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Abstract 
Background and Aims: Over the past decade, the DNA methylome has been increasingly studied in peripheral blood of inflammatory bowel 
disease [IBD] patients. However, a comprehensive summary and meta-analysis of peripheral blood leukocyte [PBL] DNA methylation studies 
has thus far not been conducted. Here, we systematically reviewed all available literature up to February 2022 and summarized the observations 
by means of meta-analysis.
Methods: We conducted a systematic search and critical appraisal of IBD-associated DNA methylation studies in PBL using the biomarker-based 
cross-sectional studies [BIOCROSS] tool. Subsequently, we performed meta-analyses on the summary statistics obtained from epigenome-
wide association studies [EWAS] that included patients with Crohn’s disease [CD], ulcerative colitis [UC] and/or healthy controls [HC].
Results: Altogether, we included 15 studies for systematic review. Critical appraisal revealed large methodological and outcome hetero-
geneity between studies. Summary statistics were obtained from four studies based on a cumulative 552 samples [177 CD, 132 UC and 
243 HC]. Consistent differential methylation was identified for 256 differentially methylated probes [DMPs; Bonferroni-adjusted p ≤ 0.05] 
when comparing CD with HC and 103 when comparing UC with HC. Comparing IBD [CD + UC] with HC resulted in 224 DMPs. Importantly, 
several of the previously identified DMPs, such as VMP1/TMEM49/MIR21 and RPS6KA2, were consistently differentially methylated across 
all studies.
Conclusion: Methodological homogenization of IBD epigenetic studies is needed to allow for easier aggregation and independent validation. 
Nonetheless, we were able to confirm previous observations. Our results can serve as the basis for future IBD epigenetic biomarker research 
in PBL.
Key Words: DNA methylation; epigenetics; inflammatory bowel diseases; biomarkers; systematic review and meta-analysis

1.   Introduction
Inflammatory bowel diseases [IBD], including Crohn’s disease 
[CD] and ulcerative colitis [UC] are chronic, relapsing and 
remitting inflammatory disorders affecting an estimated 3 
million patients in the USA and Europe alone.1,2 While the 
exact aetiopathogenesis of IBD remains unknown, current 
consensus suggests a dysregulated immune response to spe-
cific alterations in the microbial composition of genetic-
ally susceptible patients that either are triggered or caused 
by environmental factors.3 While numerous genome-wide 
association studies [GWAS] have been performed, the re-
sults thereof explain only part of the heritability observed 
in familial studies with high rates of discordance observed 
in monozygotic twins.4–10 Moreover, a rapid increase in the 

incidence of IBD has been observed in newly industrialized 
countries, which is thought to be the result of the increasing 
adoption of a western lifestyle.1 Together, these observations 
suggest an important role for gene–environment interactions 
in the aetiopathogenesis of IBD.

Epigenetics represent mitotically heritable mechanisms that 
affect the readability of the genome without changing the 
actual genetic sequence itself. Epigenetic modifications can 
regulate transcription and could therefore mediate gene–en-
vironment interactions. Epigenetic mechanisms are particu-
larly interesting in complex multifactorial diseases, such as 
IBD, due to their dynamic interaction with the environment.11 
One of the most widely studied epigenetic mechanisms is 
DNA methylation, representing a methyl group covalently 
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bound to the cytosine of a cytosine–guanine dinucleotide 
[CpG]. The presence of DNA methylation in gene promoters 
is often inversely correlated with gene expression.12–14 Due to 
the growing popularity of epigenetics, an increasing number 
of studies have sought to understand the role of DNA methy-
lation in IBD pathogenesis and aetiology, which was further 
strengthened by the discovery of an IBD-associated genetic 
variant associated with DNMT3A, a key de novo methyla-
tion enzyme.15 Accordingly, numerous differentially methy-
lated positions [DMPs], regions [DMRs] or genes [DMGs] 
associated with various IBD phenotypes across different 
tissues have been identified in both paediatric and adult co-
horts.16–24 Together, these studies make a case for using DNA 
methylation in classifying IBD phenotypes,20,25,26 thereby sup-
plementing clinical care with potential novel drug and bio-
marker targets.

Despite the numerous studies available to date, translation 
to clinical practice has not occurred. All studies report dif-
ferent sets of biomarkers with different levels of statistical 
power. Moreover, many studies lack information on patient 
characteristics that are known to be associated with changes 
in methylation, such as smoking behaviour.27 To adequately 
understand the observations thus far, various attempts have 
been made to summarize the DNA methylation studies on 
IBD.

The most recent meta-analysis of IBD-associated epigen-
etic studies focused on DNA methylation differences in mu-
cosal biopsies of both paediatric and adult IBD patients, 
including six separate datasets, yet a similar approach in 
peripheral blood was not performed.28 Additionally, four 
studies reviewed the available DNA methylation literature 
in paediatric and adult IBD patients,29–32 but did not perform 
a meta-analysis. Since 2014, the available literature on DNA 
methylation and IBD has further expanded as a result of the 
dropping costs of both microarray- and sequencing-based 
technologies, while the latter have become increasingly cap-
able of covering larger numbers of cytosines. With the ever-
increasing pool of data in peripheral blood, the opportunity 
to combine these data, thereby increasing statistical power, 
provides a potential to guide future methylation studies in 
IBD. We therefore sought to summarize the available per-
ipheral blood DNA methylation data by systematically re-
viewing all currently available literature on peripheral blood 
leukocyte [PBL] DNA methylation in IBD and performing a 
meta-analysis on the available Illumina HumanMethylation 
BeadChip 450k data.

