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Abstract

As data-driven systems are increasingly deployed at scale, ethical concerns have arisen around 

unfair and discriminatory outcomes for historically marginalized groups that are underrepresented 

in training data. In response, work around AI fairness and inclusion has called for datasets 

that are representative of various demographic groups. In this paper, we contribute an analysis 

of the representativeness of age, gender, and race & ethnicity in accessibility datasets–datasets 

sourced from people with disabilities and older adults—that can potentially play an important 

role in mitigating bias for inclusive AI-infused applications. We examine the current state of 

representation within datasets sourced by people with disabilities by reviewing publicly-available 

information of 190 datasets, we call these accessibility datasets. We find that accessibility 

datasets represent diverse ages, but have gender and race representation gaps. Additionally, we 

investigate how the sensitive and complex nature of demographic variables makes classification 

difficult and inconsistent (e.g., gender, race & ethnicity), with the source of labeling often 

unknown. By reflecting on the current challenges and opportunities for representation of disabled 

data contributors, we hope our effort expands the space of possibility for greater inclusion of 

marginalized communities in AI-infused systems.
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1 INTRODUCTION

As AI-infused systems1 become ubiquitous, ensuring that they work for a diversity of 

groups is vital [29, 56, 108]. Performance disparities in these systems could lead to unfair or 

discriminatory outcomes for historically and culturally marginalized groups, such as on the 

basis of gender, race, or disability [12, 18, 44, 149, 162, 172]. One fundamental source of 

disparities is the lack of representation in datasets used to train machine learning models and 

benchmark their performance [108, 162, 179]. A notable example comes from Treviranus 

[166], where during a simulation, she found that machine learning models for autonomous 

vehicles would run over someone who propels themselves backward in a wheelchair. Merely 

adding training examples of people using wheelchairs did not have the intended effect in this 

case; the algorithm failed with a higher confidence [166]. Treviranus suspected ‘backward 

propelling’ was still an outlier.

In this important discussion on AI fairness and inclusion, tensions around data 

representativeness involving disability [60, 79, 118] have also arisen. Data sourced from 

accessibility datasets can help AI-infused systems work better when deployed in real-world 

scenarios, both for assistive and general-purpose contexts [29, 75, 169]. However, privacy 

and ethical concerns are especially pronounced in this community, as disclosure of disability 

can pose risks associated with re-identification and further discrimination e.g., for one’s 

healthcare and employment [169, 179]. People who have distinct data patterns, like in the 

case of disability, are also more susceptible to data abuse and misuse [1, 60, 167]. In 

addition, even if AI-infused systems are trained with diverse data, this does not inherently 

challenge the power structures in which these systems are embedded, which may be 

the actual source of harm and marginalization for disabled people [7]. For example, a 

more equitable AI-infused system for diagnosing autism does not necessarily correspond 

to greater well-being of autistic people, because it may cement the power that medical 

institutions have to diagnose and gatekeep [7].

We contribute to these discussions via our exploration of representation in accessibility 

datasets, which reveal nuanced patterns of representation and marginalization along 

intersectional lines. In this work, we conducted a metadata analysis of existing accessibility 

datasets (1984–2021, N=190) spanning multiple communities of focus and data types to 

understand the representation and reporting of demographic attributes including age, gender, 

and race & ethnicity of data contributors. We used the publicly available documentation 

and resources of these datasets to explore the potential opportunities and limitations for 

increasing data representativeness.

1A term used by Amershi et al., 2019 [4] to indicate “systems that have features harnessing AI capabilities that are directly exposed to 
the end user.”
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Our analysis shows mixed results for diverse representation of age, gender, and race & 

ethnicity. For age, we found that older adults are particularly well-represented, but this 

did not apply across all communities of focus (with Autism, Developmental, and Learning 

communities being notable exceptions). Gender representation skewed towards men/boys 

being more represented overall but varied widely by community of focus. We also found 

that well-documented structural marginalization in certain communities are reflected in 

accessibility datasets. For example, women/girls are underrepresented in Autism datasets, 

corresponding to existing diagnosis gaps [55, 130]. Marginalization is further embedded on 

a meta level, such as the case of binary categories for gender classification in the collection 

and reporting of gender data within datasets. Furthermore, we did not find consistent norms 

for reporting data, with the lack of standardized documentation, evolving practices, and 

variability of categories used across age, gender and race & ethnicity.

The contributions of this work are 1) a systematic examination of whether those sourcing 

data from the disability community are succeeding in representing diverse demographics, 

via an intersectional analysis along the axes of age, gender, and race & ethnicity as well 

as a meta-analysis of reporting methods; 2) codes of 190 existing accessibility datasets 

annotated with demographic metadata2; and 3) connections to larger conversations about 

the implications of representation, data stewardship, and epistemological challenges of data 

collection. We contend that data representativeness must be analyzed contextually using 

a critical lens, to accurately assess the potential and implications of greater inclusion of 

marginalized communities in AI-infused systems.

2 RELATED WORK

Sociocultural diversity has received attention in a wide range of disciplines, such as 

encouraging gender or ethnic diversity in teams or communities [21, 41, 74], with different 

concepts of diversity applied in research and applications [159]. More so, AI research has 

adopted diversity considerations deeply in the ongoing challenge of responsible and ethical 

AI [24, 42, 113]. Much conversation has been associated with the concepts around balanced 
representation of sub-groups (e.g., equal participation of racial sub-groups within a focal 

group) [47]. A growing number of studies have explored bias and performance disparities 

of AI systems concerning representation [38, 108], especially influenced by demographic 

attributes like age [36, 97, 124], gender [18, 83, 142, 162], race [18, 96], socioeconomic 

status [34], and disability status [56, 179]. Often such evaluations found the source of 

concerns as the under-representation of certain demographic groups in the training data 

underlying predictive and inferential algorithm [108, 162, 179], calling for action to create 

more balanced datasets across different demographics. In response, we have seen efforts like 

constructing image datasets balanced in race, gender, and age (FairFace dataset [80]) or text 

corpora with gender-balanced labels (GAP [175]).

