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Spatial transcriptomics using multiplexed
deterministic barcoding in tissue

Johannes Wirth 1, Nina Huber1, Kelvin Yin1, Sophie Brood1, Simon Chang1,
Celia P. Martinez-Jimenez 1,2 & Matthias Meier 1,3

Spatially resolved transcriptomics of tissue sections enables advances in fun-
damental and applied biomedical research. Here, we present Multiplexed
Deterministic Barcoding in Tissue (xDBiT) to acquire spatially resolved tran-
scriptomes of nine tissue sections in parallel. New microfluidic chips were
developed to spatially encodemRNAs over a total tissue area of 1.17 cm2 with a
50 µm resolution. Optimization of the biochemical protocol increased read
and gene counts per spot by one order of magnitude compared to previous
reports. Furthermore, the introductionof alignmentmarkers allowed seamless
registration of images and spatial transcriptomic spots. Together with tech-
nological advances, we provide an open-source computational pipeline to
prepare raw sequencing data for downstream analysis. The functionality of
xDBiT was demonstrated by acquiring 16 spatially resolved transcriptomic
datasets from five different murine organs, including the cerebellum, liver,
kidney, spleen, and heart. Factor analysis and deconvolution of spatial tran-
scriptomes allowed for in-depth characterization of the murine kidney.

Single-cell transcriptomics (scT) has revolutionized the concept of
cellular heterogeneity and led to the development of comprehensive
reference maps of cells typically isolated from biopsies, tissues, and
whole organisms1–4. These methods elucidate cell-to-cell communica-
tion, and tissue architecture, which play key roles in tissue home-
ostasis, tissue repair, and disease progression. However, tissue
dissociation protocols cause loss of spatial information and alteration
of cell type proportions, removing critical information to understand
cellular crosstalk and the microenvironment.

To overcome this limitation, spatial transcriptomics (ST) has
been developed based on imaging, sequencing, or a combination
of both methodologies5. Imaging-based methods exploit in situ
hybridization probes to detect single transcripts with high spatial
resolution down to the subcellular scale; however, the need for
targeted probes limits the study to a predetermined set of genes6,7.
Instead, for sequencing-based techniques, RNAs are barcoded with
DNAmolecules to encode the spatial position; enabling, untargeted
detection of mRNAs of the whole transcriptome. While

commercially available technology like Visium Spatial resolves tis-
sue spots with diameters on the order of tens of microns, recent
technical improvements made in high-definition spatial tran-
scriptomics (HDST)8 and STEREO-seq9 resolve transcripts down to
sub-micron spot sizes. Alternative methods, including sci-SPACE10

and XYZeq11, barcode cells within the tissue before retrieval. In the
next step, nuclei or whole cells are isolated from the tissue, and
their transcriptomes are sequenced together with the positional
barcodes.

Depending on the research question, several parameters, such as
spatial resolution, detection limit, screening area, accessibility, com-
patibility with existing workflows, and costs, are weighed against each
other to select the most suitable method for an experiment. For
instance, high-resolution methods either require specialized equip-
ment tomanufacture the components and establish the analysis in the
lab, or are proprietary, which leads to higher costs. Lower resolutions
are, in turn, associatedwith the loss of single-cell resolution because of
the larger resolved spot sizes. This, however, can be compensated for
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by computationally integrating scT with ST and inferring the cell type
composition of each spot12–15.

Deterministic barcoding in tissue (DBiT-seq) is a cost-effective
and openly accessible platform to scale ST16. DBiT-seq uses micro-
fluidic channels to barcode tissue sections usingDNAoligonucleotides
and allows the integration of multi-omics information, including
antibodies17, epigenomics18, and chromatin accessibility readouts19.