2.   Methods
The methodological protocol implemented in this study was 
registered on PROSPERO [ID: CRD42020176655].

2.1.   Systematic review
A literature search was performed on February 1, 2022 using 
the PubMed/MEDLINE, EMBASE [OVID], Cochrane library 
and CINAHL [ebsco] databases with the help of a scientific 
librarian at the Amsterdam University Medical Center. Main 
search criteria were ‘Crohn’s disease’, ‘Inflammatory Bowel 
Diseases’, ‘colitis’ and ‘DNA methylation’. In vitro and animal 
studies were excluded from this search. A detailed descrip-
tion of our search strategy can be found in the Supplementary 
information file. Screening and eligibility-based assessment 
was conducted separately by V.J. and I.L.H. adhering to 
pre-defined inclusion and exclusion criteria [Table 1] using 
the web application RAYYAN.33 Conflicts were resolved by 
A.Y.F.L.Y., whereupon eligible studies were read in full. A 
pre-specified data extraction form was then used to extract 
data from the included studies for assessment of study quality 
and a synthesis of evidence. Extracted information included 
author, year of publication, study population, sample size, 
patient demographics, type of assay, study design [targeted 
or whole-genome] and, if applicable, which CpGs of interest 
were analysed.

To assess the quality of the selected articles, we used a re-
cently developed quality assessment tool specifically designed 
for biomarker-based cross-sectional studies [BIOCROSS].34 
The BIOCROSS tool originally included ten items covering 
five domains: ‘Study rational’, ‘Design/Methods’, ‘Data ana-
lysis’, ‘Data interpretation’ and ‘Biomarker measurement’, 
aiming to assess different features of biomarker cross-sectional 
studies. For the purpose of this systematic review, we adapted 
the BIOCROSS tool for use in studies aimed at assessing 
DNA methylation [Supplementart information]. An overview 
of the entire process is presented in Figure 1.

2.2.   Meta-analysis
For the meta-analysis, we acquired published data from studies 
that had been conducted in a genome-wide fashion using 
the Illumina HumanMethylation 450k or EPIC BeadChip 
array. As the analytical design could only utilize overlapping 
CpGs, including the Illumina HumanMethylation 27k 
BeadChip array would discard ~94% of the 450k probes, 
which we deemed excessive. Accordingly, we decided against 

Table 1. Inclusion and exclusion criteria

Inclusion criteria 

1.Any prospective or retrospective study measuring peripheral blood leukocyte DNA methylation in both paediatric or adult IBD patients [cohort, 
case-control, RCT]

2.Epigenome-wide association studies [EWAS] and targeted DNA methylation study designs

3.DNA methylation analysis performed on peripheral whole blood or specific peripheral blood cell types

4.Studies comparing DNA methylation between Crohn’s disease and ulcerative colitis or comparing either disease with healthy controls

Exclusion criteria

1.Studies using intestinal tissue samples

2.Studies investigating DNA methylation markers primarily in patients with cancer or pre-stages of cancer

3.Studies with fewer than five included patients per phenotype

4.Case reports, narrative reviews, in vitro studies [e.g. using cell lines], studies of genetic [rather than epigenetic] mutations or animal studies

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac119#supplementary-data
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including studies that had performed analyses using the 
Illumina HumanMethylation 27k BeadChip array. We spe-
cifically sought to acquire summary statistics to stay as 
close as possible to the interpretation of the original au-
thors, where we sought to mitigate publication bias by ac-
quiring the full summary statistics from both significant and 
non-significant CpGs. If the full summary statistics were 
unavailable, even after request, processed data was down-
loaded from the Gene Expression Omnibus [GEO], imported 
into the R statistical environment [v4.1] and processed per 

the methods outlined in the original publication. However, 
if the self-generated results were inconsistent with the re-
sults outlined in the original publication, the data were dis-
carded. This restriction confined the analyses only to data 
obtained from the HumanMethylation 450k BeadChip array  
[Table 2]. Annotation of the CpGs to their location and genes 
was performed using the annotation file provided by Illumina 
[HumanMethylation450 v1.2 Manifest] as imported using 
minfi.35 If no annotated gene was found among the top 20 
DMPs per comparison, a manual search was conducted using 
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Figure 1. Study selection. Studies obtained through database searches were initially screened based on abstract exclusion criteria, followed by full-text 
exclusion criteria and final meta-analysis exclusion criteria.

Table 2. Overview of the datasets included in the meta-analysis

 Samples Array Accession ID 

Harris et al. 201236 17 CD—PBL
11 UC—PBL
14 HC—PBL

450k GSE32148

Adams et al. 201418 35 CD—PBL
36 HC—PBL

450k NA*

Li Yim et al. 201637 15 CD—PBL
25 HC—PBL

450k GSE81961

Ventham et al. 201620 121 CD—PBL
119 UC—PBL
191 HC—PBL

450k GSE87650

CD, Crohn’s disease; UC, ulcerative colitis; HC, healthy controls; PBL, peripheral blood leukocytes.
*Data acquired following request.
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the UCSC genome browser [hg19] to identify the nearest 
gene. No specific selection for promoter-bound CpGs was 
applied. All genes have been annotated using the HUGO 
nomenclature.

