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SUMMARY

The diversity and complex organization of cells in the brain have hindered systematic 

characterization of age-related changes in its cellular and molecular architecture, limiting our 

ability to understand the mechanisms underlying its functional decline during aging. Here, we 

generated a high-resolution cell atlas of brain aging within the frontal cortex and striatum using 

spatially resolved single-cell transcriptomics and quantified changes in gene expression and 

spatial organization of major cell types in these regions over the mouse lifespan. We observed 

substantially more pronounced changes in cell state, gene expression, and spatial organization of 

non-neuronal cells over neurons. Our data revealed molecular and spatial signatures of glial and 

immune cell activation during aging, particularly enriched in the subcortical white matter, and 

identified both similarities and notable differences in cell-activation patterns induced by aging and 

systemic inflammatory challenge. These results provide critical insights into age-related decline 

and inflammation in the brain.
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In brief

Single-cell transcriptome imaging and sequencing of aging mouse brain reveals spatially 

dependent and cell-type-specific changes in cellular state shared in part with systemic 

inflammatory challenge.

INTRODUCTION

The mammalian brain exhibits remarkable stability over periods ranging from years to 

decades.1 Due to the brain’s limited regenerative abilities, neurons must faithfully perform 

their function for the entire lifetime of an animal. However, as the animals age, this 

longevity of neurons makes the brain sensitive to the accumulation of damage over time.1 

This neuronal damage, in combination with age-dependent changes in non-neuronal cells 

that support neural circuit function, is thought to cause the decline of brain function and the 

increase in the prevalence of neurodegenerative disorders associated with aging.1–3

A prominent hypothesis underlying brain aging suggests that changes in neuronal and 

synaptic functions associated with age and neurodegeneration are the result of disruptions 

to the brain’s homeostatic environment.4–6 Neurons are supported by a host of non-

neuronal cells, each maintaining different aspects of the tissue homeostasis.7 For example, 

oligodendrocytes myelinate axons and provide metabolic support to neurons; astrocytes 

provide trophic and ionic support to neurons and modulate synaptic function; and microglia 

provide immune surveillance, synaptic pruning, and debris removal by phagocytosis.8–15 
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Brain injury, infection, and neurodegeneration have been shown to trigger inflammatory 

activation of these resident non-neuronal cell types and recruit peripheral immune cells, 

resulting in both protective and deleterious effects for neighboring neurons.6,11,13,15,16

Recent transcriptomic studies of normal brain aging17–20 and neurodegenerative 

disease,21–24 as well as studies focusing on specific non-neuronal cell types such as 

astrocytes,25–27 microglia,28,29 and endothelial cells,30 have further highlighted a role 

for inflammatory activation in aging-related decline. In particular, reactive states that are 

typically triggered in microglia and astrocytes during infection or injury also emerge over 

the course of normal aging.

While these studies suggest broad age-related disruptions to brain homeostasis that manifest 

in a variety of cell types, they also raise many questions. For example, how do the molecular 

signatures and spatial organization of different cell types and cell states change over aging, 

and how do these changes relate to age-induced inflammatory activation? How are activated 

cells spatially distributed, and does this activation depend on environmental factors and cell-

cell communications? How does age-induced inflammation relate to systemic inflammatory 

response? Answering these questions is challenging, as the brain’s enormous cellular and 

molecular complexity has so far prevented a comprehensive understanding of the changes in 

brain architecture over an animal’s lifetime.

Here, we performed a systematic characterization of the changes in molecular signatures 

and spatial organizations of cells during brain aging by using an experimental approach that 

combines a single-cell transcriptome imaging method, multiplexed error-robust fluorescent 

in situ hybridization (MERFISH),31 with single-nucleus RNA sequencing (snRNAseq).32 

This approach allowed us to profile gene expression and identify cell types and states in 

the mouse frontal cortex and stratum, thus generating a spatially resolved cell atlas of these 

regions across different ages. This high-resolution cell atlas revealed age-related changes 

in both neurons and non-neuronal cells and uncovered molecular and spatial signatures 

of glial and immune cell activation during aging. Comparison with changes induced by 

lipopolysaccharide (LPS) further revealed previously unknown differences in non-neuronal 

cell activation induced by aging and by systemic inflammatory challenge.

RESULTS

Spatially resolved single-cell transcriptomic profiling of the aging brain

We performed snRNA-seq measurements to probe the transcriptomic profiles of individual 

cells from the frontal cortex and striatum of mice at two different ages, ~1 month (4-week-

old, juvenile) and ~21 months (90-week-old, old) postnatal (Figures 1A and 1B). These 

brain regions have been previously shown to be susceptible to age-related neurodegenerative 

diseases.33,34 We sequenced ~50,000 nuclei from two female animals at each age and 

performed unsupervised clustering analysis of the ~80,000 cells that passed quality control 

(Figures S1A–S1F).

We then selected two sets of genes for spatially resolved single-cell transcriptomic 

measurements by MERFISH based on the snRNA-seq results (Figure 1A): (1) cell-type 
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markers that were differentially expressed between cell clusters determined by snRNA-seq 

and (2) aging-related genes that were differentially expressed between the two ages in 

individual cell clusters. In addition, we selected previously known cell-type marker genes 

that define major neuronal, glial, and immune cell types and genes previously reported to 

be highly upregulated in various cell types during aging. Together, these resulted in a total 

of 212 cell-type markers and 204 aging-related genes, which we imaged in the same tissue 

sections through two back-to-back MERFISH runs, each with a 20-bit barcoding scheme 

(STAR Methods and Tables S1–S3).

We imaged these 416 genes in the frontal cortex and striatum of mice across three different 

ages, ~1 month (4-week-old, juvenile), ~6 months (24-week-old, young adult), and ~21 

months (90-week-old, old) postnatal, including 3–5 female animals at each age (Figure 1B). 

A total of ~400,000 cells were imaged and passed quality control. The average expression 

levels of individual genes measured by MERFISH showed good correlation with results 

from bulk RNA sequencing and were highly reproducible between biological replicates 

(Figures S1G–S1I). We then co-embedded the MERFISH and snRNA-seq data, including 

all measured cells, using the Harmony algorithm35 and performed an integrated clustering 

analysis across these two data modalities (Figures 1C and 1D), which showed good 

correspondence with the clustering results from the snRNA-seq data alone (Figure S1J). 

The integrated analysis resulted in a total of 43 neuronal and non-neuronal cell types (Figure 

1E). Compared to our previous MERFISH results of the mouse cortex36 and striatum,37 

cell clusters were dissected here at a lower granularity to capture age-related changes of 

major cell types. The neuronal clusters included layer-specific excitatory neuronal cell types 

(ExN) in the cortex (ExN-L2/3-IT, ExN-L5-IT, ExN-L5-ET, ExN-L5/6-NP, ExN-L6-IT, 

and ExN-L6-CT), inhibitory neuronal cell types (InN) in the cortex marked by canonical 

inhibitory neuronal markers (Sst, Pvalb, Lamp5, and Vip), excitatory and inhibitory neurons 

in the subcortical olfactory areas (ExN-Olf and InN-Olf), Drd1+ (D1) or Drd2+ (D2) 

medium spiny neurons (MSN), Lhx6+ or Chat+ interneurons in the striatum, as well as 

spatially dispersed Calb2+interneurons. The non-neuronal clusters include oligodendrocytes 

(Oligo), oligodendrocyte precursor cells (OPCs), astrocytes (Astro), ependymal cells (Epen), 

pericytes (Peri), vascular leptomeningeal cells (VLMCs), endothelial cells (Endo), microglia 

(Micro), macrophages (Macro), and T cells. snRNA-seq and MERFISH data co-embedded 

well with each other, and the vast majority of cell clusters were well represented in both 

datasets with high correspondence in gene expression between the clusters from each dataset 

(Figures 1C, 1E, and S1K). However, we note that some vascular cell types (pericytes and 

endothelial cells) were poorly sampled by snRNA-seq (Figure 1E).

A different integration method (Allcools)38 gave similar clustering results (Figure S1L). 

Performing integration using a balanced ratio of snRNA-seq and MERFISH cells (where the 

MERFISH cells were randomly subsampled to ~80,000 cells) also gave similar clustering 

results, with the exception of a few rare cell types that were not sampled well when the 

number of MERFISH cells was reduced (Figure S1M). We thus included all MERFISH cells 

in the integration for further analysis.

This integration also allowed us to impute genome-wide expression profiles for individual 

cells measured by MERFISH using the transcriptomic profiles of neighboring snRNA-seq 
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cells in the gene-expression space (STAR Methods). As a validation, the imputed spatial 

distributions of the genes showed good agreement with both the results directly measured by 

MERFISH and the results from Allen brain in situ hybridization atlas (Figure S2), and both 

integration methods generated similar imputation results (Figure S2).

Age-related changes in cell state and composition

We next analyzed how the cell composition and cell state in these brain regions changed 

across the three ages based on the MERFISH data. The neuronal clusters did not exhibit any 

significant change in abundance (Figure 2A). By contrast, several non-neuronal cell types 

exhibited substantial age-dependent changes in the overall abundance and/or the relative 

proportions of cells in different states within a specific cell type (Figures 1E, 2A, and 

2B). In particular, the abundance of oligodendrocytes increased and that of OPCs decreased 

substantially as the animal aged (Figure 2A). Among the three states of oligodendrocytes, 

the Oligo-1 cluster was predominant in juvenile animals and reduced to nearly non-existent 

in young adult and old animals, Oligo-2 was predominant in young adult animals and 

decreased in abundance in old animals, while Oligo-3 emerged in old animals (Figure 2B). 