In this study, we present Multiplexed Deterministic Barcoding in
Tissue (xDBiT), a method for acquiring spatially resolved tran-
scriptomes from nine fixed tissue sections in parallel. Optimization of
the chemical protocol and workflow of the DBiT-seq method led to an
increase in transcript reads and gene counts per 50× 50 µm spot. The
introduction of alignment marks onto the tissue sections enabled the
seamless acquisition of transcriptomic reads and spatial registration
with high-resolution images. Together with technological advances,
we provide an open-source computational pipeline to transform the
raw sequencing data from an xDBiT experiment into Scanpy-
compatible data file formats20,21.

To demonstrate the functionality of xDBiT, we acquired spatially
resolved transcriptomic datasets of 16 tissue sections from five dif-
ferent murine organs, including the cerebellum, liver, kidney, spleen,

andheart. Using the kidney asmodel tissue, we show that xDBiTcan be
used in conjunction with factor analysis to perform an in-depth char-
acterization of organs and identify spatially patterned genes. Finally,
we demonstrated that xDBiT can resolve rare cell types upon cell-type
deconvolution using scT data, allowing cost-efficient research projects
on spatiotemporal expression dynamics in longitudinal studies and
multi-organ comparisons.

Results
Multiplexed Deterministic Barcoding in Tissue (xDBiT)
To enable multiplexing, increase sequencing depth, and improve the
image data quality of the DBiT-seq methodology, we developed a
Multiplexed Deterministic Barcoding in Tissue (xDBiT) workflow
(Fig. 1A and Supp. Fig. 1A-G). For an xDBiT experiment, nine fresh
frozen tissue sections with a maximum area of 0.4 × 0.4mm were
positioned in a 3 × 3 grid layout on a glass substrate (Supp. Fig. 1H).
Tissue sections were fixed with PFA and the nuclei, cytoskeleton, and
selected proteins were stained using a standard immunofluorescence
protocol (see Methods). High-resolution images were acquired before
the xDBiT run to obtain high-quality images without the introduction
of artifacts from the downstream ST processing steps. Subsequently,

Fig. 1 | Multiplexed deterministic barcoding in tissue (xDBiT). A Workflow of
xDBiT: (I) Deposition of PFA-fixed cryosections with a thickness of 10 µm onto a
glass substrate in a 3 × 3matrix layout and IF staining. (II) Acquisition of high-quality
fluorescence images. (III) Reverse transcription of mRNA into cDNA in all tissue
sections with the help of a 3D-printed 9-well adapter. (IV) Spatial barcoding of the
cDNA in two sequential ligation steps. Each ligation step is performed with an
individual PDMS chip. The two chips were designed with an orthogonal serpentine
channel layout to generate a 38 × 38 spot array on the tissue sections. The channel
intersections generate a spatially encoded spots with an area of 50 µm×50 µm and
a center-to-center spot distance of 100 µm. Alignment marks to register IF images
and spatial transcriptomic coordinates are generated by filling the outermost
channels with a fluorescently labeled anti-BSA antibody. The antibody targets the
blocking reagent BSA, which was deposited on the tissue surface during IF staining.
(V) Re-imaging of the tissue section to obtain an alignment image. (VI) Lysis of the
nine individual tissues is achieved using the 3D printed 9-well adapter. (VII) Each

