its direct involvement in the scavenging of ROS, melatonin 
also enhances the cellular antioxidant defense system in several indirect 
ways (Table 2). These mechanisms of action provide a theoretical basis 
for using melatonin as an antioxidant. 

In addition to mechanistic studies, melatonin has also demonstrated 

Table 1 
Testing of antioxidant drugs in animals and humans.  

Drugs Diseases Test 
subjects 

Therapeutic effects Mechanism References 

Resveratrol Ovarian aging Mice Relieves oogonial stem cells loss Reduces oxidative levels in ovaries; reduces H2O2- 
induced cytotoxicity and OS injury by activating 
Nrf2 and SOD2 

[156] 

Resveratrol Age-related infertility Mice Retains the capacity to reproduce; 
increases the quantity and quality of 
oocytes 

Increases telomerase activity and telomere length [89] 

Resveratrol POF Mice Increases survival of FGSCs and follicle 
number; improves the ovarian function 

Relieves OS and inflammation; increases SOD, 
GPx, and CAT 

[90] 

Resveratrol PCOS Rats Improves insulin resistance Reduces MDA and lipid peroxidation; increases 
TAC 

[91] 

Resveratrol and 
metformin 

PCOS Rats Improves weight gain, hormone 
profile, and ovarian follicular cell 
architecture 

Induces antioxidant and antiinflammatory 
systems via SIRT1 and AMPK activation 

[157] 

Resveratrol PCOS Human Decreases pro-inflammatory and 
endoplasmic reticulum stress markers 

The suppression of NF-κB and NF-κB-regulated 
gene products; alters the expression of genes 
involved in UPR process 

[92] 

Resveratrol PCOS Human Improves menstrual cyclicity and hair 
loss 

Not available [93] 

Green tea extract PCOS Rat Reduces insulin resistance index; 
improves the symptoms of PCOS 

Not available [99] 

EGCG Endometriosis Mice Inhibits the development of 
endometriosis and angiogenesis 

Reduces mRNA for VEGF-A [100] 

EGCG Endometriosis Mice Inhibits angiogenesis Suppresses VEGF-C/VEGFR2 expression [101] 
Green tea PCOS Human Reduces weight, fasting insulin, and 

the level of free testosterone 
Not available [158] 

Curcumin Ovarian aging Mice Delays ovarian aging Reduces oxidative stress; increases AMH and 
estrogen; decreases FSH 

[109] 

Curcumin PCOS Human Reduces OS-related complications in 
patients with PCOS 

Increases gene expression of PGC1α and activity of 
the GPx enzyme 

[110] 

NAC Ovarian aging Mice Improves the quality of oocytes and 
early embryo development 

Increases expression of SIRT, telomerase activity, 
and telomere length 

[117] 

NAC Ischemia-reperfusion injury in 
xenotransplanted human ovarian 
tissue 

Mice Reduces the loss of ovarian follicles; 
increases follicle density 

Increases expression of SOD1, heme oxygenase-1, 
and CAT; anti-inflammatory, and antiapoptotic 
effects 

[118] 

NAC Ovarian endometriosis Human Reduces cyst mean diameter Not available [119] 
NAC Infertility Human Increases the number of high-quality 

blastocysts 
Increases GSH content in the follicular fluid [120] 

VC PCOS Mice Reduces ovarian weight; improves 
cysts in the ovaries and congestion in 
the uterus 

Increases TAC and expression of antioxidant 
enzyme genes; reduces MDA 

[123] 

VC Ovarian aging Mice Restores ovarian follicular reservation Not available [159] 
Selenium and VE OPOI Human Increases AMH, antral follicle count, 

and mean ovarian volume 
Not available [125] 

CoQ10 PCOS Human Improves glucose and lipid metabolism Not available [127] 
Astaxanthin Ovarian damage Rats Reduces histopathological ovarian 

damage 
Increases TAC and GSH; reduces MDA [160] 

Astaxanthin PCOS Human Increases the MII oocyte and high- 
quality embryo rate 

Increases levels of serum CAT, TAC, and 
expression of Nrf2 

[129] 