The aging-related cluster Oligo-3 exhibited substantial upregulation of C4b (Figure 2C), a 

complement protein of the innate immunity system, and interleukin 33 (Il33) (Figure 2C), a 

cytokine involved in inflammatory and innate immune response,39 consistent with previous 

results.17 These results suggest an initial maturation and proliferation of oligodendrocytes, 

likely a result of late-stage development, followed by inflammatory activation of matured 

oligodendrocytes with aging. Microglia, endothelial cells, and astrocytes also showed 

an age-dependent shift in population among different cell states. For example, Micro-1 

and Endo-1 were enriched in juvenile animals, Micro-3 and Endo-3 were enriched old 

animals, and Astro-2 showed increased in abundance in old animals (Figure 2B). These 

aging-related cell states exhibit upregulation of genes (e.g., B2m and Trem2 in Micro-3, 

Xdh in Endo-3, and Gfap and C4b in Astro-2) (Figure 2C) that have been previously shown 

to be enriched in microglia, endothelial cells, and astrocytes activated by inflammation 

and/or aging.17,25,26,29,30,40 Consistent with T cell infiltration into the aging brain,41 we 

also observed a substantial increase in the abundance of T cells in old animals (Figure 2A), 

although the change did not reach statistical significance due to the small number of cells 

detected in this rare cell population.

Age-related changes in the spatial distribution of individual cell types and cell states

The MERFISH data further allowed us to map the spatial organization of individual 

cell types across different ages. To visualize the overall spatial organization of cells, we 

performed hierarchical clustering of cells based on the cell composition in their spatial 

neighborhood (STAR Methods) and the resulting spatial clusters naturally segmented the 

imaged area into known anatomical structures, including the pia, cortical layers, corpus 

callosum, striatum, ventricle, and subcortical olfactory regions (Figure 3A). As expected, 

different excitatory clusters adopted laminar distributions in the cortex and medium spiny 

neurons were localized to the striatum (Figures 3A and 3B); oligodendrocytes were enriched 

in the corpus callosum, VLMCs and a specific pericyte cluster (Peri-2) were enriched in 

the pia, and ependymal cells were localized around the ventricle, whereas OPCs, astrocytes, 
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microglia, and endothelial cells were distributed largely uniformly throughout the imaged 

regions (Figures 3A and 3B).

Interestingly, although the overall spatial organization of neuronal cell types appeared 

similar across different ages (Figures 3A and 3B), some non-neuronal cells showed changes 

in anatomical enrichment with age. For example, the oligodendrocyte state that emerged in 

old animals (Oligo-3) appeared nearly exclusively in the corpus callosum, whereas Oligo-1 

and Oligo-2, albeit being enriched in the corpus callosum, could be also found throughout 

the imaged regions (Figure 3C). Likewise, the aging-related Astro-2 cluster primarily 

appeared in the corpus callosum, whereas Astro-1 adopted a complementary distribution 

depleted in corpus callosum in young-adult and old animals (Figure 3D), suggesting a shift 

in astrocytic cell state in the corpus callosum as the animal aged. Different microglial and 

endothelial clusters, on the other hand, were more or less evenly distributed throughout all 

anatomical regions (Figures 3E and 3F).

In addition, certain non-neuronal cell types exhibited a tendency to be spatially colocalized. 

Specifically, vascular cells (endothelial cells, pericytes, and VLMCs) showed a tendency 

to be proximal to each other, and this tendency increased with age, primarily between 

juvenile and young-adult animals (Figure S3), which is likely a reflection of the maturation 

of vascular structures during late-stage development or activity-dependent growth and/or 

remodeling of vascular structures.8 Moreover, macrophages tended to be enriched near 

vascular cells and this tendency also increased with age, but primarily between young-adult 

and old animals (Figure S3), likely due to an aging-related inflammatory response. A similar 

trend was also observed for microglia, albeit to a lesser degree (Figure S3).

Age-related changes in the gene-expression profiles of individual cell types

Next, we examined how genome-wide expression profiles of individual cell types changed 

with age. To this end, we determined the number of genes that were differentially expressed 

between juvenile and old animals in individual neuronal and non-neuronal cell types based 

on the snRNA-seq data (Figure 4A). Non-neuronal cell types tended to exhibit a greater 

number of age-dependent differentially expressed genes than neurons (Figure 4A). Many 

age-dependent genes were differentially expressed in a cell-type-specific manner (Figure 

4B). Gene ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) 

enrichment analysis showed that genes upregulated with age in neurons, in particular in 

inhibitory neurons, were enriched in pathways associated with neurodegenerative diseases, 

oxidative response, and mitochondria function, whereas genes upregulated with age in non-

neuronal cells tended to be associated with inflammatory and immune response (Figure 4C), 

consistent with the previously observed broad upregulation of oxidative stress and immune 

pathways in the aging brain.17–19,42 Specifically, age-upregulated genes in non-neuronal 

cells included cytokines (e.g., Il33 and Il18 in oligodendrocytes), complement proteins (e.g., 

C4b in astrocytes and oligodendrocytes), and proteins involved in interferon response (e.g., 

Ifit3 and Ifitm3 in ependymal cells and pericytes) (Figure 4B).

Imputed genome-wide expression profiles of the cells measured by MERFISH allowed 

us the determine the spatial distributions of all genes across different ages. Many of the 

age-upregulated genes exhibited specific spatial patterns (see examples in Figure 4D). We 

Allen et al. Page 6

Cell. Author manuscript; available in PMC 2023 March 18.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



systematically quantified the number of genes differentially expressed between juvenile 

and old animals for each major cell type in individual anatomical regions and observed 

spatial heterogeneity in the total number of genes upregulated or downregulated with age 

even among cells of the same type (Figures 4E and S2E). In particular, oligodendrocytes, 

astrocytes, and microglia all exhibited the greatest number of differentially expressed genes 

with age in the white matter of the corpus callosum relative to other anatomical regions.

To further investigate age-related changes in gene expression in non-neuronal cell types, we 

performed gene-gene correlation analysis and identified groups of genes within each cell 

type whose expression showed correlated variations with each other and hence likely belong 

to the same gene regulatory networks. This analysis revealed many groups of genes that 

showed correlated expression, referred to here as gene modules, within oligodendrocytes, 

astrocytes, and microglia (Figure S4). Many of these gene modules showed up- or 

downregulation in expression with age (Figure S4). GO or KEGG term analysis showed 

that many of these modules were related to either development or immune response, often 

capturing cell-type-specific functions. These results suggest the presence of specific gene 

regulatory networks that function in a cell-type-specific and age-dependent manner.

Of note, since the snRNA-seq measurements were performed on juvenile and old animals 

only, but not on young-adult animals, the observed changes in gene expression described 

in this section could thus be due to either late development or aging. Indeed, both types of 

changes were observed.

Age-dependent activation of glial and immune cells

For microglia and astrocytes, we observed that the genes highly upregulated with age 

overlapped substantially with genes that have been previously reported as being upregulated 

in the activated (or “reactive”) state of these cell types (e.g., Gfap and C4b for astrocytes; 

B2m and Lyz2 for microglia).25,29,40,43 These activated astrocytes and microglia have been 

observed in both healthy and diseased brains, often responding to brain injury, inflammation, 

or degeneration.6,11,13,15,16,44 Microglial and astrocytic activation has also been reported in 

aged rodent and human brains,25–29 but how such activation depends on the spatial context 

remains unclear.

To quantify the activation of these cell types and determine the spatial distributions of 

activated cells, we scored the activation levels of astrocytes and microglia imaged by 

MERFISH using genes previously shown to be specific for activated cells (STAR Methods). 

The activation scores for both astrocytes and microglia increased on average with age 

(Figure 5A). The astrocytic and microglial clusters enriched in old animals (Astro-2 and 

Micro-3) had higher activation scores than the other clusters of the same cell type (Figure 

5B).

Notably, astrocytes and microglia exhibited distinct spatial signatures in their activation 

patterns. Astrocytes showed more pronounced spatial heterogeneity in activation, with the 

highest level of activation in the corpus callosum, as well as relatively strong activation 

near the ventricle and pia, but weaker activation in the cortex (Figures 5C and 5D). This 

spatial pattern was already apparent in juvenile and young adult animals and became more 
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pronounced in old animals. Microglia activation, on the other hand, was more uniform 

across different regions, with hardly any spatial heterogeneity in juvenile and young adult 

animals (Figures 5C and 5D). As the animal aged, microglia activation increased more or 

less uniformly across different regions except for cells in the corpus callosum and near the 

ventricle, which showed a higher level of activation (Figures 5C and 5D).

Microglia and astrocytes may be activated by pro-inflammatory cytokines and chemokines 

that circulate in the blood45 or are released by brain-infiltrating immune cells,15 and we 

observed enrichment of macrophages near vascular cells in old animals (Figure S3). This 

observation prompted us to further examine whether the activation levels of astrocytes and 

microglia depended on their distance to vascular cells that separate the bloodstream (e.g., 

endothelial cells) or cerebrospinal fluid (e.g., VLMCs) from the interior of the brain. In 

addition, since we observed that several genes involved in inflammatory response and innate 

immune signaling (Il18, Il33, and C4b) were upregulated in oligodendrocytes (Figure 4B), 

we also examined the dependence of astrocyte and microglia activation on the distance to 

oligodendrocytes.