In support of the current discourse around diversity in AI data, researchers have argued 

that datasets sourced from people with disabilities and older adults can play an important 

role [75, 79, 118] such as improving speech recognition with stammering data [40] and 

2Data codes available at https://www.openicpsr.org/openicpsr/project/174761/version/V1/view.
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object recognition with photos taken by blind people [75]. Calls for action from this 

community often center around including disability in AI fairness discussions as it pertains 

to model performance, data excellence, and privacy [48, 77, 126, 168]. Increasing disability 

representation, however, is complex; there are myriads of challenges in collecting and 

sharing datasets from this group [1, 143]. Consent and disclosure can be problematic 

regarding sensitive disability status. Ethical concerns also arise given that datasets collected 

to mitigate AI bias for people with disabilities can be used against them by detecting their 

disabilities, leading to further discrimination risks [118]. There are also existing social 

biases and stereotypes reflected in data representing disability (e.g., [63, 70]), which may 

produce AI-infused systems that reinforce greater harms and marginalization of people with 

disabilities [7]. Efforts aiming to increase inclusion thus need to be carefully considered 

[163].

To recognize the opportunities and limitations of accessibility datasets in the conversation 

of diversity in broader AI, we first need to understand the current status of representation 

in accessibility datasets. Prior work investigating issues associated with diversity in AI 

datasets has mostly focused on examining differences in model performance across pre-

defined demographic attributes to draw implications for diversity [18, 34, 162]. This often 

leaves inquiries about the benefits and appropriate implementation of diversity in data 

unanswered [47], except for a few exceptions (as shown in Table 1) that explicitly analyzed 

datasets or issues related to datasets in terms of demographic representation like gender 

and other sociocultural attributes (e.g., language) to explore the root causes of bias and 

misrepresentation. These studies concluded that such AI datasets (often image datasets) are 

skewed towards certain demographics, uncovering under-representation of older adults [109, 

128], darker-skin, and females [109, 185], and lack of geographical diversity [148].

While representation has been discussed broadly across HCI and accessibility [1, 100] 

or within specific communities [114, 138], we have only seen a few studies analyzing 

representation and characteristics pertained to AI training datasets in related work [15, 82]. 

They are yet constrained to very specific tasks and applications. Additionally, discussions 

of biases against people with disabilities are found to be manifested in complex ways 

that require intersectional attention [63, 150]. This research complements prior work, by 

analysing existing accessibility datasets across the communities, to encourage holistic, 

societal implications for data representativeness including people with disabilities and older 

adults.

3 METHOD

Our aim is to conduct a broad investigation of what and how demographic attributes are 

represented in accessibility datasets—not only in terms of disability representation but 

also age, gender, and race. To this end, we leverage a recently compiled collection of 

accessibility datasets, sourced from people with disabilities and older adults. We analyze 

any available information on the data contributors’ demographics in associated academic 

publications, sharing sites, and documentation. Here, we discuss the dataset collections, 

explain our coding and analysis approach, and reflect on our method and limitations. 

Reflecting on author positionality, we note that this research was conducted by Asian, 
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Afro-Latina, and white scholars, four of whom identified as women, one identified as 

non-binary, and two identified as disabled. Research in accessibility ranged from first year 

grad students to a professor who has been publishing accessibility research for about thirteen 

years.

3.1 Accessibility Datasets in Our Collection

Recently, Kacorri et al. (2020) launched a data surfacing repository, called IncluSet, as 

a result of putting together a collection of datasets sourced from people with disabilities 

and older adults that were manually located over a multi-year period [76]. An underlying 

promise of these datasets is their potential for training, testing, or benchmarking machine 

learning models. The work was later extended to investigate the risks and benefits of 

collecting, reporting, and sharing accessibility datasets, analyzed in terms of 10 communities 

of focus, 7 data formats, and 3 data access methods [79]. We leveraged the accessibility 

datasets (1984–2021, N=190) included in the existing collection of IncluSet and their 

groupings (i.e., communities of focus) as the basis for our investigation. Figure 1a illustrates 

the distribution of the datasets across the communities of focus. The datasets, including 

their annotations, are of different data types, as shown in Figure 1b. For example, there are 

voice recordings of people with speech impairments [25], video recordings of Deaf signers 

[69], text written by people with dyslexia [134], stroke gestures by people with motor 

impairments [171], photos of everyday objects taken by blind people [88], eye-tracking data 

from autistic children [43], and activity data from older adults [91].

Identifying publicly available documentation for these datasets often depended on how they 

were shared. Out of 190 datasets, about 84 can be downloaded directly and 41 can be 

accessed upon request—e.g., through a webpage from the dataset creators or an online 

repository with a summary of the dataset. Summaries vary highly from a few lines to 

detailed descriptions of the contents of the dataset and how it was collected. Even though 

none of the datasets had explicitly adopted standardized documentation such as datasheets 

for datasets [54], some followed a systematic documentation dictated by the platforms where 

the datasets were stored such as Synapse.org. Associated academic publications were often 

referred to in the web documentation to link more detailed information about the data 

collected, though these sources did not always come with consistent information such as 

the number of data contributors, which could be easily updated on the web documentation. 

Dataset downloads sometimes came with relevant summary files, including a spreadsheet 

listing demographic information about people represented in the data. The remaining 65 

datasets in the collection did not include any sharing intent with no sources available 

other than their academic publications. We still include these datasets in our analysis, in 

accordance with prior work analyzing accessibility datasets [77, 79].