Abbreviations: OS, oxidative stress; Nrf2, nuclear factor erythroid 2-related factor 2; SOD, superoxide dismutase; POF, premature ovarian failure; GPx, glutathione 
peroxidase; CAT, catalase; PCOS, polycystic ovary syndrome; MDA, malondialdehyde; TAC, total antioxidant capacity; FGSCs, female germline stem cells; SIRT, 
sirtuins; AMPK, AMP-dependent protein kinase; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; UPR, unfolding protein response; EGCG, 
epigallocatechin-3-gallate; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2; AMH, anti-Müllerian hormone; FSH, 
follicle-stimulating hormone; PGC1α, peroxisome proliferator activated receptor gamma coactivator 1α; NAC, N-acetylcysteine; GSH, glutathione; VC, vitamin C; VE, 
vitamin E; OPOI, occult premature ovarian insufficiency; CoQ10, coenzyme Q10. 
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excellent performance in trials of ovarian diseases (Table 3). Telomere 
length, fertilization, blastocyst rates, and follicle numbers were 
increased in mice, with melatonin supplementation, demonstrating that 
melatonin delays ovarian aging and fertility decline [133]. Clinical 
studies have indicated that melatonin supplementation in patients with 
infertility significantly increased the TAC of follicular fluid and reba
lanced the oxidative status of the follicles, thereby improving oocyte 
quality and increasing the conception rate [134]. In an observational 
clinical study, PCOS patients supplemented with melatonin had 
improved menstrual cycles and hyperandrogenism [135] and increased 
conception rates after intrauterine insemination [136], demonstrating 
its potential clinical value. In addition, melatonin has a potential ther
apeutic effect on ovarian cancer [137]; melatonin can suppress ovarian 
cancer cell progression and metastasis through the norepineph
rine/AKT/β-catenin/SLUG axis [138]. These molecular mechanisms and 
trials suggested that melatonin has considerable potential as an anti
oxidant for ovarian disease treatment. 

5.2.2. Growth hormone 
Growth hormone has been a familiar growth regulator for over a 

century. In recent years, growth hormone has gained interest as an 
antioxidant in treating patients with PCOS and poor ovarian response 
(POR). In PCOS patients, growth hormone can reduce OS damage by 
inhibiting ROS accumulation and apoptosis in GCs by activating the 
phosphatidylinositol 3-kinase/AKT signaling pathway [139]; it can also 
improve GCs mitochondrial function and reduce OS improving oocyte 
quality [140]. In POR patients, growth hormone improves TAC levels in 
follicular fluid and reduces intracellular ROS levels, improving oocyte 
quality and the in vitro fertilization outcomes [141]. Furthermore, in 
addition to treating ovarian diseases, growth hormone can reduce 
cisplatin-induced apoptosis in ovarian GCs by alleviating OS and 
enhancing mitochondrial function through the SIRT-SOD2 pathway 

Table 2 
Melatonin indirectly enhances the antioxidant defense system of cells.  

Test subjects Antioxidant 
methods 

Mechanism References 

ECV304 cell 
line 

Increases 
antioxidant GSH 

Increases the expression of 
gamma-glutamylcysteine 
synthetase 

[161] 

Brain 
homogenates 
from rats 

Suppresses pro- 
oxidant enzymes 

Reduces the activity of pro- 
oxidant enzymes such as 
XO and MPO 

[162] 

Cells from mice Anti-inflammatory Exerts anti-inflammatory 
effect via the ERK/Nrf2/ 
HO-1 signaling 

[163] 

Oocytes from 
mice 

Increases 
antioxidant 
enzyme 

Increase the expression of 
GPx1/SOD1 

[164] 

Mice Increases 
antioxidant 
enzyme 

Enhances the SIRT3 
activity; increases the 
binding affinity of FoxO3a 
to the promoters of both 
SOD2 and CAT 

[165] 

Mice Increases 
antioxidant 
enzyme 

Increases in total 
antioxidative capacity and 
SOD level via MT1/AMPK 
pathway 

[166] 