These dependencies were notably different between astrocytes and microglia. Astrocyte 

activation exhibited a strong dependence on the proximity to VLMCs in both young 

and old animals, and a dependence on the proximity to oligodendrocytes that increased 

substantially with age (Figure 5E). On the other hand, microglia did not show a substantial 

preference for activation near vascular cells, but aging-induced activation of microglia 

showed a strong dependence on their proximity to oligodendrocytes (Figure 5E). Moreover, 

we scored the inflammation level of oligodendrocytes using the expression levels of 

Il33, Il18, and C4b and observed that within the corpus callosum, the aging-induced 

activation levels of astrocytes and microglia were correlated with the inflammation level 

of nearby oligodendrocytes (Figure 5F), suggesting that the dependence on the proximity 

to oligodendrocytes was not simply a reflection of stronger activation of astrocytes and 

microglia in the corpus callosum but is likely related to the inflammatory response of 

oligodendrocytes over aging. The activation levels of astrocytes and microglia in the corpus 

callosum were also correlated with each other (Figure 5F).

The above results suggest multiple different mechanisms of non-neuronal cell activation, 

two of which showed strong spatial dependence: (1) activation of astrocytes near the surface 

of the vascular structures separating the cerebrospinal fluid and the brain, potentially caused 

by factors derived from cerebrospinal fluid, and (2) activation of microglia and astrocytes 

near oligodendrocytes in the corpus callosum. Only the second mechanism appeared to 

be aging specific. Consistent with the notion of two different activation mechanisms, the 

molecular signatures of activated astrocytes near the pia were different from those in the 

corpus callosum (Figure S5).

Activation of glial and immune cells in response to systemic inflammatory challenge

The activation of astrocytes and microglia with age, reminiscent of brain inflammation, 

raises an interesting question as to how these age-related states compare with those induced 

by systemic inflammation. Peripheral administration of LPS is widely used to model 

brain inflammation associated with neurodegenerative disease.46 Although LPS itself is 
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thought not to cross the blood-brain barrier, systemic release of cytokines and chemokines 

by peripheral immune cells upon LPS administration can broadly activate microglia and 

astrocytes throughout the brain.25,47

We injected mice at the three ages (~1 month, ~6 months, and ~21 months postnatal) 

with LPS (Figure 6A), euthanized the animals 24 h after LPS injection, and performed 

MERFISH measurements using our cell type and aging gene panels. ~350,000 cells passed 

quality control analysis, and we classified these cells by integrating the LPS dataset with 

the normal brain MERFISH dataset described earlier and transferred cell-type annotations 

without re-clustering (Figures 6B and S6A).

We observed a high degree of similarity between untreated and LPS-treated mice in terms of 

both the composition (Figures S6A–S6C) and the global spatial organization (Figure S6D) 

of the cell types. However, compared to untreated animals, LPS-treated animals showed a 

higher degree of enrichment of macrophages near vascular cells (Figure S6E), similar to that 

observed over the course of normal aging (Figure S3).

LPS induced substantial changes in the gene expression in a cell-type-specific manner, 

and some of the upregulated genes overlapped with the genes that showed age-related 

upregulation. To quantify these effects, we compared the extent to which specific genes were 

upregulated by LPS treatment and with age in the MERFISH data (Figure 6C and S6F). 

These analyses revealed both similarities and differences between LPS-induced changes and 

age-dependent changes. Many of the genes involved in innate immune response that were 

upregulated with age were also upregulated in responses to LPS (Figures 6C and S6F). 

There were, however, substantial quantitative variations in the relative extent of upregulation 

under the two conditions. For example, C4b was highly upregulated with age and further 

upregulated by LPS treatment, consistent with previous observations in astrocytes using bulk 

RNA-seq;25 Il33 was strongly upregulated with age, whereas LPS treatment induced only 

very small additional upregulation of this gene; Rsrp1 was more strongly upregulated in 

response to LPS (Figure 6D). There was also a subset of immune-response-related genes 

that were only substantially upregulated under one of the two conditions, according to the 

criteria that we used to define substantial upregulation (Figure 6C).

We also compared the activation patterns of astrocytes and microglia under LPS treatment 

and with those induced by aging. LPS increased the activation of astrocytes and microglia 

in animals at all ages (Figure 6E). Astrocytes were preferentially activated by LPS in the 

corpus callosum and near the pia and ventricle, whereas microglia were largely uniformly 

activated by LPS across all regions (Figures 6E, 6F, and S6G). Moreover, in juvenile and 

young adult animals, the activation of microglia by LPS did not depend on the proximity 

to oligodendrocytes or VLMCs, whereas the activation of astrocytes showed a strong 

dependence on the proximity to VLMCs and a weak dependence on the proximity to 

oligodendrocytes (Figures 6G, 6H, and S6H). In old animals, the dependence of microglia 

and astrocyte activation on the proximity to oligodendrocytes became even weaker in LPS 

treated animals than in untreated animals (compare Figure S6H to Figure 5E), potentially 

because the distance dependence of the age-related activation is masked to some extent 

by the distance-independent activation by LPS. We note that although the untreated and 
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LPS-treated mice were part of separate animal cohorts, the cohort-to-cohort variation was 

substantially smaller than the differences observed between +LPS and −LPS conditions 

(Figure S7).

Taken together, these results showed interesting commonality and differences between age- 

and LPS-induced activations of non-neuronal cells: while both conditions induced spatially 

heterogeneous activation of astrocytes with enrichment near the cerebrospinal-fluid-brain 

barriers and dispersed activation of microglia, aging uniquely induced microglia activation, 

and potentially related increase in astrocyte activation, near oligodendrocytes in the corpus 

callosum.

DISCUSSION

Many hypotheses have been suggested for the causes of brain function decline with age, 

ranging from changes in synaptic connectivity or physiology2 to senescence of glial and 

immune cells and the role of circulating inflammatory factors.48 Previous transcriptomic 

studies have revealed widespread changes in cell state in specific cell types with age, with 

many of these studies highlighting a role for increased inflammation as a key aspect of 

brain aging.17–20,25–30 However, to understand how these changes may impact specific 

brain functions and to gain insights into the mechanisms underlying age-related functional 

decline, it is crucial to characterize both the molecular and cellular signatures and the spatial 

locations of these changes within the brain.

Here, we used spatially resolved single-cell transcriptomics to systemically uncover changes 

in the molecular signatures and spatial organizations of brain cells in the mouse frontal 

cortex and striatum over the animal’s lifespan. By integrating snRNA-seq and MERFISH 

data, we generated a spatially resolved cell atlas of the aging brain with a genome-

wide expression profile associated with each cell. We observed more pronounced, and 

qualitatively different, age-induced changes in non-neuronal cells compared to neurons, and 

these changes in non-neuronal cell exhibited specific spatial patterns.

At the molecular level, many of the genes upregulated with age in non-neuronal cells 

were related to activation of inflammatory pathways associated with innate immunity, while 

neuronal cell populations displayed different transcriptional changes, many of which related 

to neurodegenerative diseases, oxidative stress, and mitochondria functions. Immune cells 

and secreted factors such as cytokines are widely involved in the maintenance of tissue 

homeostasis.7 Hence, the observed upregulation of genes related to inflammation and innate 

immunity in immune and glial cells within the brain could be an indication of dysregulated 

tissue homeostasis that may broadly affect the function of the nervous system.

While the spatial organization of neurons were largely stable with age, we observed 

notable spatially dependent changes in the cell states of non-neuronal cells, with specific 

oligodendrocyte and astrocyte states emerging in the corpus callosum of the aging brain. 

Interestingly, inflammatory activation of microglia and astrocytes during aging showed 

distinct spatial patterns: both cell types exhibited the strongest activation in the corpus 

callosum, a location that also showed strong inflammatory changes of oligodendrocytes, 
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whereas astrocytes also showed increased activation near the pia. Overall, astrocyte 

activation appeared to be more spatially heterogeneous than microglia activation. Taken 

together, these results highlight the white matter of the corpus callosum as a hotspot of 

age-associated inflammatory changes in the brain.

Previous MRI studies in humans have revealed that prefrontal white matter is highly 

susceptible to age-related reduction in volume,49 and that the degree of white matter changes 

are associated with cognitive decline.50 Electron microscopy studies of non-human primate 

brain aging have revealed major alterations specifically in the white matter, particularly in 

the disruption of the myelin sheath.51 White-matter microglia reactivity has also been related 

to aging52 and diseases.53 Expanding upon these findings, our results suggest that changes 

in the oligodendrocytes and myelinated axons, and their associated microglial and astrocytic 

reactivity in the white matter, may be an important factor in age-associated cognitive 

deficits. Our observations that the activation levels of microglia and astrocytes in the corpus 

callosum are correlated with each other and with the inflammation level of oligodendrocytes 

marked by cytokines like Il33 further suggest potential molecular mechanisms underlying 

this inflammatory activation. In one scenario, the elevated expression of pro-inflammatory 

cytokine Il33 in aged oligodendrocytes may activate microglia through the Il33 receptor, 

which is known to be expressed in microglia.54 In a second and potentially related 

model, excessive myelin degradation can induce activation of phagocytosing microglia that 

become overloaded with myelin fragments.52,55 In both scenarios, activated microglia can 

in turn activate astrocytes through secretion of pro-inflammatory cytokines and complement 

proteins.40 Activated astrocytes and microglia may in turn exacerbate oligodendrocyte and 