3.2 Manual Coding and Analysis

We conducted an exploratory analysis where our formulation of what-to-code was based on 

(a) whether demographic information about the data contributors is available, (b) how is it 

collected and reported, and (c) how are accessibility datasets distributed among demographic 

groups within communities of focus.
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Specifically, beyond the existing codes in Kamikubo et al. [79], we extracted information 

related to demographic attributes following prior surveys on datasets and studies in 

accessibility and AI that examined diversity and representation (summarized in Section 

2.3). A total of three annotators (a PhD student in Information Studies, a Masters’ student 

in HCI, and an undergraduate student in Math) were involved in the process, where at least 

two reviewed the documentation for each dataset and discussed to correct any disagreement 

and error. They had different levels of familiarity with accessibility and AI. We extracted the 

following diversity-related information from the documentation, when available:

Age.—We note how any age-related information is obtained (e.g., self-reported, inferred, 

or unknown), reported (e.g., individual level, year of birth, age bins, and/or aggregate 

statistics), and shared (e.g., a separate file). We only calculate aggregated statistics from 

individual-level data when reporting findings and plotting distributions.

Gender.—We note the labels used (e.g., sex, gender), if any; the categories used; the 

number of data contributors that belong to the categories used; and how metadata was 

obtained (e.g., self-reported or inferred) and shared (e.g., spreadsheet or publication). In 

response to concerns raised by trans and information science scholars that the sex/gender 

distinction can invalidate trans and intersex identities while veiling the socially constructed 

nature of sex categories, for this paper we use the term “gender” to refer to discussions of 

characteristics of data contributors (that may be labeled by researchers as either gender or 

sex) [46, 142, 146].

Race and ethnicity.—Race is a multidimensional and complex concept, not a singular, 

biological construct with distinct limits into which people can be classified. Alone, race 

and ethnicity, do not reveal much about an individual’s experiences. As race and ethnicity 

can be viewed through multiple socially constructed lenses [17], we started with broad 

coding techniques to identify any information that pertains to these demographic attributes, 

including potential ethnic and cultural descriptors like geography and language. Manly [104] 

suggests that these attributes are proxies for or interrelated with unexamined variables, such 

as education and socioeconomic status. To better our understanding of race/ethnicity, it is 

central to deconstruct and examine the confounding influences of ethno-racial factors. We 

note any categories used to refer to data contributors’ racial groups, such as those defined 

in the census [19] and group ethnic and cultural metadata like nationality, geography, and 

language under other sociocultural information. Based on the metadata identified, we update 

the annotation scheme by specifically going over how this information is obtained and 

shared. Metadata related to education included information in terms of how it is obtained, 

reported, and shared; language included information on dialect and skills earned which may 

interact with education; geography included information on data contributors’ birthplaces 

and the recruitment location; and other information such as nationality or socioeconomic 

status when available.

3.3 Reflections on Limitations

Annotation consistency.—Annotation tasks are notably difficult, especially if they 

involve manual inspection of large data requiring particular skills and knowledge. Given that 
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we inspected both dataset documentations and scholarly articles from various publication 

venues across many research disciplines and sub-disciplines (e.g., Linguistics, Acoustics, 

Physiology, Computer Vision, HCI, Accessibility), it was unavoidable to go through a 

messy process to correct errors and disagreement in our codes. The annotators’ varying 

levels of familiarity with accessibility and AI were also sources of difficulty. This is not 

a surprise. Even similar annotation tasks that were more limited in scope (i.e. within 

the field of accessibility), were characterized as “challenging and effortful” [100]. To 

address the challenges, as the coding process initially started with two annotators (PhD 

and undergraduate level), we invited a third member (Master’s level) to have a detailed pass. 

The PhD student took a final pass to ensure that the annotations were agreed upon at least by 

two annotators.

We also experienced difficulty in programmatically extracting demographic-related 

metadata. This often created disparities among the annotators in identifying the relevant 

information from the documentation. We did not find a consistent, standardized method. 

For example, some methods we used included manually reviewing web documentation 

that provided summary statistics in writing [135] or table [2] formats; downloading files 

containing participants’ demographic data (e.g., age, gender) together with collected data 

points [164] or a separate csv file on participant demographics [6]; or extracting metadata 

from filenames [65]. Without standardized documentation and evolving practices, whether 

datasets contained demographic-related metadata was often unknown prior to downloads. In 

addition, without proper explanation of the labels used for demographic categories, such as 

in one dataset [6] that provided a supplementary spreadsheet with a label ‘1’ under the Race 

column for each participant, we could not find the meaning of this information.

Lack of documentation.—As discussed in the Results, information on age, gender 

and race/ethnicity was in many cases sparse. When available, it was often unclear how 

the demographic-related metadata was obtained. Thus, we could not verify the source of 

classifications (such as for gender). Few datasets explicitly documented that the reported 

information was e.g., “according to self-reports” [191]. Even fewer made inferences on these 

demographics e.g., “using proprietary classifiers” [177] or “based on visual inspection” 

[151]; typically these inferences were employed on data collected over the web. Specifically, 

we observed that three datasets indicate estimations on data contributors’ age; all three are 

solicited from user interactions with a web search engine with users’ age reported being 

“over the age of 40 years inferred from their date of birth as reported at registration to Bing” 

[189] or “inferred using proprietary Bing classifiers”[177, 178].

White et al. [177, 178] employed a similar approach for gender. Whereas Shi et al. [151, 

152] determine the gender of individuals by visually inspecting sign language videos from 

YouTube and the signers’ social media; they used the code “Other” for videos including 

people whose gender was deemed unknown or where there were multiple signers. While 

we have included the codes for these datasets in our collection as a reference for future 

researchers, we don’t include them in our analysis of ‘reported’ demographics; inferences 

can be inaccurate, perpetuate bias, and perpetuate exclusion (e.g. via binary classification of 

nonbinary individuals).
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None of the datasets in the collection inferred or estimated demographics that pertain to 

race/ethnicity or other metadata related to nationality, geography, language, and education. 