The meta-analysis was subsequently performed by utilizing 
the framework outlined by Choi et al.38 and the GeneMeta 
package.39 In short, we calculated the standardized effect size 
[SES], as represented by Cohen’s d and Hedges’ g, and vari-
ance from the t-statistic per probe per study. Heterogeneity 
between the studies in effect size was quantified using the 
Cochran Q-test and corrected for by including the Cochran 
Q-derived moments estimator τ2 as a random effects in the 
subsequent random-effects model to combine the standard-
ized effect into the unbiased estimator of effect size. Two-sided 
Z-tests were then performed to calculate the p-value per CpG, 
after which the resultant p-values were corrected using the 
Bonferroni correction where CpGs presenting a Bonferroni-
adjusted p-value <0.05 were considered to be statistically sig-
nificantly differentially methylated positions [DMPs].

For the differential methylated gene [DMG] analysis, we 
sought to investigate whether particular genes were enriched 
for low p-values. To this end, the meta-analysis p-values for 
CpGs annotated to a particular gene per the provided annota-
tion obtained from Illumina’s annotation file were combined 
using Fisher’s method for combining p-values as imple-
mented in the aggregation package.40 The resulting combined 
p-values were then corrected using the false discovery rate 
[FDR] where we defined FDR-adjusted p-values <0.05 as stat-
istically significant. The resultant DMGs were then subjected 
to gene ontology [GO]41,42 overrepresentation analysis using 
the clusterProfiler package,43 where we considered an FDR-
adjusted p-value <0.05 as a statistically significant difference.

3.   Results
3.1.   Study selection and quality appraisal
A total of 741 records were screened for eligibility according 
to our pre-defined inclusion criteria [Table 1], after which 15 
studies were included for full text systematic review [Figure 1 
and Supplementary Table 1] and qualitative assessment using 
our modified BIOCROSS tool for critical appraisal [Table 3].

Systematically reviewing all 15 studies indicated that 14 
studies provided a clear rationale for studying DNA methy-
lation in relation to IBD pathogenesis [domain 1]. Twelve 
studies presented a comparable case and control group 
[domain 2] and 13 provided a concise summary of the 
clinical characteristics [domain 4]. In addition, 11 studies 
described the laboratory procedures used in their study in 
detail [domain 8]. Finally, 12 contextualized the observed 
differences in DNA methylation with respect to existing lit-
erature, thereby providing insight into the functional im-
plications [domain 6]. By contrast, we noted that many 
studies lacked important methodological aspects of a DNA 
methylation study design. First, key confounding factors 
[domain 5] were not reported on in five studies, with the 
most frequently missing factors being smoking behaviour 
[four studies] and whether or not the data were corrected 
for the cellular distribution [five studies]. Similarly, sample 
preservation, quality control and any potential batch effects 
were not reported on [domain 9]. Second, only five studies 
justified their sample size [domain 3]. Third, in six studies 
neither technical nor independent validation had been per-
formed [domain 5]. Lastly, the associative nature of DNA 

methylation studies limits causal inference, which is only 
addressed in two studies [domain 7]. A summary of the 
quality appraisal for each of the nine domains per study is 
provided in Table 3.

3.2.   Comparing Crohn’s disease with healthy 
controls
The CD with HC comparison represents the most investi-
gated comparison in PBL [Nstudies = 10]18,20,22,26,36,37,46–49 and 
its constituents, such as peripheral blood mononuclear cells 
[PBMCs] [Nstudies = 3],23,44,45 CD14+ monocytes [Nstudies = 2],17,20 
CD4+ T-cells [Nstudies = 1]20 and CD8+ T-cells [Nstudies = 2].20,50 
Most studies sampled from an adult population,20,22,23,37,44,46–48 
whereas a minority of studies sampled from a paediatric co-
hort.18,26,36,49,50 Overall, the studies can be categorized as either 
epigenome-wide [Nstudies = 11] or targeted [Nstudies = 4].