myelin degeneration.40,56

Our result further showed that microglia and astrocyte activation induced by aging exhibited 

both similarities to and notable differences from those induced by systemic inflammatory 

challenge. On the one hand, many of the same genes were upregulated both by acute LPS 

treatment and during aging, consistent with previous observations of similar brain responses 

to aging and LPS treatment in terms of bulk expression of pro-inflammatory cytokines 

and markers of activated states of those cell types.25,57–60 On the other hand, we also 

observed differences in cell-state changes induced by aging and LPS treatment in both 

gene-expression and spatial patterns. In particular, activation of microglia and astrocytes 

associated with the inflammation of oligodendrocytes in white matter of the corpus callosum 

was uniquely observed in the aging brain. Identifying the molecular mechanisms underlying 

these commonalities and differences will require further mechanistic investigation of the 

roles of specific cytokines and other signaling pathways in the brain. Indeed, these two 

processes may intersect: intrinsic aging-related degenerative processes within the brain, 

which locally disrupt tissue homeostasis, may prime cells into a pro-inflammatory state, 

which could then be exacerbated by systemic factors.45

The functional consequences of the disruptions to non-neuronal cellular homeostasis 

on neural circuits remain to be investigated. Many of the genes that we observed to 

be upregulated during aging, such as interleukins and complement proteins, have been 

shown to play a crucial role in regulating neural circuit organization and function via 

interactions between neurons and non-neuronal cells during development.54,61 Our cell atlas 
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of the aging brain could facilitate future studies aiming to determine whether spatially 

localized upregulation of these molecules with age in turn causes localized disruptions 

to neural circuit function. Integrating these studies in mice with spatial transcriptomic 

measurements in humans in multiple conditions (normal aging, acute brain injuries, as 

well as neurodegenerative disorders) may reveal how the inflammatory activation of 

non-neuronal cells contributes to cognitive impairment associated with advanced age and 

diseases at the neuronal and circuit levels.

Limitations of the study

Because we did not perform snRNA-seq measurements on LPS-treated mice, our 

comparison of the effects of normal aging and acute inflammatory challenge by LPS was 

limited to the genes measured in our MERFISH panel. In addition, we only measured female 

mice, and future comparison between female and male mice could capture sex-specific 

changes in brain aging. Finally, this study was performed only on the frontal cortex and 

striatum. Extension of the study to the whole brain may capture a more complete picture of 

brain aging and identify differences between brain regions.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Xiaowei Zhuang 

(zhuang@chemistry.harvard.edu).

Materials availability—Oligonucleotide encoding probe sequences used for MERFISH 

imaging can be found in Table S2. Oligonucleotide readout probe sequences used for 

MERFISH imaging can be found in Table S3. These probes or templates for making these 

probes can be purchased from commercial sources, as described in the Key resources table.

Data and code availability

• snRNA-seq data reported in this work are available at NCBI GEO data 

repository (GSE207848). MERFISH and snRNA-seq data reported in this work 

are available at CELL x GENE repository (https://cellxgene.cziscience.com/

collections/31937775-0602-4e52-a799-b6acdd2bac2e).

• All original analysis code generated in this work is available at: https://

github.com/ZhuangLab/SpatialBrainAgingCell22.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—Female C57BL6/J mice were used in this study. Mice were obtained from 

Jackson Laboratory at an age one week younger than the target age for sacrifice [~1-month 

(4-week), ~6-month (24-week), and ~21-month (90-week) postnatal], and then housed at 

Harvard University Animal Facility for 1 week to acclimate before sacrifice. Mice were 
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maintained on a 12 h light/12 h dark cycle (14:00 to 02:00 dark period) at a temperature of 

22 ± 1°C, a humidity of 30–70%, with ad libitum access to food and water. Animal care and 

experiments were carried out in accordance with NIH guidelines and were approved by the 

Harvard University Institutional Animal Care and Use Committee (IACUC).

METHOD DETAILS

Single-nucleus RNA-sequencing—Female mice aged 4 weeks or 90 weeks old were 

anesthetized with isofluorane and then acutely decapitated. Their brains were quickly 

harvested and cut into hemispheres and each hemisphere was frozen immediately on dry 

ice Optimal Cutting Temperature Compound (OCT, Fisher HealthCare) and then stored at 

−80°C until sectioning. Brains were taken from storage at −80°C and warmed to −18°C in 

a cryostat (Leica) for 20 min before sectioning. Sections were discarded until the beginning 

of frontal cortex was apparent. Brains were then blocked on the cryostat using a razor 

blade to a region containing frontal cortex and striatum. 100 μm coronal sections were then 

collected approximately from A/P +2 mm to A/P +1 mm, relative to bregma. The resulting 

sections were collected in an Eppendorft tube and stored at −80°C until snRNA-seq library 

preparation.

For snRNA-seq library preparation, nuclei were dounced in Nuclei EZ Prep nuclei extraction 

buffer (Sigma) + 1% Rnase Inhibitor. Nuclei were then spun down, filtered through a 70 μm 

filter, stained with DAPI, and sorted on a FACS machine (BD FacsAria) to separate nuclei 

from debris. The resulting clean nuclei preparation were then counted and encapsulated on 

a 10X Genomics Chromium machine, using the 3’ Transcriptome V3.1 kit (10X Genomics). 

After encapsulation, the resulting libraries were reverse transcribed, amplified as cDNA, 

fragmented, and amplified as a final library following the manufacturer’s instructions. The 

resulting libraries were sequenced on a NovaSeq S4 flowcell (Illumina) to a target depth of 

~50,000 reads per nucleus.

snRNA-seq data analysis—Raw reads were mapped to the mm10 mouse reference 

genome and demultiplexed to generate a per-cell count matrix using CellRanger pipeline 

(10X Genomics). The resulting data were analyzed in Python using standard methods 

implemented in the package Scanpy. Briefly, putative doublets were first removed using 

Scrublet.63 Cells with <2,500 UMIs per cell and <1,000 genes per cell were removed. 

Genes detected in <3 cells were removed. Following standard procedures in Scanpy, per-cell 

counts were normalized to sum to 104 counts per cells and log-transformed. A multi-level 

clustering approach was taken, where the cells were first clustered into major cell types 

then into clusters within those cell types as described in Figure S1A. Briefly, at each level 

highly variable genes were determined and included in the per-cell expression matrix, the 

total UMI number per cell and expression of mitochondrial genes were regressed out, and 

the resulting residuals were Z-scored. Principal component analysis was used to reduce 

the dimensionality to 50 principal components. A nearest neighbor graph was computed 

between cells using these principal components, and Leiden clustering was applied to 

separate the cells into distinct clusters.
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First all cells were clustered into neurons and non-neuronal cells. Within the neurons, 

cells were clustered into inhibitory and excitatory neurons. Inhibitory neurons were further 

subclustered into medium spiny neurons (MSNs) and non-MSNs. Non-neuronal cells 

were subclustered into astrocytes, microglia, macrophages, oligodendrocytes, pericytes, 

vascular leptomeningeal cells (VLMCs). Each major cell type (excitatory, inhibitory, 

MSN, astrocytes, microglia, macrophages oligodendrocytes, pericytes, VLMCs) was then 

subclustered to obtain the final list of cell clusters.

Gene selection for MERFISH measurements—Genes were selected for MERFISH 

using a combination of automated and manual approaches. First, to identify age-related 

genes, linear regression was used to identify genes that were differentially expressed 

between two different ages (4-week and 90-week postnatal) in individual cell types or 

clusters determined by snRNA-seq. Briefly, using statsmodels, a Generalized Linear Model 

with a Negative Binomial link function was fit to the log-transformed UMI counts per cell 

for each gene yi:

yi C(age) + log10(total_counts) + intercept + ε

where C(age) is a binary categorical variable with the 4-week value set to be the reference 

level (i.e. C(4-week) = 0) and the C(90-week) value determined from the model. This model 

was fit separately for each cell type or cluster, which was compared with a null model that 

only accounts for technical variation in the total molecule counts per cell:

yi log10(total_counts) + intercept + ε

A likelihood ratio test was then computed between the full and reduced models to determine 

a p-value. These p-values were corrected for multiple hypothesis testing across all genes in 

all cell types or clusters to give the FDR-adjusted p-values, and genes with an FDR-adjusted 

p-value <10–6 were considered. For each cell type and cluster, the genes differentially 

expressed between the two ages were sorted by the fitted C(90-week) value, and the top N 

genes with at least C(90-week) > 1.5 were included in the aging gene panel. For each major 

cell type, we included 5 genes and for each fine-leaflet cell cluster we included 2 genes. This 

approach attempts to balance the gene panel across all cell types and clusters, even if certain 

cell types or clusters may have more or fewer total numbers of differentially expressed genes 

with age.

To identify cell-type-marker genes, marker genes were identified for a particular cell 

population (cell type or cluster) using a one-vs-all approach. For each cell population, a 

t-test was performed for each gene between the cells within the cell population and all other 

cells not in that population. The resulting p-values were corrected for multiple hypothesis 

testing to give FDR-adjusted p-value. A gene was identified as a cell-type marker for a 

certain cell population if it satisfy the following conditions: i) it was expressed in at least 

40% of cells within the specified cell population, ii) it had an FDR-adjusted p-value <0.05, 

iii) it had a gene expression in the specified cell population that was at least 2-fold higher 

than the average expression in all cells not in that population, and iv) it was expressed in a 
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fraction of cells within the specified cell population that was at least three times higher than 

the fraction of cells not in this population that expression the gene. Finally, the marker genes 

for each cell population were sorted by fold change in expression relative to the cell outside 

the cell population, and the top 15 marker genes for each cell population were then saved 

and used for marker selection. To select the final set of markers, we greedily added marker 

genes to the list such that each cell type or cluster had at least two marker genes included in 

the final gene panel.