Rats Maintenance of 
mitochondrial 
homeostasis 

Increases the activity of the 
respiratory chain 
complexes I and IV; reduces 
electron leakage and ROS 
generation 

[167] 

Abbreviations: ECV304 cell line, human umbilical vascular endothelial cell 
line; GSH, glutathione; XO, xanthine oxidase; MPO, myeloperoxidase; ERK, 
extracellular regulated kinase; Nrf2, nuclear factor erythroid 2-related factor 2; 
HO-1, heme oxygenase-1; GPx1, glutathione peroxidase 1; SOD, superoxide 
dismutase; FoxO3a, forkhead box O 3a; CAT, catalase; MT1, melatonin mem
brane receptor 1; AMPK, AMP-dependent protein kinase; ROS, reactive oxygen 
species. 

Table 3 
Clinical and animal studies on the antioxidant role of melatonin in ovarian 
diseases.  

Diseases Test 
subjects 

Dose Therapeutic 
effects 

Mechanism References 

Ovarian 
aging 

Mice 100 
μg/ 
mL 
water 

Increases 
fertilization 
rate, 
blastocyst 
rate, and 
telomere 
length; 
delays 
ovarian aging 

Reduces 
autophagy; 
maintains 
telomeres; 
stimulates SIRT 
expression and 
ribosome 
function; 
antioxidant 
action 

[133] 

Ovarian 
aging 

Mice 10 
mg/ 
kg 

Delays 
ovarian 
aging; 
improves 
age-induced 
fertility 
decline 

Reduces 
mitochondrial 
ROS; increases 
SIRT3 activity; 
increases SOD2 
and CAT level 

[165] 

Ovarian 
cancer 

Rat 200 
μg/ 
100 
g/d 

Reduces 
angiogenesis 

Increases serum 
levels of 
melatonin; 
reduces TGFβ1, 
VEGF, and levels 
of VEGF receptor 

[168] 

PCOS Human 2 
mg/d 

Restores 
menstrual 
cyclicity 

Reduces 
androgens and 
AMH levels; 
increases FSH 
levels 

[135] 

PCOS Human 3 
mg/d 

Improves the 
rate of 
chemical 
pregnancy 

Not available [136] 

PCOS Human 6 
mg/d 

Improves 
hirsutism 

Reduces serum 
TNF-α; increases 
TAC levels 

[169] 

Infertility Human 3 
mg/d 

Improves 
oocyte 
quality and 
fertilization 
rates 

Protects oocytes 
from OS 

[81] 

Infertility Human 3 
mg/d 

Increases 
fertilization 
rate 

Increases intra- 
follicular 
melatonin 
concentrations; 
reduces intra- 
follicular 
oxidative 
damage 

[170] 

Infertility Human 3 or 
6 
mg/ 
day 

Improves 
oocyte 
quality 

Increases SOD 
activity and TAC 
as well as 
intrafollicular 
concentrations 
of melatonin; 
improves 
intrafollicular 
oxidative 
balance 

[134] 

Infertility Human 3 
mg/d 

Improves 
oocyte 
quality and 
ART 
outcomes 

Down-regulated 
genes associated 
with cell death 
and OS; up- 
regulated genes 
associated with 
angiogenesis and 
steroidogenesis 

[171] 

Abbreviations: SIRT, sirtuins; ROS, reactive oxygen species; SOD, superoxide 
dismutase; CAT, catalase; TGFβ1, transforming growth factor-beta1; VEGF, 
vascular endothelial growth factor; AMH, anti-Müllerian hormone; FSH, follicle- 
stimulating hormone; PCOS, polycystic ovary syndrome; TNF-α, tumor necrosis 
factor-α; TAC, total antioxidant capacity; OS, oxidative stress; ART, assisted 
reproductive technology. 
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[142]. Currently, there is a lack of sufficient mechanistic and clinical 
studies on using growth hormone for antioxidant therapy in the ovary; 
nonetheless, the findings from the existing studies exhibit promise. 