From four epigenome-wide association studies [EWAS] 
we were able to acquire full summary statistics, which was 
based on a combined 177 CD patients and 243 HC individ-
uals.18,20,36,37 Meta-analysis thereon identified 256 consistently 
differentially methylated positions [DMPs] with a Bonferroni-
adjusted p-value <0.05 that displayed a difference between 
CD and HC consistent across all studies [Figure 2a and 
Supplementary File a]. Among the top ten consistent DMPs, 
nine were annotated to known genes of which three [FKBP5, 
BCL3 and NLCR5] were hypomethylated, while the re-
maining six [TRAF1, CDC42BPB, BAHCC1, LYN, TOLLIP 
and KCNAB2] were hypermethylated among CD patients 
compared to healthy controls [Figure 2b and Supplementary 
Table 2]. Expectedly, two of the nine genes [CDC42BPB20 and 
TOLLIP18] were discussed in the included studies. While the 
genes FKBP5,51,52 BCL3,53,54 TRAF1,55 BAHCC1,26 NLRC556 
and KCNAB220 were not specifically highlighted in the in-
cluded studies, their association with inflammation or IBD 
has been described before. For example, DMPs cg25114611, 
cg26470501, cg15551881 and cg26599989 associate with 
FKBP5, BCL3, TRAF1 and TOLLIP, respectively, all of 
which are involved in NF-κB-signalling, underlining its im-
portance in IBD pathogenesis.57–63 Furthermore, increased 
FKBP5 expression levels correlated with CD disease dur-
ation and endoscopic scoring [CDEIS] as well as were able 
to classify endoscopically active from non-active CD.51,52 
Decreased expression of the transcriptional coactivator BCL3 
has been identified as a novel risk factor for CD.53 In addition, 
Bcl3−/− deficient mice were found to be less sensitive to DSS-
induced colitis,64 and mucosal tissue expression of BCL3 was 
strongly elevated in active UC as well as active/inactive CD.54 
Significantly increased TRAF1 expression has been demon-
strated in IBD tissue vs controls, as well as inflamed com-
pared with non-inflamed tissue,55 while decreased levels of 
the TOLLIP protein have been found in mucosal tissue when 
comparing active UC and CD with HC,54 potentially resulting 
in a decreased inhibition of the NF-κB/JNK/MAPK signalling 
pathways. By contrast, LYN [cg02508743] has thus far not 
been associated with IBD. The encoded protein belongs to the 
family of tyrosine kinases known to function in cell-surface 
receptor signalling with particular importance in innate/
adaptive immune responses, haematopoiesis, response to 
growth factors and cytokines, and integrin signalling.65 Lyn−/− 
mice have been shown to be highly susceptible to T-cell (in-
creased interferon-γ [IFNγ] production in CD4+ and CD8+ 
T-cells) dependent DSS-induced colitis which correlated with 
dysbiosis.66 Moreover, the reverse has been observed in Lynup 

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac119#supplementary-data
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mice, which presented a protective response during inflamma-
tion.67 Additional functional information for genes annotated 
to the top 20 DMPs can be found in Supplementary Table 2.

Turning our attention to genes that were enriched for sig-
nificant DMPs yielded 326 statistically significant DMGs. 
From the top 20, ten were previously identified within 
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Figure 2. Meta-analysis of the comparison Crohn’s disease [CD] with healthy controls [HC] using data from Harris et al. 2012, Adams et al. 2014, 
Li Yim et al. 2016 and Ventham et al. 2016. [A] A Manhattan plot representing the statistical significance depicted as −log10[p-value] on the y-axis 
relative to the location across the genome [hg19] on the x-axis. Red and green dots represent the five most significantly hyper- and hypomethylated 
differentially methylated probes [DMPs], respectively. [B] Forest plots representing the standardized effect size [SES] of interest per study of the five 
most significantly hyper- and hypomethylated DMPs annotated with the associated gene and p-value from the meta-analysis. [C] Barchart representing 
the top 25 most significant differentially methylated genes [DMGs]. The length of the bar is proportional to the −log10[p-value] obtained from the DMG 
analysis. [D] Genomic visualization and forest plots of the estimated difference in methylation for the DMPs cg16936953, cg12054453 and cg18942579, 
all of which have been associated with VMP1/TMEM49/MIR21. [E] Forest plots of DMPs cg17501210 and cg18608055, associated with RPS6KA2 and 
SBNO2, respectively, which had been reported on in multiple earlier studies.
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the context of CD [MGRN1,36 ITGB2,20,23,68 PRAM1,26,69 
IL23A,70 CBFA2T3,71 ZBTB16,72,73 DNMT3A,15 HLA-
DPA1,18 MAD1L1,74 SOCS373,75] [Figure 2c, Supplementary 
Table 3 and File b]. Of particular interest is RASA3, a gene 
that to our knowledge has previously not been associated with 
IBD. RASA3 encodes RAS P21 Protein Activator 3, which is 
a negative regulator of the Ras signalling pathway through 

stimulation of GTPase.76 In vitro RASA3 depletion of cul-
tured endothelial cells was found to increase β1 integrin acti-
vation and cell adhesion to extracellular matrix components, 
decrease cell migration and block tubulogenesis.77 In add-
ition, RASA-depleted cells showed reduced turnover of vas-
cular endothelial cadherin-based adhesions, resulting in more 
stable endothelial cell–cell adhesion and decreased endothelial 
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Figure 3. Meta-analysis of the comparison ulcerative colitis [UC] with healthy controls [HC] using data from Harris et al. 2012 and Ventham et al. 2016. 
[A] A Manhattan plot representing the statistical significance depicted as −log10[p-value] on the y-axis relative to the location across the genome [hg19] 
on the x-axis. Red and green dots represent the five most significantly hyper- and hypomethylated differentially methylated probes [DMPs], respectively. 
[B] Forest plots representing the standardized effect size [SES] of interest per study of the five most hyper- and hypomethylated DMPs annotated with 
the associated gene and p-value from the meta-analysis. [C] Barchart representing the top 25 most significant differentially methylated genes [DMGs]. 
The length of the bar is proportional to the −log10[p-value] obtained from the DMG analysis.
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permeability.77 Differential methylation of RASA3 could thus 
potentially alter endothelial–leukocyte adhesions, known to be 
of major importance for gut homing of inflammatory cells in 
IBD, targeted by drugs such as vedolizumab.78 By performing 
overrepresentation analyses of the identified DMGs against 
the GO resource, we identified significant overrepresentation 
for 36 GO terms. Specifically, overrepresentation was ob-
served for immune response [GO:0002683, GO:2000181, 
GO:0002683, GO:2000181, GO:0002366, GO:0050727, 
GO:0002861, GO:0006909, GO:0045638, GO:0002862, 
GO:0002263], cytokine production [GO:0001818, 
GO:0034341, GO:0032609, GO:0032649, GO:0001819] and 
cell–cell adhesion [GO:0045785, GO:1903037, GO:1903039, 
GO:0022409, GO:0022407, GO:0007156, GO:0007159] 
[Supplementary File h].