In addition to these markers, known cortical layer markers,36 genes related to 

microglial16,24,43 and astrocyte25,40 activation, broad transcriptomic markers of aging,18 and 

markers for various immune cell types (T cells, B cells, macrophages)7,68,69 were curated 

from the literature and included. In total, 212 genes were included in the cell-type-marker 

gene panel and 204 genes were included in the aging gene panel.

Design and construction of MERFISH encoding probes—After the aging and cell-

type-marker MERFISH gene panels were selected, a 20-bit code was created for the gene 

panels (Table S1). Briefly, a 20-bit Hamming-weight 4 code was generated by first listing 

all possible combinations of 4 “on” bits embedded within 20 bits. This list was shuffled, and 

the first bit combination was randomly selected as the initial barcode. Additional barcodes 

were then added from this list by iterating through the other randomly shuffled barcodes and 

greedily adding to the codebook each additional barcode that had a Hamming Distance of 

at least 4 from all barcodes currently in the codebook. A collection of 500 such randomly 

sampled codes was generated, and each was scored on the total number of barcodes and 

the variance of number of barcodes utilizing each bit. A 20-bit, Hamming Distance 4 and 

Hamming-weight 4 code with the lowest variance that included at least 200 codewords was 

then used for both libraries, resulting in a 223-codeword final codebook.

Next, individual genes were assigned to barcodes in the codebooks. This assignment was 

initially random, then optimized to increase the average expected uniformity of the density 

of molecules per cell that were detected in each bit. This optimization was performed 

iteratively, using a simulated annealing algorithm to maximize the uniformity of expression 

across bits on average across all cell types.

First, we estimated the expected total number of molecules per cell for each bit as the 

sum of the expression (determined by snRNA-seq) of genes with barcode reading “1” at 

that bit. This was computed for each cell type, and the weighted average across cell types 

was computed weighted by the cell abundance in individual cell types. Individual gene 

assignments to barcodes were then swapped, and the average expression per cell per bit 

was re-computed. Assignment swaps that decreased the variance across bits were kept. This 

process was repeated until the algorithm converged when the variance stopped decreasing.

For each gene, we then designed a total of 92 encoding probes targeting that gene’s mRNA 

sequence (Table S2). The encoding probes were designed as previously described.70 Briefly, 

we selected regions with GC content between 30 and 70%, melting temperature Tm within 

60–80°C, isoform specificity index between 0.75 and 1, gene specificity index between 0.75 

and 1, and no homology longer than 15 nt to rRNAs or tRNAs. For each library, each of the 
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20 bits was assigned to a 20-nt three-letter (A, T, C) readout sequence. Each encoding probe 

was constructed by concatenating the 30-nt target region with three 20-nt readout sequences 

for each probe. The readout sequences for each gene were randomly shuffled across all 92 

encoding probes for that gene. The encoding probes additionally contained a 20-nt reverse 

transcription primer sequence at the 5’ end and a T7 promoter at the 3’ end, which also 

functioned as PCR primer sequences.

MERFISH encoding probe library and readout probe preparation—The encoding 

probe library was synthesized using large-scale arrayed oligo synthesis (Twist Biosciences) 

and then amplified, as previously described.70 Briefly, the initial library was amplified using 

limited cycle PCR (Phusion Polymerase, NEB) monitored via qPCR. The library was then 

converted to RNA via in vitro T7 transcription (HiScribe T7 Quick High Yield Kit, New 

England Biolabs) from a T7 promoter integrated into the PCR product. The resulting RNA 

product was purified (RNA Clean and Concentrate, Zymo Research) and reverse transcribed 

(Maxima H– Reverse Transcriptase, ThermoFisher). The RNA in the resulting RNA:DNA 

hybrid was degraded using alkaline hydrolysis, and the final ssDNA product was first 

desalted via buffer exchange through a 7K MWCO desalting column (ThermoFisher) then 

concentrated using a phenol:chloroform extraction and ethanol precipitation, resulting in a 

5–10 nM/probe final library.

For the 416-gene panel used in this study, 40 readout probes (Table S3) were used, 

each complementary to one of the 40 readout sequences on the encoding probes. For 

readout, the first twenty readout probes correspond to the 20 bits of the code used for 

the cell-type-marker gene panel and the remaining twenty readout probes correspond to 

the 20 bits of the code used for the aging-related gene panel. Each readout probe was 

conjugated to one of the two dye molecule (Alexa Fluor 750 or Cy5) via a disulfide 

link-age, as previously described.70 The readout probes were obtained from Integrated 

DNA Technologies and resuspended immediately in Tris-EDTA (TE) buffer, pH 8 (Thermo 

Fisher), to a concentration of 100 μM, and stored at −20°C until use.

Tissue sample preparation for MERFISH—Brains were prepared as described for 

snRNA-seq, with the addition of mice at the age of ~6-month (24-week) postnatal without 

LPS treatment, and mice at the ages of ~1-month (4-week), ~6-month (24-week), and 

~21-month (90-week) postnatal following LPS injection. Sectioning was performed on a 

cryostat at −18°C. slices were removed and discarded until the frontal cortex and striatal 

target region was reached. In order to capture comparable sections across animals, starting 

from approximately A/P +2 mm relative to bregma, every other 10 μm section was captured 

onto a set of 6–8 lysine-coat silanized coverslips for MERFISH imaging, with each coverslip 

ultimately containing 3 to 4 individual sections. The coverslips were cleaned, silanized, 

and treated with poly-lysine as previously described.36 The same anatomical region was 

identified for imaging post hoc after sample preparation, before the start of MERFISH 

imaging.

Tissue sections were fixed in 4% paraformaldehyde (Electron Microscopy Sciences) for 20 

min, washed three times in 1 × D-PBS, and then stored in 70% EtOH (Koptec) at 4°C for at 

least 18 h to permeabilize the tissue. Tissue slices from the same mouse were cut at the same 
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time and distributed onto 6–8 coverslips; multiple mice were sectioned at the same time. 

Coverslips were stored in 70% EtOH for less than two weeks until each biological replicate 

was successfully imaged once.

The tissue sections were stained with MERFISH encoding probes as previously described.71 

Briefly, the samples were removed from 70% EtOH and washed with 2× saline sodium 

citrate (SSC) three times. We then removed excess 2× SSC by blotting with a Kimwipe 

and inverted the coverslip onto a 50 μL droplet of encoding probe mixture in a 

Parafilm-coated Petri dish. The encoding probe mixture contained approximately 1 nM 

of each encoding probe, 1 μM of polyA-anchor probe (Integrated DNA Technologies) 

in 2× SSC with 30% v/v formamide, 0.1% wt/v yeast tRNA (ThermoFisher), 10% v/v 

dextran sulfate (Sigma), and 1% v/v murine Rnase inhibitor (New England Biolabs). 

The polyA-anchor probe containing a mixture of DNA and LNA nucleotides (/5Acryd/

TTGAGTGGATGGAGTGTAATT+TT+TT + TT + TT + TT + TT + TT + TT + TT + T, 

where T+ is locked nucleic acid, and/5Acryd/is 5’ acrydite modification) was hybridized to 

the polyA sequence on the polyadenylated mRNAs, allowing these RNAs to be anchored 

to a polyacrylamide gel as described below. The sample was then incubated for 36–48 h at 

37°C.

After hybridization, the samples were washed in 2× SSC with 30% v/v formamide for 

30 min at 47°C for a total of two times to remove excess encoding probes and polyA-

anchor probes. Tissue samples were cleared to remove lipids and proteins that contribute 

fluorescence background, as previously described.71 Briefly, the samples were embedded 

in a thin 4% polyacrylamide gel and were then treated with a digestion buffer of 2% 

v/v SDS(Thermo Fisher), 0.5% v/v Triton X-100 (Sigma) and 1% v/v proteinase K (New 

England Biolabs) in 2× SSC for 36–48 h at 37°C. After digestion, the coverslips were 

washed in 2× SSC for 30 min for a total of four washes and then stored at 4°C in storage 

buffer of 2× SSC, 1% v/v murine Rnase inhibitor (New England Biolabs) before imaging.

MERFISH IMAGING

We used a custom-built imaging setup in this study as previously described.62 All buffers 

and readout-probe mixtures were flowed onto the sample using a home-built, automatic 

fluidics system as previously described.62 Briefly, the samples were stained with 1 

μg/mL Hoechst 33,342 (ThermoFisher) and then loaded into a commercial flow chamber 

(Bioptechs) with a 0.75-mm-thick flow gasket. The first MERFISH round, containing both 

the first two readout probes labeled with Cy5 and Alexa Fluor 750, as well as a probe 

complementary to the polyA anchor labeled with Alexa Fluor 488, were then stained on 

the microscope. For each hybridization round, the fluorescent probes were hybridized in a 

buffer containing 2× SSC, 10% v/v ethylene carbonate (Sigma), and 0.1% Triton X-100, 

and were diluted to a final concentration of 3 nM. The samples were stained for 15 min, 

and then washed with readout probe buffer. Finally, imaging buffer was flowed into the 

chamber. The imaging buffer consisted of 2× SSC, 10% w/v glucose (Sigma), 60 mM 

Tris-HCl pH8.0, ~0.5 mg/mL glucose oxidase (Sigma), 0.05 mg/mL catalase (Sigma) 50 

μM trolox quinone (generated by UV irradiation of Trolox, 0.5 mg/mL 6-hydroxy-2,5,7,8-
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tetramethylchroman-2-carboxylic acid (Trolox, Sigma), and 0.2% v/v murine RNAase 

inhibitor (New England Biolabs).