5.3. MSCs: a novel antioxidant strategy 

MSCs are multipotent stem cells with the capacity to self-renew [143, 
144]. Their primary source is the bone marrow, and they can differen
tiate into various cell types that make up mesenchymal tissues [144]. 
MSCs were initially used for tissue repair and regeneration, but there is 
now increasing interest in their antioxidant therapy. MSCs can exert 
antioxidant effects in several ways: MSCs can directly exhibit antioxi
dant properties by secreting antioxidant enzymes to scavenge free rad
icals [145,146]; they can also indirectly upregulate antioxidant defenses 
in other cells [147,148]. Notably, this indirect antioxidant capacity is 
non-dose dependent; low and high doses had similar effects on antiox
idant and pro-oxidant enzyme mRNA expression, suggesting that both 
have similar antioxidant effects [147]. In addition, MSCs can improve 
the regulation of inflammatory responses, enhance cellular respiration 
and mitochondrial function, or donate their mitochondria to exert 
antioxidant action [149]. MSCs reduce OS through these mechanisms, 
partially explaining the therapeutic role of MSCs in various disease 
models. 

In addition to mechanistic studies, the antioxidant properties of 
MSCs have been demonstrated in various ovarian disease models. 
Transplanted MSCs restored ovarian function in an ovariectomized rat 
model by reducing oxidative damage through the upregulated expres
sion of antioxidant factors [148]. MSCs increased serum SOD activity in 
autologously transplanted ovarian tissue, thereby reducing 
ischemia-reperfusion-induced OS damage, which improved ovarian 
structure and function in mice [150]. Exosomal miRNA-17–5p from 
MSCs attenuated ROS accumulation by inhibiting SIRT7 expression, 
thereby improving ovarian function in premature ovarian insufficiency 
[151]. The mechanisms by which increased ROS production leads to the 
development of PCOS are described in the earlier sections. MSCs in
crease ovarian TAC levels and decrease MDA levels, which improves 
folliculogenesis in PCOS mice [152]. These findings provide novel in
sights into the potential of MSCs and offer new avenues for developing 
more effective therapies for ovarian diseases. 

6. Practical challenges in the clinical application of antioxidant 
strategies 

While the preclinical studies describe the potential value of antiox
idant strategies in treating ovarian diseases, these novel strategies also 
imply new issues that need to be addressed. Practical challenges remain 
in the translation of these antioxidant strategies into clinical application. 

First, although antioxidant strategies have demonstrated therapeutic 
promise in preclinical research, clinical trial outcomes have often been 
disappointing. One of the primary reasons for this is that the therapeutic 
potency of antioxidant strategies is restricted by the extent to which OS 
plays a role in pathology [20]. Therefore, it is necessary to determine 
whether OS plays a key role in ovarian disease development before 
applying antioxidant strategies. Second, there are limitations to the 
antioxidant strategies. Although significant progress has been made in 
implementing antioxidant drugs in recent years, issues remain, 
including the low bioavailability and weak redox-modulating ability of 
traditional drugs. How to overcome biocompatibility and evaluate the 
therapeutic effect of antioxidant drugs when combined with others 
materials is an issue that needs to be addressed before clinical applica
tion. The role of antioxidants in combination with others materials in 
improving ovarian function is mostly based on animal studies; however, 
animal models differ from humans in biology, physiology, and immu
nology, which may lead to an unsuccessful transition from animal to 
human therapy. Notably, using some natural or synthetic compounds 
could efficiently protect normal cells from OS-induced diseases, such as 

ovarian cancer. Still, their use in cancer patients may reduce the effi
ciency of chemotherapy because the primary target of these drugs is the 
activation of Nrf2/KEAP1 signaling, which is a critical factor involved in 
the occurrence of chemoresistance [24,59]. It is necessary to develop 
new strategies to address the conflicting effects of antioxidant drugs. 
HRT has been extensively studied as an essential part of the antioxidant 
strategy, but some controversy remains. Melatonin is associated with an 
increased risk of daytime sleepiness and headache [153]. Growth hor
mone is associated with the progression of several cancers [154]. After 
entering the body, these hormones act on non-target organs, causing 
side effects that pose a challenge to their clinical application. Further
more, there are several outstanding issues regarding the application of 
MSCs, and the heterogeneity, immunocompatibility, stability, differen
tiation, and migratory capacity of MSCs may all be barriers to clinical 
translation [155]. 