We next turned to DMPs that were reported as significant 
in multiple studies focusing on cg12054453, cg16936953 
and cg18942579 [VMP1/TMEM49], cg17501210 
[RPS6KA2] and cg18608055 [SBNO2].18,20,26 Meta-analysis 
statistics of these loci, expectedly, confirmed the direction 
of effect across all the individual studies included [Figure 
2d and e].

3.3.   Comparing ulcerative colitis with healthy 
controls
The comparison of UC with HC was performed in fewer 
studies, with studies interrogating the DNA methylome in PBL 
[Nstudies = 4]20,36,46,49 or its derivatives PBMCs [Nstudies = 2],23,44 
CD4+ T-cells [Nstudies = 1]20 and CD8+ T-cells [Nstudies = 2].20,50 
Notably, a more balanced distribution of paediatric 
[Nstudies = 3] and adult cohorts [Nstudies = 4] was observed. 
The majority of these studies adopted an EWAS approach 
[Nstudies = 5] using mostly the Illumina HumanMethylation 
BeadChip 450k array [Nstudies = 3]. Altogether, we obtained 
summary statistics from two studies totalling 132 UC patients 
and 217 HCs.20,36 We identified 104 DMPs with a Bonferroni-
adjusted p-value <0.05 [Figure 3a and Supplementary File c]. 
All top ten DMPs annotated to known genes, of which seven 
showed consistent hypomethylation [FKBP5, TNFSF10, 
SBNO2, TMEM49/VMP1, RPS6KA2, ZEB2 and SBNO2] 
with the remaining three [ICA1, FRMD4A and BBS9] pre-
senting consistent hypermethylation when comparing UC 
with HC [Figure 3b and Supplementary Table 4]. Expectedly, 
several DMPs among the top 20, namely cg01059398 
[TNFSF10], cg18608055 [SBNO2], cg16936953 [TMEM49/
VMP1/MIR21], cg17501210 [RPS6KA2], cg26804423 
[ICA1], cg22959742 [FRMD4A] and cg20995564 [ZEB2], 
were reported as significant by Ventham et al.20 However, 
for six DMPs, namely cg02734358 [GPRIN3], cg20228731 
[FLJ43663/LINC-PINT], cg23729283 [CPVL], cg16755922 
[FOXK2], cg23761815 [SLC29A3] and cg27243685 
[ABCG1], neither site nor gene has been associated with 
UC or IBD previously. For FLJ43663/LINC-PINT [Long 
Intergenic Non Coding RNA, P53 Induced Transcript] recent 
data in rheumatoid arthritis patients indicate that LINC-
PINT affects the production of tumour necrosis factor α 
[TNFα].79 Moreover, the exact CpG [cg20228731] was found 
to be significantly hypomethylated in patients with Behçet’s 
disease compared to healthy controls,80 which was associ-
ated with an increased expression of the gene. Other DMP-
associated genes, CPVL81 and ABCG1,82 have been associated 
with myeloid or macrophage function, with CPVL encoding 
a serine carboxypeptidase that is specifically expressed in 

macrophages and is proposed to function in proteolytic diges-
tion of lysosomal components after phagocytosis.81 ABCG1 
encodes an ATP-binding cassette sub-family G member, which 
mediates cholesterol accumulation and efflux in macrophage 
foam cells and has therefore been associated with atherogen-
esis.82,83 Moreover, Abca1−/− mice demonstrated increased se-
cretion of pro-inflammatory cytokines such as TNFα, IL-6, 
IL-1β and IL-12p7084 and increased neutrophil and monocyte 
populations in peripheral blood.85

Aggregating the DMPs at the gene level yielded 45 statis-
tically significant DMGs [Figure 3c and Supplementary File 
d]. Despite the considerable overlap with Ventham et al.,20 
we observed novel DMGs of potential interest in UC patho-
genesis, namely LOC285847, MZB1 and FOXK2. The long 
non-coding RNA gene LOC285847 was found to be differ-
entially methylated in women with systemic lupus erythema-
tosus.86 MZB1 [Marginal Zone B And B1 Cell Specific Protein] 
is highly expressed in B-cell lineages and plasmacytoid den-
dritic cells [pDCs],87 where a knockout of Mzb1 in mice was 
associated with a reduction in immunoglobulin M [IgM]-
88 and IFNα secretion.87 FOXK2 is mostly described in 
cancer pathogenesis,89 where it is thought to be involved in 
autophagy,90 a process that has been associated extensively 
with IBD.91 Notably, functional overrepresentation analyses 
against the GO resource did not identify any significant GO 
terms that passed the multiple test correction.