Yet, this part of our analysis is the weakest one as it solely relies on a small number 

of datasets where the race/ethnicity information was specifically ‘reported’; the majority 

(8) came from US institutions and one from UK even though the institutions of data 

stewards in the collection spanned across 42 countries from Asia, Africa, North America, 

South America, Europe, and Australia. Thus, our analysis of this demographic is inherently 

limited. Only limited reporting of race/ethnicity may be due to a number of factors, such 

as differences in census reporting among Western and non-Western countries, a prevailing 

consensus that racial designations do not identify genetically distinct populations, and the 

likelihood of misuse (e.g., privacy risks for disabled people) [84, 122, 147]. Cooper et 
al. suggest that “the correlation between the use of unsupported genetic inferences and 

the social standing of a group is glaring evidence of bias and demonstrates how race is 

used both to categorize and to rank order subpopulations.” [31]. However, since federal 

and state legislation in the US have established evident discriminatory practices against 

African Americans, Hispanics, Asians, and other groups, racial categorization can be 

utilized to reflect intersectional gaps that are a product of racial stratification practices. 

Thus, considering the sociocultural and political contexts of different regions to further 

understand the decision to utilize racial categories is critical. We did not see within the 

scope of this paper a systematic way to report the somewhat sparse metadata across codes 

related to data contributors’ nationality, geography, language, and education and tie them to 

sociocultural and political contexts of different regions. Nonetheless, we include these codes 

in our annotations for future reference.

Non exhaustive collection.—One of the main limitations of this work remains the fact 

that the list of datasets in the collection is not exhaustive. While somewhat systematic, 

the identification of these samples is itself noisy and prone to cascading biased decisions 

from the researchers collecting them and those that opt/know to include their datasets in 

the IncluSet repository. The lack of inclusion criteria related to when these datasets were 

introduced or whether they are currently in use and to what extent, could lead to systematic 

misalignment between current efforts and past trends. This is exacerbated by the fact that 

many datasets that are actually employed currently in commercial AI-infused products are 

not accessible for this type of analysis; representation of different demographic groups could 

be perhaps deduced via biased performance results (e.g., [18]) but that is beyond the scope 

of this work. Thus, any insights from our analysis may not be generalizable beyond the 

research community.

4 RESULTS

Of 190 datasets whose publication and documentation we reviewed, the most commonly 

found types of demographic-related metadata are age (46.8%) and gender (54.2%), followed 

by few datasets reporting race (4.7%) and education (12.1%). We find that 71 datasets 

(37.4%) did not include any information related to the aforementioned types of metadata. 

These numbers differ from publications that also focus on health, wellness, accessibility, and 

aging, where few share data; when looking at 792 HCI studies, Abbott et al. (2019) found 
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a distribution of 69.7%, 67.3% and 6.6% on age, gender, and ethnicity, respectively [1]. 

This difference could be due to tensions inherent in collecting “sensitive attribute data” [1, 

11, 16] and concerns related to participant consent and re-identification risks [1]. A similar 

trend is seen among available metadata with respect to how others can access the datasets. 

Among those that are not publicly shared, 69.2% reported at least one of the demographics, 

compared to 57.1% for publicly shared and 53.7% for shared upon request.

In this section, we present our findings surrounding such “sensitive attribute data” in 

accessibility datasets across communities of focus (Figure 2). To better understand the 

current status in terms of reporting and including different demographic groups and 

variables, we focus on the following demographics: age, gender, and race and ethnicity. 

In our analysis, we compare with existing categories used to represent demographic 

variables in social data collection (e.g., racial categories in census [174]), and investigate 

representativeness within accessibility datasets.

4.1 Age

A total of 6050 people within the communities of focus contributed data to the 89 datasets 

whose information on age was included. Their weighted average age was 43.6 (std=26.3). 

For the remaining of the report, statistics are reported at the dataset level (i.e. sampling 

distribution of the mean) even though the sample size across datasets varies highly from 1 to 

990 people (mean=66.8, std=144.5). Data on age from control groups are not included in the 

analysis.

4.1.1 What Is Reported.—Datasets mostly reported such information in aggregate 

though some (36.0%) reported age at an individual level. Aggregate information includes 

minimum age (1.1%), range (15.7%), median (1.1%), average (20.2%), or a combination 

(25.8%). Typically, age was reported separately for target (i.e., disability) and control groups 

(e.g., [45]), contributors’ gender (e.g., [170]), and dataset purpose (e.g., training versus 

validation [86]). Few report on all groups together (e.g., [22]). Data anonymization is a core 

component of data management to minimize risk of disclosure while preserving its utility 

for analysis [81]. However, we find that a majority of the datasets did not incorporate these 

strategies. For example, bucketing by age groups (e.g., 18–30, 31–45, 46–60 years [107]) 

was only found in 7 datasets (7.9%).

Only 5 datasets reported median and 3 datasets reported both mean and median. More than 

half (58.4%) indicate standard deviation, including those reporting age at the individual 

level for which it can be calculated. All three, mean, standard deviation, and range, can 

be found for less than half (42.7%) of the datasets (e.g., “The mean age of the subjects 
was 54.9 ± 13.4 (SD) yr (range 36–70 yr)” [64]). Meanwhile, some documentation noted 

only the minimum (e.g., “participants aged 50 or older” [180]) or the age requirement for 

participation (e.g., “18 or older” [13]).

4.1.2 Why Is It Reported.—Most often datasets did not specify why the ages were 

obtained and reported. It could be an effect of perceived norms and standards for 

questionnaires within the research community, which often include age questions [68, 

161]. Age is an established variable that helps understand the general characteristics of 
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participants. Its distribution may reflect the quality of data collection and analysis [5]; not 

accounting for age can threaten the generalizability of the work especially when there is 

a treatment effect heterogeneity in age or other factors that may covary with age (e.g., 
[121]). Some datasets mention efforts to match age between target and control groups (e.g., 
[26, 160]) or note age matching as not feasible (e.g., [111]). Others mention age as a 

confounding variable e.g., for early detection of Parkinson’s disease based on touchscreen 

typing patterns [72]. Some datasets mentioned the goal of including data from diverse 

age groups to assess age-related decline of cognitive or mobility performance [91, 116]. 