Collectively, antioxidant therapy should be performed with safety as 
a priority. As the organ that exercises fertility, the ovary affects the 
health of women as well as the safety of future generations. Therefore, 
strategies for treating ovarian diseases require long-term scientific 
research before their clinical application. We believe that scientific and 
technological advancements will provide theoretical support for 
implementing such antioxidant strategies. 

7. Conclusions and perspective 

In conclusion, we have comprehensively reviewed the generation, 
homeostasis, and physiological role of ROS in the ovary, as well as 
highlighted its role in ovarian disease pathogenesis and the advances in 
antioxidant treatment. Biologists and chemists have long explored the 
generation, homeostasis, physiology, pathology, and scavenging stra
tegies of ovarian ROS, leading to a clearer understanding of the anti
oxidant therapy for ovarian diseases such as age-related ovarian 
dysfunction, ovarian cancer, PCOS, and ovarian endometriosis. Some 
traditional antioxidant drugs have been combined with materials to 
break the boundaries of antioxidant therapy. This “new use of old drugs” 
has demonstrated promise in treating various ovarian diseases, partic
ularly ovarian cancer. As the antioxidant mechanisms of hormones and 
MSCs become clearer, their clinical application is becoming more 
promising. In short, we believe that further substantial developments in 
these areas will significantly contribute to the treatment of ovarian 
diseases. 
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Abbreviations 

AKT protein kinase B 
AMH anti-Müllerian hormone 
AMPK AMP-dependent protein kinase 
ART assisted reproductive technology 
CAT catalase 
CoQ10 coenzyme Q10 
ECV304 cell line human umbilical vascular endothelial cell line 
ER endoplasmic reticulum 
ERK extracellular regulated kinase 
ERO1 endoplasmic reticulum oxidoreductin 1 
FGSCs female germline stem cells 
FoxO3a forkhead box O 3a 
FSH follicle-stimulating hormone 
GCs granulosa cells 
GSH glutathione 
GSSG oxidized glutathione 
GPx glutathione peroxidase 
GR glutathione reductase 
GzmB granzyme B 
HIF-1α hypoxia-inducible factor-1α 
H2O2 hydrogen peroxide 
HO-1 heme oxygenase-1 
HRT hormone replacement therapy 
IR insulin resistance 
KEAP1 kelch Like ECH Associated Protein 1 
MDA malondialdehyde 
MPO myeloperoxidase 
MSCs mesenchymal stem cells 
MT1 melatonin membrane receptor 1 
NAC N-acetylcysteine 
NADPH nicotinamide adenine dinucleotide phosphate 
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells 
NOX nicotinamide adenine dinucleotide phosphate oxidase 
Nrf2 nuclear factor erythroid 2-related factor 2 
1O2 singlet oxygen 
O2
•− superoxide anion 

•OH hydroxyl radical 
OPOI occult premature ovarian insufficiency 
OS oxidative stress 
PCOS polycystic ovary syndrome 
PDI protein disulfide isomerase 
PGC1α peroxisome proliferator activated receptor gamma 

coactivator 1α 
POF premature ovarian failure 
POR poor ovarian response 
ROS reactive oxygen species 
SIRT sirtuins 
SOD1 Cu–Zn superoxide dismutase 
SOD2 mitochondrial Mn superoxide dismutase 
SOD3 superoxide dismutase 3 
TAC total antioxidant capacity 
TGFβ1 transforming growth factor-beta1 
TNF-α tumor necrosis factor-α 
UPR unfolded protein response 
VC vitamin C 
VE vitamin E 
VEGF vascular endothelial growth factor 
VEGFR2 vascular endothelial growth factor receptor 2 
XO xanthine oxidase 
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