3.4.   Comparing Crohn’s disease with ulcerative 
colitis
In ~5–15% of all IBD patients, a definitive diagnosis of CD or 
UC is not always possible, leading to patients being diagnosed 
as either IBD-unclassified or indeterminate colitis.92 While the 
majority of these patients are re-diagnosed as either UC or 
CD at a later point in time, earlier classification might prevent 
the delay of an optimal treatment.93 Therefore, to explore the 
difference in DNA methylation between CD and UC we re-
viewed the available literature.

We included three studies for the systematic review that 
compared CD with UC in PBL20,46,49 and two studies in 
PBMCs.23,36 Three20,23,36 of these studies adopted an EWAS 
approach using the Illumina HumanMethylation BeadChip 
450k array in an adult population, of which two pro-
vided summary statistics that enabled a meta-analysis. Both 
studies reported a considerable overlap between UC- and 
CD-associated DMPs with over 66–97% of the UC-associated 
DMPs overlapping with CD-associated DMPs, while 45% of 
the CD-associated DMPs overlapped with the UC-associated 
DMPs.20,23 Indeed, comparing the separate meta-analyses re-
vealed a strong positive correlation [Figure 4a]. By combining 
both CD and UC and comparing that with HC, we identified 
DMPs annotated to FKBP5, TMFSF10, SBNO2, TMEM29/
VMP1, RPS6KA2, ICA1, FRMD4A, BBS9, KIAA0090, 
CPVL, BCL3, BAHCC1 and CALHM1 and DMGs found 
in RPS6KA2, TMEM49/VMP1, TNFSF10/TRAIL, FKBP5, 
BAHCC1 and SOCS3 being identified as significantly dif-
ferent [Figure 4b, Supplementary Tables 7 and 8 and Files f 
and g]. GO term overrepresentation analysis between IBD pa-
tients and HC identified 224 significantly enriched GO terms. 
Among the top ten most enriched terms we observed signifi-
cant overrepresentation for cell–cell adhesion [GO:0098742]. 
Notably, the majority of the remaining significantly associ-
ated GO terms were associated with developmental biology 
focusing on organogenesis [Supplementary File i].
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Comparing CD [N = 139] with UC [N = 133]20,36 did 
not yield any significant DMPs following Bonferroni cor-
rection, underlining the previously reported similarities in 
global DNA methylation between both diseases [Figure 
4a]. Notably, a DMG analysis identified two genes enriched 
for low p-values, namely IFITM1 and ZNF875 [Figure 4c 
and d, Supplementary Table 6 and File e]. IFITM1 encodes 
Interferon Induced Transmembrane Protein 1, which is part of 

the interferon-stimulated gene families and is expressed in a 
variety of cells in response to interferon and viral immunity.94 
IFITM1 has shown to interact with IFNγ, a key interferon with 
anti-proliferative function.95 In IBD, IFNγ is known as a major 
cytokine involved in the pathogenesis and is found to be highly 
upregulated in both CD and UC patients.96 In addition, gen-
etic polymorphisms of IFITM1 have been associated with UC 
patients, implicating IFITM1 as potential risk locus for UC.97

A B

C

Unbiased estimator of effect size

2

cg26804423
cg13619623

cg17781958
cg16724148

cg26955383

cg12054453

cg17501210

cg16936953 cg18608055

cg18942579

1

U
C

 v
 H

C

0

–1

–2

IFITM1

E
ff

ec
t 

si
ze

0.50

0.25

0.00

–0.25

–0.50

312 500 313 000 313 500 314 000 314 500 315 000

–2 –1 0 1 2
CD v HC

IFITM1 (chr11:312518–315262)

Euclidian distance
0.5 1.0 1.5

–log10 (p-value)
1 2 3

37 825 000 37 830 000 37 835 000 37 840 000

–log10 (p-value)
0.5 1.0 1.5 2.0

Harris et al. 2012

Ventham et al. 2016

Meta-analysis

cg23570810
p-value = 1.01e-03

cg03038262
p-value = 8.71e-04

cg11694510
p-value = 5.69e-03

–0.4 –0.3 –0.2 –0.1 0.0 –0.4 –0.3 –0.2 –0.1 0.0 –0.4 –0.3 –0.2 –0.1 0.0

Standardized effect size ��variance

Samples 100 200 300

Harris et al. 2012

Ventham et al. 2016

Meta-analysis

cg14166009
p-value = 9.56e-03

cg13687570
p-value = 1.20e-02

cg24834889
p-value = 1.42e-02

0.0 0.1 0.2 0.3 0.50.4 0.0 0.1 0.2 0.3 0.50.4 0.0 0.1 0.2 0.3 0.50.4

Standardized effect size ��variance

Samples 100 200 300

G
ene

Sum
m

arized

G
ene

Sum
m

arized

0.2

0.4

ZNF875

ZNF875 (chr19:37825009–37840935)D

0.0

E
ff

ec
t 

si
ze

Standardized effect size ��variance
Samples 100 200 300 400

–2 –1 0 1 2 –2 –1 0 1 2 –2 –1 0 1 2 –2 –1 0 1 2 –2 –1 0 1 2

Harris et al. 2012

cg26804423
ICA1

p-value = 4.85e-13

cg13619623
BBS9

p-value = 8.34e-13

cg16724148
AGL

p-value = 2.87e-12

cg17781958
BAHCC1

p-value = 3.16e-12

cg26955383
CALHM1

p-value = 3.60e-12

Ventham et al. 2016

Meta-analysis

Standardized effect size ��variance
–2 –1 0 1 2 –2 –1 0 1 2 –2 –1 0 1 2 –2 –1 0 1 2 –2 –1 0 1 2