After the readouts for the first round were hybridized, the sample was imaging with a low 

magnification objective (CFI Plan Apo Lambda ×10, Nikon) with 405-nm illumination to 

produce a low-resolution mosaic of the sections in the Hoeschst channel. We used this 

mosaic to generate a grid of tiled fields-of-view (FOV) covering the relevant areas of frontal 

cortex and striatum. We then switched to a high-magnification, high-numerical aperture 

objective (CFI Plan Apo Lambda ×60, Nikon), and imaged each FOV with a 7-plane z stack 

with 1.5 μm spacing between the adjacent z-planes to cover the entire 10 μm thickness of 

the tissue section. For each FOV, we took images in the 750-nm, 650-nm, 560-nm, 488-nm 

and 405-nm channels: one image of the orange fiducial beads (560-nm) at the bottom 

z-plane, which was used as a fiducial marker to register the position of each FOV across 

multiple rounds of hybridization. For each z-plane, we took images of the readout probes 

(Alexa Fluor 750 and Cy5, 750-nm and 650-nm respectively), polyA probes (488-nm), and 

Hoeschst nuclear DNA stain (405-nm).

After the first round of imaging, the dyes were cleaved from the readout probes by 

flowing 2.5 mL of cleavage buffer (2× SSC and 50 mM of Tris (2-carboxyethyl) phosphine 

[GoldBio]) and incubating for 15 min, which cleaved the disulfide bond linking the dye to 

the readout oligonucleotide. The excess TCEP was removed by washing with 1.5 mL of 2× 

SSC.

For subsequent rounds of imaging, the same steps were carried out using readout-probe 

mixture containing 3 nM of the appropriate Alexa Fluor 750- and Cy5-labeled readout 

probes for each round.

The two gene panels (cell-type-marker panel and age-related gene panel) were imaged 

back-to-back on the same tissue sections, each gene panel was imaged in 10 rounds with two 

readout probes per round to readout the 20 bits. Each experiment took approximately 24–36 

h to image the relevant fields of view from 2–4 coronal slices.

MERFISH data processing—Imaging data were uploaded to the Harvard FAS Research 

Computing cluster and decoded using our previously published MERlin pipeline62 with 

modifications on cell segmentation as described below. This pipeline provides the gene 

identity and spatial coordinates of each decoded molecules. For cell segmentation, we 

used the ‘cyto2’ model CellPose,67 a deep learning based cell segmentation algorithm. 

This was applied only to Hoeschst-stained nuclei in order to avoid incorrect segmentation 

of neighboring cells. Decoding molecules were then assigned to the segmented nuclei to 

produce a cell-by-gene matrix that list the number of molecules decoded for each gene in 

each cell.

The cell-type-marker gene panel and aging-related gene panel were decoded separately. The 

segmented nuclei determined in these two decoding runs were then aligned by identifying 

the mutual nearest neighbor nuclei that were within 5 μm of each other. The very small 

number of nuclei that did not have a mutual nearest neighbor within this distance cutoff 

Allen et al. Page 18

Cell. Author manuscript; available in PMC 2023 March 18.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



were removed from the dataset, as potentially incorrectly segmented cells, and the remaining 

nuclei were each assigned a vector of gene expression counts that included decoding results 

from both decoding runs. During data analysis, we observed that the readout of bit #20 of 

the aging-related gene panel was consistently dim in the majority of experiments, suggesting 

that genes detected in this bit may have a reduced detection efficiency. We thus excluded 

from all subsequent analysis the 40 genes that should be detected in this bit (i.e. genes 

whose barcodes read “1” at this bit), although the major conclusions in this paper were not 

altered if we included these genes in the subsequent analysis.

After decoding, cells from all MERFISH experiments were combined into a single dataset. 

Putative doublets were removed using Scrublet. Cells were then filtered to remove all cells 

with <20 molecule counts per cell or with <5 genes detected per cell. Cells that had a 

volume <100 μm3 or a volume >3 times the median volume across all cells were removed. 

Each cell’s gene expression values were normalized by dividing by the volume of that 

cell. The total normalized gene expression was computed for each cell, and cells with total 

normalized expression in the top and bottom 2% quantile were removed. Finally, these 

normalized values were scaled such that the sum of gene expression values per cell was 

equal to 250. The gene expression values were then log-transformed and Z-scored.

Integrated clustering analysis of the MERFISH and snRNA-seq data—The 

MERFISH expression matrix was concatenated with the normalized, log-transformed, and 

Z score snRNA-seq expression matrix, which was subsetted to include only the genes in 

the MERFISH gene panels. These data were then subjected to a two-step data integration 

and batch correction process, to first correct for modality-specific bias then for batch-

specific bias using Harmony35 and BBKNN65 respectively. First, Principal component 

analysis was performed on the join data matrix. Harmony was then used to adjust the 

principal components for modality-specific (MERFISH or snRNA-seq) effects, producing 

an integrated representation in the principal component space. Second, these integrated 

principal components were then used by BBKNN to compute a batch-corrected nearest 

neighbor graph, where each batch was an experimental run of MERFISH or snRNA-seq. 

This batch corrected nearest neighbor graph was subsequently used to further reduce the 

dimensionality of the dataset via UMAP or to compute integrated clusters via Leiden 

clustering. For comparison of alternative integration methods, we also used Allcools38 

instead of Harmony to correct for modality-specific bias.

To arrive at the final set of clusters, a semi-automated multi-level clustering approach 

was performed. Similar to the clustering approach used for snRNA-seq alone, cells were 

first clustered into neurons and non-neuronal cells. The neurons were then subclustered 

into excitatory and inhibitory neurons, and the inhibitory neurons were subclustered into 

MSNs and non-MSNs. The non-neuronal cells were clustered into oligodendrocytes, OPCs, 

astrocytes, microglia, vascular cells, and immune cells. These major cell types were 

then subclustered to arrive at the final list of clusters. Briefly, for each major cell type, 

the Harmony-corrected principal components were used via BBKNN to compute a batch-

corrected nearest neighbor graph. This nearest neighbor graph was then used to perform 

Leiden clustering and to compute a UMAP plot for each major cell type. For each major 

cell type, differential gene expression was computed between each pair of subclusters using 
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a t-test and the spatial locations of each cluster were plotted for manual inspection. The few 

clusters that appeared over-segmented based on heuristic criteria (no unique differentially 

expressed genes between the two clusters, largely overlap in UMAP space between the two 

clusters, a cluster with a very small cell number intermingled with a cluster with larger 

cell number in UMAP space) were then manually merged. The final set of clusters were 

annotated based on comparison of their key marker genes and/or spatial locations with 

previously annotated datasets.36,37,72,73

Imputation of gene expression—To impute the genome-wide expression profiles of 

the cells measured by MERFISH, the gene expression profiles of the snRNA-seq cells most 

similar to each cell measured with MERFISH were averaged together. This computation 

used the PCA embedding produced through Harmony or Allcools integration to identify the 

nearest neighboring snRNA-seq cells for each MERFISH cell, using the top 30 principal 

components in the jointly embedded PCA decomposition. The expression profiles of the 

10 nearest neighboring snRNA-seq cells for each MERFISH cell was averaged together 

to produce the imputed gene expression profile for that MERFISH cell. To prevent the 

size of the dataset from exceeding available computer RAM, this imputation process was 

run on a subset of ~7,400 genes that included all highly-variable genes in neurons and 

non-neuronal cells in the snRNA-seq dataset, all genes measured by MERFISH, and all 

genes differentially expressed with age at the cell type and cluster level.

To assess the correlation between imputed results and results measured by MERFISH, 

we computed two different sets of correlation coefficients. In the first set, we calculated 

the Pearson correlation coefficient between imputed and measured spatial maps for each 

gene. For this purpose, the expression values of individual genes measured by MERFISH 

or imputed from snRNA-seq/MERFISH integration were binned at 150-μm resolution by 

computing the mean expression of that gene in all cells within a bin, in each tissue section 

separately. The Pearson correlation was then computed across all bins between the measured 

and imputed values for each specific gene. In the second set, we calculated the Pearson 

correlation coefficient between imputed and measured gene expression profiles for each cell 

type within each anatomic region. For this purpose, we identified all cells of a particular 

cell type within a particular anatomic region, determined the average Z-scored MERFISH 

gene expression value and average imputed gene expression value for each gene across those 

cells, and then computed the Pearson correlation between measured and imputed average 

gene expression profiles.

LPS injection experiment—Female C57BL6/J mice were injected intraperitoneally with 

0.5 mg/kg lipopolysaccharide (LPS) derived from Escherichia coli O 111:B4 (Sigma) 

diluted in PBS at Zeitgeiber Time 9. Animals were euthanized 24 h after injection and brains 

harvested for MERFISH analysis. LPS was titrated following reconstitution to optimize 

dosage and ensure consistent potency across experiments.