For example, in a dataset acquiring age-related pen-based performance [116], participants 

were grouped based on cognition changes (‘young’ for 18–55, ‘pre-old’ for 56–75, and 

‘old’ for 75+). Grouping varies across communities; in an attempt to build a diverse sign 

language corpus, researchers binned groups as 18–35 years, 36–50 years, 51–64 years, and 

65+, rationalizing their decision based on language transmission variability within the Deaf 

community [141].

4.1.3 Representation Across Communities of Focus.—Figure 3 illustrates with 

violin plots the sampling distribution of mean age in datasets across communities, where the 

white dot represents the median, the thick gray bar in the center indicates the interquartile 

range, and the thin gray line shows the rest of the distribution, except for points that are 

determined to be “outliers.” Kernel density estimations on each side of the gray lines show 

the distribution shape. Wider sections indicate a higher probability that datasets will have a 

mean age of the given value; the skinnier sections indicate a lower probability. We note that 

datasets vary in their sample size, which is not accounted for by this visualization.

We find that mean age in datasets differs across communities, with some communities 

particularly inclining towards samples with a certain target age (e.g., children, older adults). 

To better understand the age representation exhibited in accessibility datasets, the remainder 

of the section follows age groups discussed or referred to in prior literature in terms of 

technology (e.g., ‘older adults’ as 65+, ‘oldest-old adults’ as 85+) [128], disability-related 

policies (e.g., ‘children’ between 3 to 21 covered in IDEA [94]), and the communities of 

focus (e.g., ‘toddlers’ of 18 to 36 months in developmental assessment [30]). Of course, 

variations exist across studies [154] as there is no rigid definition for these groupings.

Older adults.: Many accessibility datasets represent older adults. Among the datasets that 

contained some form of age-related information, 48.3% included at least one older adult 

(65+), and 6.7% at least one oldest-old adult (85+). The highest proportion of older adults 

was in the Cognitive and Health groups, reporting at least one older adult in 83.8% and 

73.3% of their datasets, respectively. This may not be surprising, as these groups focus on 

cognitive and physical decline that can relate to age—e.g., the risk of onset of dementia 

(e.g., Alzheimer’s disease) increases with older age [131]. Specifically, the Cognitive group 

had datasets with the highest mean of mean age (mean=61.7, std=12.4) which were often 

cross-listed with the Mobility and Speech groups including speech or motion data of patients 

with Parkinson’s disease (e.g., [71, 140]). The oldest participant, aged 89, was reported in 

the Cognitive and Health groups in the image dataset capturing daily activities of those 

with episodic memory impairment [89]. Communities that lack older adult representation 
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are Autism, Developmental, and Learning, reflecting a broader gap in research pertaining to 

these groups [66, 73, 130, 139]. This can be due to many factors; for example, many autistic 

older adults experienced a severely delayed diagnosis [102]. Many adults with learning 

disabilities live in institutions such as nursing and residential homes, in which they arrive 

“before their 65th birthday” with “few opportunities to get out” [165].

Children and youth.: Children and youth are also represented in accessibility datasets; 

about a quarter (24.7%) of the datasets whose information on age was included contained 

data sourced by at least one person younger than 18 years old. It increases to 33.7% when 

including those 21 or younger, as the age criteria for study participation is often noted as 18 

or older [13, 45]. Perhaps this reflects some of the ethical challenges in collecting data from 

children [32] as the process for obtaining consent, assent, or parental permission is more 

complex for those under the legal age [112]. While overall there are few datasets sourced 

from youth, they tend to concentrate in the Developmental (85.7% of datasets in this group 

include at least one person <18) and Learning (100.0%) groups. Datasets in the Learning 

group often focus on dyslexia (e.g., [53, 115]), where diagnosis is critical at early ages. Data 

from toddlers (18 to 36 months old) are typically seen in the Development group for the 

purpose of developmental assessment (e.g., [30]). They mostly involve speech data, sourced 

by stuttering children [58, 182] or late talkers [120]. The youngest reported age across all 

the accessibility datasets was 16 months, in a dataset sourced from autistic children [181], 

though not many (33.3%) datasets reporting age in the Autism group included those under 

the age of 18. The groups that lack data from children and youth are Vision, Hearing, 

and Mobility. We suspect that this is reflective of the most common purpose for collecting 

data such as image and video from this age group, which is to better assess and diagnose; 

disabilities related to one’s vision, hearing, and mobility have long established methods and 

instruments that might not require such datasets.

Younger and middle-aged adults.: When looking at younger adults (over 18), we find 

that surprisingly, many (9) datasets with mean age in the Autism group tend to include 

people between the age of 18 and 44, with an overall mean of mean age 24.0 (std=13.8). 

This is in striking contrast with the broader research on autism, where the majority (94%) 

tends to focus on infants, toddlers, children, and adolescents [73] due to a focus on early 

diagnosis and intervention [117, 127]. Datasets including younger adults in this group were 

often collected in the context of assistive technologies (e.g., evaluating text readability and 

comprehensibility via gaze fixations [45, 183, 184].)) Looking further at datasets skewed 

towards younger and middle-aged adults, the age range of Hearing and Vision groups was 

limited, even though visual and hearing impairments could be associated with older age [14, 

95]. The datasets in the Hearing and Vision groups that reported age have an overall mean 

of mean age 28.3 (std=4.2) and 48.7 (std=3.6), respectively. This can be partially explained 

by how these datasets were collected. For example, the majority (66.7%) of datasets in 

the Vision group did not include any age information; they were collected from thousands 

of users via real-world applications (e.g., [57, 78]), where user demographics may not be 

available or omitted due to privacy concerns. Similarly, in the Hearing group the majority 

of datasets do not include age information; they tend to collect sign language from online 

sources (e.g., [92, 151]).
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Diverse ages.: We observe that the Language group has the largest age variability. Among 

others, they include data sourced from children with epilepsy (e.g., [160]), adolescents 

with language impairment (e.g., [176]), and older adults with aphasia (e.g., [3, 35]). Often 

datasets in this group come from clinical settings such as the FluencyBank found in 

TalkBank [101], a shared database established in 2002 for studying human communication. 