Harris et al. 2012

cg17501210
RPS6KA2

p-value = 1.44e-16

cg16936953
TMEM49

p-value = 1.83e-15

cg18608055
SBNO2

p-value = 2.71e-15

cg12170787
SBNO2

p-value = 2.67e-14

cg12054453
TMEM49

p-value = 1.39e-13

Ventham et al. 2016

Meta-analysis

Figure 4. Meta-analysis of the comparisons Crohn’s disease [CD] with ulcerative colitis [UC] and inflammatory bowel disease [IBD] with healthy controls 
[HC] using data from Harris et al. 2012 and Ventham et al. 2016. [A] A scatter plot of the included CpGs representing aggregated effect size of CD with 
HC and UC with HC on the x- and y-axis, respectively. Colour intensity is proportional to the distance of each CpG to the origin [0,0]. Annotated are the 
CpGs that are concordantly hyper- and hypomethylated in both CD and UC, and hence IBD, relative to HC. [B] Forest plots representing the standardized 
effect size [SES] of interest per study of the five most hyper- and hypomethylated IBD-associated DMPs annotated with the associated gene and 
p-value from the meta-analysis. Genomic visualization and forest plots of the estimated difference in methylation for the CD/UC discordant genes [C] 
IFITM1 and [D] ZNF875, alongside for the most significant differentially methylated probes.
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ZNF875 [Zinc Finger Protein 875] is part of the Krüppel-
associated box zinc finger proteins [KRAB-ZFPs] which act 
as transcription factors thought to be involved in carcinogen-
esis98 and resistance to therapy in lung cancer.99 However, its 
relationship with IBD as yet remains unknown.

3.5.   Classification of IBD using DNA methylation
While previous analyses were mostly geared at identifying and 
quantifying differences in methylation, an increasing number 
of studies have adopted a classification approach to distin-
guish CD, UC and HC focusing on the diagnostic potential of 
DNA methylation. Most of the studies that performed classi-
fication analyses were done so in PBL18,20,22,26,49 with a single 
study in mucosal tissue.21 Performance-wise, the resulting 
classification models indicated good distinctive capabilities 
in discriminating IBD from HC, reporting area under the 
curve (AUC) scores as high as 0.94 for CD and 0.91 for UC.49 
Distinguishing CD from UC was notably less prominent, with 
an AUC score ranging between 0.71 and 0.81,18,20,49 corrobor-
ating the findings that both IBDs are similar.20,23,68 Most classi-
fication studies lacked details on the exact implementation of 
the model as well as the positions used as features for classifi-
cation,19,20,26 thereby preventing independent validation. Only 
two previously reported paired-probe classification models, 
RPS6KA2/VMP1 [cg17501210/cg12054453] and RPS6KA2/
TNFSF10 [cg17501210/cg01059398],18 were validated in a 
separate study.20 Besides the diagnostic capabilities of DNA 
methylation, several classification studies also investigated the 
use of DNA methylation in predicting disease progression, 
thereby distinguishing a different risk of treatment escalation 
over time100 or time to use of biologics.21

4.   Discussion
Our study provides the most comprehensive summary of 
IBD-related DNA methylation studies in PBL to date. We ini-
tially performed a systematic review of all available litera-
ture using a pre-specified protocol according to the PRISMA 
guideline,101 whereupon we critically appraised both 

strengths and weaknesses using a modified version of the 
BIOCROSS tool.34 Despite finding multiple relevant studies, 
we noted substantial discrepancies in the way sample sizes 
were selected, clinical characteristics were documented and 
the level of data availability. Accordingly, we provide a meth-
odological checklist that could aid future researchers with an 
interest in IBD epigenetics to increase the reproducibility of 
their work [Table 4].

Through a meta-analysis, we identified consistent IBD-
associated differences in DNA methylation between CD, 
UC and HC in PBL. The different comparisons in our 
meta-analyses show that there are certainly several not-
able markers that are indeed consistently differentially 
methylated across all studies. In addition, we corroborate 
the reported consistent differential methylation for previ-
ously identified probes: cg16936953, cg12054453, and 
cg18942579 [VMP1/TMEM49/MIR21] and cg17501210 
[RPS6KA2], which demonstrated homogeneity across all 
studies despite the heterogeneity in clinical characteristics, 
such as age group, sex, smoking behaviour and inflam-
matory status. However, to understand the pathogenesis 
and aetiology of IBD, the results presented in this meta-
analysis remain observational at best as we cannot as-
certain the source of the signal, nor can we ascertain the 
causal relationship of the newly identified DMPs with the 
outcome of interest [IBD, CD or UC] due to reverse caus-
ation.103 That being said, the GO analyses of DMGs iden-
tified when comparing CD with HC returned multiple GO 
terms associated with inflammation, immune response and 
cell–cell adhesion, largely corroborating the GO analyses 
performed by the individual studies.18,20,37 By contrast, GO 
analyses of the DMGs obtained when comparing UC with 
HC yielded no significant GO terms. We are unsure why 
the UC vs HC DMGs present no statistically significant 
overrepresentations. We hypothesize that a possible cause 
may be the lack of included studies, with only two studies 
being eligible. Similarly, it is unclear why the DMGs obtained 
when comparing IBD with HC are overrepresented for GO 
terms associated with pathways related to developmental 