QUANTIFICATION AND STATISTICAL ANALYSIS

Brain region segmentation—In order to automatically segment anatomical regions 

across the many individual sections included in the MERFISH experiment, we developed 
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a semi-supervised method to cluster cells based on the cell type composition of their 

local spatial neighborhood. For each cell, we computed the abundance of cells from all 

clusters within a 100-μm radius of this cell, presented in the form of a vector with Ncluster 

dimensions, where Ncluster in the number of clusters. We then combined these vectors across 

all cells to form an Ncell x Ncluster matrix, where Ncell is the number of cells. We applied 

principal components analysis to this matrix to reduce the dimensionality of this matrix, 

and then applied k-means clustering to segment the cells into k = 20 spatial clusters. This 

produced an overclustered segmentation of cells in space. We then hierarchically ordered 

these spatial clusters and manually merged spatial clusters that were near each other in the 

cluster hierarchy and appeared over-segmented when their spatial profiles were plotted, to 

arrive at a final set of 8 spatial clusters, which map closely to known anatomical structures, 

including the pia, cortical layer 2/3 (L), cortical layer 5 (L5), cortical layer 6 (L6), corpus 

callosum, striatum, ventricle, and subcortical olfactory areas.

Gene module analysis—Gene modules were identified from scRNA-seq data by first 

grouping cells from each major cell type. For each group, variable genes were then selected 

and a gene-gene correlation matrix was computed by taking the first 50 singular values 

from the singular value decomposition of the gene expression matrix and computing the dot 

product of it with its transpose. This gene-gene correlation matrix was then Z-scored and 

Z-scores less than 0.1 were set to zero to sparsify the matrix. Each gene in this matrix was 

then reduced to 2 dimensions using UMAP. Genes were then clustered into modules in this 

reduced dimensional space using the DBSCAN clustering algorithm. To remove modules 

that were not associated with any genes in a statistically significant manner, we compared 

the mean gene-gene correlation per module under this clustering with a shuffled distribution 

where the module identities of the genes were randomly permuted 1000 times to determine 

the p-value. These p-values were then FDR corrected and any modules with FDR <0.1 were 

removed.

Aging-related analysis—Activation scores were computed from the normalized, log-

transformed, Z-scored gene expression values using the score_genes function in Scanpy, 

which computes the summed expression value of a set of genes minus the average 

expression of randomly selected background genes. The genes used for astrocyte activation 

were: C4b, C3, Serpina3n, Cxcl10, Gfap, Vim, Il18, and Hif3a.25,40,74 The genes used for 

microglial activation were: B2m, Trem2, Ccl2, Apoe, Axl, Itgax, Cd9, C1qa, C1qc, Lyz2, 
Ctss16,24,43. The genes used for calculating oligodendrocyte inflammation score were: C4b, 
Il33, and Il18. These inflammation-and innate-immunity-related genes showed differential 

expression in oligodendrocytes over aging.

To compute the activation scores of microglia or astrocytes as a function of distance to 

another cell type, the average activation scores of all microglia or astrocytes were computed 

as a function of distance from a reference cell type (Oligo, Endo, or VLMC). For each 

individual astrocyte or microglial cell, the nearest neighbor of a particular comparison cell 

type was identified within a radius of 80 μm of that astrocyte or microglia using a kD-tree 

search implemented in scikit-learn. The distance from the astrocyte or microglia to that 

comparison cell type was saved along with that astrocyte or microglia’s activation score. 
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The average activation score for all microglia or astrocytes were computed at 1 μm stepping 

from 0 to 80 μm, with a sliding 30-μm-wide window. Finally, the mean activation across 

this range was subtracted from each curve of the astrocyte/microglia activation score as a 

function of distance to a specific cell type. The subtracted mean activation scores for each 

condition are listed below:

Astrocyte activation:

Distance to endothelial cell dependence (Juvenile, −LPS: −0.01; Juvenile, +LPS: 0.47; 

Young adult, −LPS: 0.07; Young adult, +LPS: 0.69; Old, −LPS: 0.40; Old, +LPS: 1.05).

Distance to VLMC dependence (Juvenile, −LPS: 0.26; Juvenile, +LPS: 0.86; Young adult, 

−LPS: 0.37; Young adult, +LPS: 1.15; Old, −LPS: 0.65; Old, +LPS: 1.46).

Distance to oligodendrocyte dependence (Juvenile, −LPS: −0.03; Juvenile, +LPS: 0.46; 

Young adult, −LPS: 0.06; Young adult, +LPS: 0.64; Old, −LPS: 0.39; Old, +LPS: 1.03).

Microglia activation:

Distance to endothelial cell dependence (Juvenile, −LPS: −0.00; Juvenile, +LPS: 0.28; 

Young adult, −LPS: 0.02; Young adult, +LPS: 0.47; Old, −LPS: 0.36; Old, +LPS: 0.48).

Distance to VLMC dependence (Juvenile, −LPS: 0.05; Juvenile, +LPS: 0.34; Young adult, 

−LPS: 0.04; Young adult, +LPS: 0.53; Old, −LPS: 0.37; Old, +LPS: 0.49).

Distance to oligodendrocyte dependence (Juvenile, −LPS: −0.02; Juvenile, +LPS: 0.26; 

Young adult, −LPS: 0.00; Young adult, +LPS: 0.48; Old, −LPS: 0.38; Old, +LPS: 0.50).

Cell-cell proximity analysis—To compute the proximity frequency between two sets of 

cells, i.e. cell type A and cell type B, first the true cell-cell proximity frequency μtrue was 

computed as follows: for each cell in cell type A, the average number of cells of cell type 

B were counted within a radius of 30 μm. To compute the null distribution of proximity 

(the probability that two cell types would be within 30 μm just by chance, given their local 

density), the locations of each cell of cell type B were then randomly jittered independently 

in both spatial dimensions (x and y) using a uniform distribution over the interval (−100 

μm, 100 μm), and the number of cells in cell type B within 30 μm of each cell in cell type 

A was re-computed. This was repeated 1,000 times, to form a background distribution of 

the frequency of cell-cell proximity that would be expected to occur due to chance. The 

enrichment of cell-cell proximity between cell type A and cell type B was then computed as 

the log of the ratio between the true proximity frequency μtrue and the average background 

frequency μbackground: log2(μtrue/μbackground). A p-value for this fold change was found by 

computing the Z score distribution across the 1,000 randomizations:

Z = (μtrue − μbackground)/σbackground

P = 2(1 − CDF( Z ))
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The enrichment and p-value were computed for each pair of major cell types, and the 

resulting p-values were FDR adjusted across all cell type pairs.

Analysis of MERFISH data obtained from LPS-treated mice—To transfer cell type 

and cluster labels obtained from cells in the untreated mice to cells from mice treated with 

LPS, we took a supervised classification approach. First, the +LPS data were pre-processed 

as described earlier to remove doublets and obtain normalize, log-transformed, and Z-scored 

expression values. The −LPS and +LPS MERFISH data were then co-embedded in a joint 

principal component space using Harmony to compute the first 25 principal components. A 

multilayer perceptron classifier from sci-kit-learn was trained on the cell type and cluster 

annotations from the −LPS cells, using the first joint principal components as input. The 

classifier was then applied to the +LPS cells, to yield a final set of predicted cluster 

annotations that were used for subsequent analysis.

To identify genes differentially expression between the +LPS and −LPS conditions, for each 

gene in the MERFISH library, a model was fit using ordinary least squares that compared 

the two conditions for ~1-month (4-week) old mice. For each gene i, the average expression 

was modeled for cells in a given cell type in the +LPS and −LPS conditions using the 

following ordinary least squares model, fit to the normalize, log-transformed, Z-scored 

MERFISH expression data:

yi C(LPS) + intercept + ε

where C(LPS) is a categorical variable with the −LPS value set to be the reference level 

(i.e. C(−LPS) = 0) and the C(+LPS) value determined from the model. This was then 

compared with a null model lacking the C(LPS) categorical variable, i.e. yi ~ intercept + 

ε, to determine the gene’s FDR-adjusted p-value. Likewise, we performed similar analysis 

to determine genes differentially expression between the 4-week-old and 90-week-old mice 

without LPS treatment from the MERFISH data. To identify whether a gene was upregulated 

in response to LPS, age, or both LPS and age, the C(+LPS) or C(90-week) values for each 

gene for each cell type were computed. These values were then Z-scored across genes, and 

genes with a Z score >2 and FDR-adjusted p-value <10−4 in a particular condition was 

determined as being significant for that condition.
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Highlights

• Molecular and cellular architecture of aging frontal cortex and striatum is 

mapped

• Aging induces spatially dependent cell-state changes in non-neuronal cells

• White matter is a hotspot for aging-related glial and immune cell activation

• Aging- and LPS-induced brain inflammation exhibit similarities and 

differences
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Figure 1. Spatially resolved single-cell transcriptomic profiling of the mouse frontal cortex and 
striatum across ages
(A) Profiling of the mouse frontal cortex and striatum via integrated snRNA-seq and 

MERFISH analyses.

(B) Sampling time points for snRNA-seq and MERFISH measurements across the lifespan 

of mice.

(C) (Left) uniform manifold approximation (UMAP) visualization of cells from all 

timepoints, from both snRNA-seq and MERFISH measurements. (Right) separate UMAP of 

cells measured by snRNA-seq (top) and MERFISH (bottom). Cells are colored by cell-type 

assignment.