Perhaps this collaborative effort among a wide range of disciplines could explain the 

variability of datasets spanning across different communities over the years. Datasets in 

Speech also capture different age groups. Some can be found in TalkBank, including spoken 

phrases of older adults with Alzeimer’s disease [105] as well as children [182] and adults 

[187] who stutter.

4.2 Gender

A total of 5598 people within the communities of focus contributed data to the 103 datasets 

whose information on gender was included. Again, we include information at a dataset 

level even though the sample size across datasets varies highly from 1 to 818 (mean=59.6, 

std=106.6). Data on gender for the control groups are not included in the analysis.

4.2.1 What Is Reported.—Gender metadata was commonly reported with the number 

of data contributors in the form of writing (e.g., “10 blind participants (5 female) ranging in 
age from 18 to 63 years old” [9]) or table (e.g., a M/F column [6]). Of datasets reporting 

such metadata, we observed that a binary classification was used (female/male, women/men, 
girls/boys), with only one dataset in our collection reporting data on the “other” category 

[49]. However, it is difficult to draw conclusions from this alone, as few datasets reported 

their method of gendering contributors. Without this, we cannot distinguish between self-

identification (e.g., as part of a demographics questionnaire), or an external inference 

influenced by implicit assumptions (e.g., by the study designers or validators). Furthermore, 

if participants were asked to self-identify, they may have been limited to choosing from 

binary options.

4.2.2 Why Is It Reported.—Similar to age being asked in standard demographic 

questions [68], datasets often included gender information as part of the data distribution, 

without specifically describing the goal of collecting such information.

Nonetheless, we can attempt to extrapolate the reasoning for some datasets, especially when 

they contain particular data formats. The highest presence of gender information was in 

datasets that collected audio (66%) compared to video (27%) or image (32%). Perhaps, this 

is reflective of an assumption of the influence of gender among those working with speech 

data. Datasets that capture motion e.g., gait of Parkinson’s disease patients [170], also 

attempt (about 50% of them) to account for physical measurement differences represented in 

data by using gender as a proxy.

In order to keep the study design as “unbiased” as possible, some datasets reported that 

gender (and/or age) was “balanced” in the test group (e.g., “roughly balanced for gender of 
the 249 participants, 52% (n= 129) were women” [141]), but efforts to balance distribution 

between target and control groups were much more common (e.g., [170], [125]).
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4.2.3 Representation Across Communities of Focus.—Gender demographics 

vary across the world, with most countries having a female3 share of the population between 

49% and 51% [137]. However, overall, accessibility datasets that include gender information 

tend to be imbalanced with men and boys (60.1%) who are more represented on average4 

than women and girls (39.9%). This is also evident in Figure 4a, which illustrates with violin 

plots the sampling distribution of gender representation in datasets across communities of 

focus, where the vertical dash lines indicate the quartiles and each side of the distribution 

shows kernel density estimations for ‘women/girls’ and ‘men/boys’. This illustration also 

highlights how the gap is more prominent in some communities than others.

Specifically, we see a clear imbalance in the representation of data contributors in the 

Autism and Developmental groups; on average, 33.1% (std=8.1) and 27.9% (std=9.8) 

are women and girls, respectively. Such highly skewed representation has been actively 

discussed in the evaluation and diagnosis of autistic children, given that boys constituted 

81% of the sample of children [55]. One widely cited male-to-female diagnosis ratio is 

approximately 4:1 [51]. However, when the ASD participants are controlled for cognitive 

impairments, this number changes [85, 98, 103, 106, 138]. About 50–55% of autistic 

children are estimated to be intellectually disabled (ID) [98]. Among ID autistic children, 

the male-to-female ratio is significantly smaller, at 2:1 [67]. In autistic children labeled as 

“high functioning”, the existing literature points to a higher male-to-female ratio, about 6:1. 

Researchers have theorized an explanation for this relationship could be the tendency of 

(so-called) “high-functioning” autistic females to “mask” or “camouflage” core autistic traits 

[90, 133]. A growing body of evidence suggests that current diagnostic criteria for ASD may 

fail to account for these phenomena and the subtleties in behavior, leading to misdiagnosis 

and late-diagnosis for minority gender groups (e.g., women, girls, non-binary) [87].

While many communities of focus portray gender disparity in their represented samples, it 

is not seen in the Vision group, with the average of 50.2% (std=3.2) consisting of women 

per dataset. According to 2018 U.S. disability statistics [186], 45.3% of visually disabled 

people were male, and 54.7 % were female. The slight skew towards women has been 

identified by researchers in this community as possibly attributable to differences in life 

expectancy by gender in addition to increased risk of visual impairments with age (e.g., 
macular degeneration) [59], which women are noted to be at higher risk of than men [156].

4.3 Race & Ethnicity

Race is a complex and sensitive demographic variable [52, 145]. Only 9 (5%) accessibility 

datasets reported metadata on contributors associated with racial or ethnic groups, 

typically captured by demographic surveys (e.g., [19]). Modern racial classification systems 

construct race using both observable physical features (e.g., skin color) and nonobservable 

characteristics such as culture and language [27]. Thus, ‘other’ related demographic 

information we found could perhaps be utilized to draw some connections and inferences 

about race, including the place of birth [23], native language [72], or dialect [188]. However, 

3When referring to data sourced from external collections, we follow the terminology used in their reports.
4With both gender-related and sex-related categories used in our collection of datasets, we report data for ‘women/girls’ or ‘men/boys’ 
combined with data for e.g., ‘female’ or ‘male’.
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in past studies they have led to issues of forced classification and error [11, 123]. Therefore, 

in this section we don’t make that connection. We report only on datasets with explicit racial 

and ethnic information.

4.3.1 What Is Reported.—The categories we found delineating racial composition were 

mostly ‘White’ and ‘Black’ [144], with variations of reporting them as ‘White-Caucasian’ 
or ‘Caucasian’ and ‘African-American’ [160, 182, 191]. For other racial groups, data were 

ambiguously grouped together (e.g., “62% Caucasian, 30% African-American and 10% 
other” [160]) or can be extrapolated by subtracting what was reported as the proportion of 

the ‘white’ category only [190]. The use of these terms also highlight the limitations of the 

taxonomical racial categories; ‘Caucasian’, for example, is rather discussed as outdated and 

disproved [119].