Table 4. Checklist of key components that should be described in DNA methylation studies

Justify sample size: •  If previous literature has been published: estimate sample size102

• � If no previous literature has been published: perform a pilot study in a small number of 
patients as an exploration. Report as explorative study design, a stepping-stone for future 
research 

Limit confounding: •  Include detailed cohort description:
◦  Age, sex, smoking behaviour
◦  Disease duration, Montreal classification, surgical history
◦ � Inflammatory status at time of sampling [CRP, faecal calprotectin, clinical and or endos-

copy scores]
◦  Current and previous IBD-related medication, concomitant medication

•  If mixed tissue [whole blood, mucosal biopsy]: explore cellular heterogeneity
•  Describe sample quality control and describe actions taken to limit batch effects

Increase reproducibility: •Report sample type [tube], sampling protocol, storage and isolation of DNA [kits]
• � When reporting differences in methylation, specify where the differences are found using 

genomic coordinates
• � Publish raw data in .idat or .fastq format in publicly available databases [Gene Expression 

Omnibus, ArrayExpress, European Genome-phenome Archive]

Increase interpretability: •  Include technical and/or independent validation in your design
•  Perform functional analysis of observed markers

CRP, C-reactive protein; IBD, inflammatory bowel disease.
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biology. Nonetheless, our observations open up novel 
routes for targeted functional studies to address the poten-
tial downstream role of the observed differences in methy-
lation and its relationship to IBD pathogenesis.

Despite our best efforts at providing an overview of the ex-
isting literature on PBL-associated DNA methylation in IBD, 
we are aware that limitations exist due to the differences in 
sample sizes and clinical phenotypes between the included 
studies, and advances in analytical methods. We note that 
the majority of the reported DMPs are in line with the ob-
servations by Ventham et al.,20 which is the study with the 
largest sample size included in our meta-analysis, hence pro-
viding the largest weight. Nonetheless, the other studies pro-
vided similar direction of effect for the top DMPs, indicating 
that the observations were not solely restricted to Ventham 
et al.20 We utilized summary statistics from all the studies to 
remain as close as possible to the authors’ interpretations. 
This approach unfortunately excluded Somineni et al.,26 as 
their summary statistics were incomplete, nor were we able 
to reproduce their summary statistics due to the lack of pa-
tient metadata [GWAS-derived principal components and 
Houseman-estimated cell distribution]. That being said, the 
analytical approach of the included studies for calculating the 
summary statistics was not identical. In particular, correcting 
for the cellular composition was often inconsistent, with 
some not performing any,36 whereas others corrected for the 
measured leukocyte counts,18 remove unwanted variation-
estimated surrogate variables,37 or used the Houseman al-
gorithm to estimate the proportions.20 While an alternative 
would have been to redo the analyses per study using the 
raw data and a single analytical pipeline, the raw methyla-
tion data in .idat format were not provided by every study 
[Supplementary Table 9].

The studies included in our systematic review and meta-
analysis have mostly been used for understanding the mani-
festations of IBD at the DNA methylation level. However, it 
remains to be seen whether such differences can be utilized 
for biomarker purposes. Indeed, the use of machine learning 
and high-dimensional statistics for classification analyses are 
becoming more prevalent,18,20,22,26,49 yet these models have to 
be translated to clinical practice before they can complement 
or even replace current diagnostic endoscopies. To this end, 
such models would need to be extensively validated, both in 
similar population cohorts as well as in randomized controlled 
trials. Unfortunately, many of the reported models lack imple-
mentation details, such as the weights or the actual predictive 
loci, complicating reproducibility. Moreover, the majority 
of the methylation data in IBD have been generated using a 
cross-sectional design. As such, no assurance on temporal sta-
bility of the identified biomarkers can be attributed. While 
independent validation is a key step towards clinical transla-
tion, focusing on markers that show limited intra-individual 
variability might increase the probability of replicating find-
ings.104 Although studies in adult healthy individuals105,106 or 
patients with systemic lupus erythematosus107 have demon-
strated time-stable methylation markers, no such studies in 
IBD have been performed. It is therefore questionable if the 
reported biomarkers in current IBD DNA methylation studies 
show similar patterns within the same individual across mul-
tiple time points, irrespective of inflammatory status. We ex-
pect future studies to further address this question.

Besides the diagnostic potential of DNA methylation, add-
itional avenues are currently being investigated, such as risk 

of disease progression. Therapy response prediction remains 
an open target as well, as the use of DNA methylation has 
shown potential in cancer108,109 and rheumatology.110,111 To 
date, no such response-associated DNA methylation studies 
in IBD have been published. Taken together, we expect future 
DNA methylation studies in IBD to be more clinically rele-
vant, where the focus will lie on the classification of specific 
IBD phenotypes, such as early disease progression, therapy 
response or post-operative recurrence.

5.   Conclusion
Our findings demonstrate consistent differential methylation 
patterns discerning CD, UC and IBD from healthy controls 
across multiple studies, which provide a basis for future epi-
genetic biomarker research in IBD. While the utility of DNA 
methylation in prediction and classification is becoming 
more apparent, methodological homogenization is needed, 
allowing easier aggregation and validation of data, greatly 
enhancing the field.
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