(D) (Left) as in (C) but with cells colored by age. Only the juvenile and old time points 

are shown. (Right) Individual UMAP plots, shown as the density of cells at each time point 

overlaid on total cell population across all three ages (gray).
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(E) Molecularly defined cell types determined from integrated snRNA-seq and MERFISH 

clustering analysis. (Top) dendrogram of the hierarchical relationship among clusters and 

number of measured cells per cluster in snRNA-seq and MERFISH. (Middle) expression 

of example marker genes for different cell types. (Bottom) fraction of cells per cluster by 

age and by modality, normalized to sampling depth such that equal representation in each 

condition will have the same fraction.

See also Figures S1 and S2 and Tables S1–S3.
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Figure 2. Changes in cell-type and cell-state composition of the mouse frontal cortex and 
striatum across ages
(A) Density of different major cell types (in cells/mm2) across the three ages. Inset shows 

magnified view of lower abundance cell types. * indicates FDR-adjusted p-value < 0.05 

(independent sample t-test) in the difference between juvenile and old animals. Data are 

presented as mean ±95% confidence interval.

(B) Fraction of cells that belong to different states of oligodendrocytes, microglia, 

endothelial cells, and astrocytes across different ages.

(C) Violin plot of expression of example genes across different states of oligodendrocytes, 

microglia, endothelial cells, and astrocytes.

See also Tables S1–S3.

Allen et al. Page 32

Cell. Author manuscript; available in PMC 2023 March 18.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Figure 3. Spatial organization of cells in the mouse frontal cortex and striatum across ages
(A) (Left) spatial segmentation of anatomical regions. (Right) spatial organization of major 

cell types at the three different ages, colored by cluster identity. Dashed lines outlining 

anatomical regions were manually traced from spatial segmentation. Scale bar: 500 μm.

(B) Fraction of cells resided in individual anatomical regions for each cell cluster at the three 

different ages. CC: corpus callosum. Olf: subcortical olfactory areas. The lower abundance 

of ependymal cells in younger animals may be due to classification as molecularly similar 

astrocytes or loss of ventricle surface during tissue sectioning.

(C–F) Spatial organizations of oligodendrocyte (C), astrocyte (D), microglial (E), and 

endothelial (F) clusters at different ages. Scale bar: 500 μm.

See also Figure S3 and Tables S1–S3.
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Figure 4. Cell-type-specific changes in molecular signatures across ages
(A) Number of differentially expressed (DE) genes between juvenile and old animals in 

individual cell clusters, with genes up- and downregulated with age shown in red and blue 

bars, respectively. DE genes were defined as genes with age-related change in log(gene 

expression) > 2 (light colored bars) or >2.5 (dark colored bars) and FDR-adjusted p-value < 

0.05 between the two ages.

(B) Age-related change in Z-scored log(gene expression) between juvenile and old animals 

for DE genes in different cell clusters.

(C) −log10(p-value) of enrichment for gene ontology (GO) biological process terms and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) terms enriched among DE genes with 

an age-related change in log(gene expression) > 2 and FDR-adjusted p-value < 0.05 between 

the two ages (juvenile and old). Only top 10 (or fewer) GO or KEGG terms with p-value < 

0.05 are listed for each major cell class.
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(D) Spatial maps of examples of DE genes across the three different ages, showing the 

expression of each gene within the indicated cell type. Gray spots indicate all other cells of 

other types.. Scale bar: 500 μm.

(E) Quantification of the number of DE genes for each major cell type as a function of 

spatial location using imputed gene expression data derived from Harmony integration. DE 

genes with an age-related change in log(gene expression) > 2 and FDR-adjusted p-values < 

0.05 are considered. Size of dot indicates total number of DE genes for a particular cell type 

within a region, and color shade of dot indicates the fraction within a particular region of 

the total number of DE genes that are differentially expressed across all regions, plotted on a 

relative scale of minimum fraction to maximum fraction across all regions.

See also Figures S2 and S4 and Tables S1–S3.
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Figure 5. Spatially heterogeneous and cell-type-specific inflammatory activation signatures of 
brain aging
(A) Activation scores of all astrocytes and microglia across the three different ages. 

Activation score is defined as the summed expression of a cell-type-specific subset of 

gene related to inflammatory activation, relative to background of randomly selected genes 

(STAR Methods).

(B) Activation scores of specific astrocyte and microglia clusters.

(C) Spatial maps of activation scores of astrocytes and microglia across the three different 

ages. Cells are colored by activation scores. Scale bar: 500 μm.

(D) Per-cell activation scores of astrocytes and microglia in different anatomical regions 

across three ages. Data are presented as boxplots, with the box showing median and 

interquartile range and the whiskers showing minimum and maximum.

(E) Average activation scores of astrocytes and microglia as a function of distance from 

neighboring oligodendrocytes, VLMCs, and endothelial cells across three ages. A constant 

that equals to the mean activation score across all distances is subtracted from each curve, 
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and these constants for different curves are shown in STAR Methods. Data are presented as 

mean (solid line) ± SEM (shade).

(F) (Left) correlation of activation scores of each microglial cell in corpus callosum with 

the average inflammation scores of oligodendrocytes within 30 μm of that microglial cell. 

(Middle) same as (left) but for astrocytes and oligodendrocytes. (Right) same as (left) but for 

astrocytes and microglia. Pearson correlation coefficients R are given.

See also Figure S5 and Tables S1–S3.
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Figure 6. Gene expression changes and activations of cells in response to systemic inflammatory 
challenge by LPS treatment
(A) Experimental scheme.

(B) UMAP of cells colored by cell types (left) or ages (right) measured by MERFISH.

(C) Genes substantially upregulated in response to LPS (magenta), age (green), or both 

LPS and age (black) for different cell types measured by MERFISH. Genes are considered 

substantially upregulated only if the change in Z-scored log(gene expression) is >2 with an 

FDR-adjusted p value <10–4. Only genes substantially upregulated in at least one condition 

for at least one cell type are shown.

(D) Spatial maps of example genes that are upregulated with age and upon LPS treatment, 

showing the expression of the indicated gene across all cells within a section. Scale bar: 500 

μm.

(E) Spatial maps of activated microglia and astrocytes across the three different ages, with 

and without LPS treatment. Cells are colored by activation scores. Scale bar: 500 μm.
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(F) Per-cell activation scores for microglia and astrocytes in different anatomical regions in 

juvenile mice with LPS treatment. Boxplots are as defined in Figure 5D.

(G) Activation scores of astrocytes and microglia as a function of distance from neighboring 

oligodendrocytes, VMLCs, and endothelial cells in juvenile mice after LPS treatment, as in 

Figure 5E. Data are presented as mean (solid line) ± SEM (shade).

(H) Correlation of activation scores of microglia and astrocytes and inflammation score of 

oligodendrocytes, as in Figure 5F, in juvenile animals treated with LPS.

See also Figures S6 and S7 and Tables S1–S3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Animals

Mouse: C57BL/6J Jackson Labs Cat# 664; RRID:IMSR_JAX:000664

Chemicals, peptides, and recombinant proteins

Formamide Ambion Cat# AM9342

20xSSC Ambion Cat# AM9763

Triton X- Sigma Cat# T8787

Glucose oxidase Sigma Cat# G2133

Phusion® Hot Start Flex 2X Master Mix New England Biolabs Cat# M0536

Maxima H Minus Reverse Transcriptase ThermoFisher Cat# EP0752

dNTP mix ThermoFisher Cat# R1121

32% Paraformaldehyde Electron Microscopy 
Sciences

Cat# 15714S

RNase inhibitor, Murine New England Biolabs Cat# M0314

1M Tris, pH 8 ThermoFisher Cat# 15568025

Catalase Sigma Cat# C3155

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid 
(Trolox)

Sigma Cat# 238813

Tris(2-carboxyethyl)phosphine (TCEP) HCl GoldBio Cat# TCEP1

Hoescht 33,342, Trihydrochloride, Trihydrate ThermoFisher Cat# H3570

Lipopolysaccharides from E. coli O 111:B4 Sigma Cat# L4391

Yeast tRNA ThermoFisher Cat# AM7119

Dextran sulfate Sigma Cat# S4030

Ethanol Decon Labs Cat# V1016

SDS ThermoFisher Cat# 15553027

Proteinase K New England Biolabs Cat# P8107S

Ethylene carbonate Sigma Cat# 676802–1L

Glucose Sigma Cat# G7021

Oligonucleotides

Readout probes Integrated DNA 
Technologies

See Table S3

Encoding oligonucleotide probe library Twist Biosciences See Table S2

Anchor probe:/5Acryd/
TTGAGTGGATGGAGTGTAATT+TT+TT + TT + TT + TT + 
TT + TT + TT + TT + T

Integrated DNA 
Technologies

N/A

Software and algorithms

Custom analysis software This paper https://github.com/ZhuangLab/
SpatialBrainAgingCell22

MERlin Xia et al.62 https://github.com/ZhuangLab/MERlin

Scrublet Wolock et al.63 https://github.com/swolock/scrublet

Anndata Virshup et al.64 https://github.com/scverse/anndata

BBKNN Polahski et al.65 https://github.com/Teichlab/bbknn

Harmony Korsunsky et al.35 https://github.com/slowkow/harmonypy
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REAGENT or RESOURCE SOURCE IDENTIFIER

Scanpy Wolf et al.66 https://github.com/scverse/scanpy

Allcools Liu et al.38 https://github.com/lhqing/ALLCools

Cellpose Stringer et al.67 https://github.com/MouseLand/cellpose

Deposited data

snRNA-seq data This paper GEO: GSE207848

snRNA-seq data and MERFISH data This paper https://cellxgene.cziscience.com/collections/
31937775-0602-4e52-a799-b6acdd2bac2e
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