Similar to age and gender, race was reported separately for target and control groups (e.g., 
[190]). Notably, one speech dataset sourced from stuttering children aimed at a race-matched 

(as well as age- and gender-matched) cohort of children [132]—here, both stuttering and 

non-stuttering groups had 2 African American children and 1 child of mixed racial ancestry. 

This was also the only dataset in the collection reporting about mixed race, although we saw 

an attempt to collect data on race, including ‘Mixed’, from a demographic questionnaire in a 

study on Parkinson’s disease [13].

4.3.2 Why Is It Reported.—Looking at datasets whose data on race was collected 

and/or reported, they are often related to medical research associated with studies on specific 

disorders. Specifically, they include speech samples collected from people with aphasia 

[144], Parkinson’s disease[190], Alzheimer’s disease [6], and epilepsy [160] to study early 

detection of impairments underlying cognitive disturbance. In medical research domains, 

there are controversies around collecting data on race, raising both benefits and risks given 

disparities in health outcomes established for racial minorities [50, 62]. Concerns also lie in 

the taxonomy of the categories used, which have brought efforts to standardize and improve 

methods of obtaining and reporting data on race [8, 50]. Recent guidelines [50] suggest 

including an explanation of who identified participant race & ethnicity and reasons for 

collecting the data. We did not find disclosure of the source of the classifications among the 

datasets included (e.g., self-report, observation), nor a justification of why it was collected.

4.3.3 Representation Across Communities of Focus.—It was hard to distinguish 

the data between race and ethnicity or other sociocultural information, especially when 

the data spans multiple concepts and forms of classification (e.g., “129 of Caucasian, 14 
of African American, 2 of Hispanic, and 2 of Asian origin” [182]). For example, in US, 

guidelines that inform data collection for census note that the concept of race is separate 

from the concept of Hispanic origin [173].

For the few datasets that reported data contributors’ race and ethnicity, the norms of how to 

report were highly inconsistent. Thus, with high variability and a small sample, we could not 

leverage standardized methods to analyze racial group composition among the communities 

of focus. The categories we saw (often in Cognitive and Language) were associated with 

‘white’ or ‘non-white’, portraying one group as primary over another. Mixed race was rarely 
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indicated, which is problematic given changes in racial categories (e.g., in the US census) 

reflecting racial mixture [20].

5 DISCUSSION

Our overarching goal lies in understanding the current state of representativeness of 

marginalized groups in AI datasets (along the axes of age, gender, and race & ethnicity) 

with a specific focus on disabled data contributors. This is relevant to the greater discourse 

around AI, ethics, and fairness, as marginalized communities tend to be under-represented in 

data [47], perpetuating cycles of exclusion as technology advances even for technologies that 

meant to promote inclusion such as assistive technology. We contribute to this important 

ongoing discussion through our analysis of 190 accessibility datasets. Specifically, we 

examine representation gaps and trends that can potentially lead down the road to further 

harm for the people who stand to be adversely affected by emerging, potentially ubiquitous 

technology. In this section, we recap and discuss the challenges and opportunities for 

representation while considering directions the accessibility field could take to carefully 

include marginalized communities in AI-infused systems.

5.1 Addressing Challenges and Seizing Opportunities for Representation

Our analysis revealed unique challenges in ensuring representation of intersecting 

demographics in accessibility datasets. Some representation gaps are attributable to societal 

and cultural norms and biases that operate intersectionally. For example, communities 

lacking older adult representation are Autism, Developmental, and Learning. This reflects 

not only a broader research gap on these groups [66, 73, 130, 139] but also discrimination at 

the intersection of disability and age; e.g., many autistic older adults live without an accurate 

diagnosis [102]. Similarly, looking at the intersection of disability and gender, we observe 

a gap for Autism, Developmental, and Learning groups, where men and boys were often 

over-represented. These cases can have pernicious implications characterized not only by the 

communities of focus but also long established research frameworks that propagate existing 

societal marginalization, highlighting the importance of making gender-specific changes 

(e.g., diagnostic criteria for autism [37, 87]).

In annotating accessibility datasets, we also surfaced how socially constructed identity 

categories such as race and gender are reproduced. Similar to Scheuerman’s meta-analysis 

of gender in face datasets [142], by analyzing information such as reasons for reporting/

data collection and labels used for metadata categories, we contribute a sociological meta-

examination through which the research and data collection process itself can be analyzed 

for bias. For example, we found that the notion of a gender or sex binary was not 

explicitly challenged in our collection; only one dataset reported data on the “other” gender 

category. This may have downstream effects in shaping machine learning model design 

and subsequent problems/contexts—for example, in binary gender classification, which may 

harm nonbinary communities through technology-enabled misgendering [61].

We also found that there is very little reporting of how identity labels were associated 

with data contributors, whether through selfi-dentification or external assumption (e.g., 
via preformed binary categories). We recommend greater transparency in disclosing these 
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aspects of the data collection process, and for gender in particular, to include nonbinary, 

self-describe, and prefer not to disclose options, as recommended in the related literature 

[158].

At the same time, we acknowledge the implementation challenges that may need to be 

addressed to support transparency—e.g., how to produce a set of questions which do not 

elicit information leading to unintentional misuse or unwanted societal biases for data 

contributors. We emphasize that careful reflection on this process is needed on the part 

of researchers who are collecting and reporting contributor data, including implications of 

use (e.g. surveillance) and any potential harms enacted by power structures through the 

systems we build. Aligning with recent research [110], we recommend an examination 

and contextualization of data representativeness grounded in political, economic, and socio-

cultural lenses, integrating insights from scholars in fields such as critical disability studies 

[28], trans/gender studies [157], and histories of social movements [136] into an analysis 

of power relations. As an example, one could draw from recent work by disability studies 

scholars examining the context the data is collected in (i.e., for AI systems vs for visibility 

and activism) and how representation impacts are also context-dependent [93].

5.2 Developing Participatory Approaches to Data Stewardship

This challenge of partitioning the pool of accessibility datasets into sub-communities was 

very real in our analysis, as the groupings that we opted for may not necessarily reflect the 

identities of individual data contributors. Recent work exploring challenges for collecting 

disability data suggests the voices of contributors to be reflected and provides best practices 

to ask about disability status [10]. Perhaps, to mitigate harms experienced by those from 

marginalized communities who are misclassified, we can extend this approach to other 

categories such as race and gender. Specifically, we urge researchers to come up with 

approaches for more meaningful engagement of data contributors in the data stewarding 

process. Echoing Shneiderman’s motto [153], we recommend “researchers in the loop, 
disabled contributors in the group”.

One way we could go about this is to employ participatory approaches to the data collection 

lifecycle in which users have the opportunity to enact their values in how their data is 

collected, maintained, shared, and interpreted in and out [33, 99]. Of course, this would 

require careful consideration of the many moving pieces in the Fairness, Accountability, 

Transparency, and Ethics (FATE) landscape both in terms of parties involved as well as 

exchange and access mechanisms; Bragg et al. [15] provide a wonderful starting point for 

this discussion in the context of the Deaf community. For example, to avoid inadvertently 

extractive approaches, and aligning with recent literature, we recommend meaningfully 

compensating participants for their work as data contributors [155]. In this vein, we also 

recommend developing long term relationships with data contributors and their communities 

(where possible) to facilitate sustainable and mutually beneficial collaboration, especially 

when designing and evaluating AI-infused systems that use contributor data [155, 163]. 

Disability community-led initiatives can help concentrate research efforts on those most 

likely to have a positive impact; the idea generation phase may be particularly fruitful when 

rooted in first person lived experience (e.g. as provided in [129]).
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5.3 Addressing Epistemological Implications in Future Work

We encountered epistemological limitations at various stages in the annotation and analysis 

process. One such limitation is the extent to which strong claims can be made about 

overall representativeness, due to the lack of reporting and global statistics for disability, 

age, gender, and race. In addition, our findings are intrinsically linked to existing 

sociocultural contexts and hierarchies. Our analysis of accessibility datasets showcases 

these epistemological limitations. By acknowledging these limitations, we hope to spark 

conversations on the inclusion of marginalized communities in AI-infused systems and its 

myriad challenges. In future efforts, we recommend the following for broader research 

implications:

Exploration of disabled people’s concerns around representation.—Increasing 

representativeness may not always be beneficial; it may perpetuate injustice as extensions of 

existing systems of oppression and power. As explored in the previous section, it is vital to 

include first person disabled perspectives on representativeness and inclusion, as well as data 

collection and sharing practices. Future work remains in exploring contributor concerns such 

as privacy [60, 77] and surveillance [7], especially for multiple marginalized contributors.

Analyzing other sociocultural factors.—A more in-depth analysis of the sociocultural 

contexts in which datasets were produced, not just what was reported, could lead to 

interesting insights. A quick inspection of our datasets revealed that when data involves 

children, specifically in studies of developmental disability, we sometimes find family 

information, such as socioeconomic status [132] or parental education [58, 160]. Future 

work could explore representation along axes of level of education, language, nationality, 

and socioeconomic status of the data contributors, as well as intersections between them. 

It would also be interesting to explore the influence of dataset origin (i.e. from the HCI vs 

medical research community) on demographic representation as they may opt for different 

models of disability.

Accounting for dataset impact.—Our analysis of the implications of representation is 

complicated by the fact that datasets vary in research impact. Potential indicators of impact 

include the number of citations, the models they are used to train or benchmark, the venues 

in which they are published, and whether they originate from academia or industry. Future 

work remains in investigating and defining impact indicators and metrics, and weaving those 

insights into discussions of representativeness.

Beyond accessibility datasets.—While any insights from our analysis may not be 

generalizable beyond the research community, our findings present an opportunity for 

broader AI communities to strive towards more representativeness—along disability and 

other dimensions—by including accessibility datasets in their training data. For example, 

AI datasets have been critiqued for being heavily skewed towards younger adults, and under-

representing older adults [128]. In contrast, accessibility datasets yield a wide variability of 

age groups. In future research, we strive to connect our discussions of representation gaps 

with larger trends for broader AI datasets and investigate whether accessibility can be used 

as a lens to diversify representation for the broader AI community.
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6 CONCLUSION

We conducted a detailed analysis of data representativeness among 190 accessibility 

datasets, with an emphasis on the intersections of disability with age, gender, and race 

& ethnicity. While we found diverse representation of age in accessibility datasets, we 

identified gaps in gender and race & ethnicity representation among these datasets. 

Our findings illustrate the implications of historical and social contexts. Although we 

acknowledge there are limitations when collecting these demographic variables, going 

forward, we propose a participatory approach when collaborating with disabled contributors 

and encourage transparency regarding data collection purpose and maintenance throughout 

the process. We hope our effort elucidates the current challenges in representation among 

the accessibility community while expanding the space of possibility for greater inclusion 

of marginalized communities in AI-infused systems more broadly. Finally, we hope 

that our efforts provoke conversations on data representativeness through a critical and 

epistemological lens.
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Figure 1: 
Distribution of accessibility dataset count across all communities of focus (a) and data types 

(b).
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Figure 2: 
Proportion of accessibility datasets across all communities including metadata related to 

the age, gender, race, education, or other sociocultural factors about their data contributors. 

Many datasets (e.g., in the Hearing group) did not contain any metadata.
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Figure 3: 
Sampling distribution of ‘reported’ mean age, which differs across communities. Means are 

calculated on varying sample sizes.
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Figure 4: 
Sampling distribution of gender representation across accessibility datasets. The 

representation gap is more prominent in some communities than others.
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