sample is individually indexed before sequencing. B Channel layout to generate
alignment marks for the registration of high-resolution images and spatial tran-
scriptomic spot coordinates. C Representative fluorescence images of the align-
mentmarkswith zoom-in image. Blue andwhite denoteDAPI counterstain andanti-
BSA staining, respectively. Similar results were obtained from the other eight
capture areas and from two independently run xDBiT chips. Scale bar: 500 µm.
D Schematic of the xDBiT computational pipeline. NGS reads are transformed into
a spot-gene count matrix using the ReadsToCounts script. Alignment- and high-
quality images are registered via their DAPI signal using the SIFT algorithm22 and
then aligned to the count matrix with the CountsToAnndata script. The resulting
integrated datasets are compatible with Scanpy and Squidpy analysis
pipelines20, 21, 23. PFA Paraformaldehyde, PDMS Polydimethylsiloxane, BSA Bovine
serum albumin, IF Immunofluorescence, NGS Next-generation sequencing, SIFT
Scale-invariant feature transform. Icons were created using Affinity Designer 2.
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mRNAs within tissue sections were reverse transcribed using a 3D
printed 9-well adapter (Supp. Figure 1F), which separated each section
and reduced the reaction volume to 80 µL per sample. The reverse
transcription (RevT) primer carried a hybridization site to ligate the
spatial barcodes in the followingworking steps, and a poly(T) 3′-end to
bind to and reverse transcribe all polyadenylatedmRNAs (Supp. Fig. 2).
In addition, the RevT primer contained a unique, 8-bp long sequence
to barcode the samples during the RevT reaction (Supp. Figure 2).
Analogous to DBiT-seq, spatial barcoding of the resulting cDNA was
performed using two sequentially aligned polydimethylsiloxane
(PDMS) chips. The first PDMS chip was clamped onto the tissue,
creating 38 parallel, and horizontally aligned, microchannels (50 µm ×
50 µm) on top of each tissue section, and allowing DNA barcodes to be
flushed over the tissue (Supp. Figure 1I). The DNA barcodes were
ligated to the cDNAwithin the underlying tissue and thereby encoding
the positions of the horizontally directed channels.

The second PDMS chip resembles the first chip, with the dif-
ference that the 38 microchannels run vertically over the tissue
section to barcode the cDNA in the tissue via ligation with an
identifier for the vertically directed channel. The spatial barcoding
resulted in a grid of 1444 uniquely barcoded spots, each with a
width of 50 µm. In contrast to the original DBiT-seq approach, the
microchannels were guided in serpentines over the glass substrate,
which allowed us to address nine tissue sections in parallel and
increased the scanning area from 25 to 116.64mm2 (4.66-fold
increase). Importantly, we found that dehydration of the tissue
sections with ethanol was essential to ensure the optimal attach-
ment of the PDMS chips. To enable registration of the spatial tran-
scriptomic spots to the image data, the two outermost channels
were filled with an alignment marker solution (Fig. 1B) consisting of
an anti-BSA antibody that binds to the BSA-blocked surface. After
the second round of ligation, the tissue sections were imaged again
to record alignment marks and stained nuclei (Fig. 1C). Finally, the
9-well adapter was attached to the slide to lyse the tissue sections
individually. Within xDBiT, tissue multiplexing can be achieved
after either the reverse transcription with barcoded primers or
sample retrieval by indexed library preparation.

For the analysis of xDBiT spatial transcriptomic data, we devel-
oped a 2-step computational pipeline that integrates raw next gen-
eration sequencing (NGS) reads and image data (Fig. 1D). In the first
step of the pipeline (ReadsToCounts), spatial coordinates and tran-
script information were extracted from the raw sequencing reads.
Reads without valid x- or y-barcode were discarded. After genomic
alignment, datawere transformed into a spot/gene countmatrix. In the
second step (CountsToAnndata), the SIFT algorithm22 was used to
register the high-quality and alignment images based on their DAPI
channels and calculate an affine transformation matrix. The transfor-
mation matrix was used to project the xDBiT spots onto the high-
quality image to generate an integrated AnnData file compatible with
Scanpy and Squidpy21,23 for further analysis.

xDBiT performance analysis
To demonstrate the performance improvements of xDBiT, we first
acquired ST data from murine liver sections using the standard DBiT-
seq protocol published by Liu et al. DNA read counts per spot for the
liver samples were comparable to the read counts obtained with DBiT-
seq on mouse embryo sections (Fig. 2A). The lower number of genes
per spot for the liver sample (Fig. 2B) can be explained by the highly
homogeneous cellular composition of the liver, which results in low
cell type variation per spot. In the next step,weperformedxDBiT using
two sequentially improved protocols. In the first optimization round,
we changed the chemical composition of the initial reactions of the
DBiT-seq protocol, namely, the reverse transcription and spatial bar-
coding reactions. In comparison to DBiT-seq, the reverse transcription
reaction, which generally suffers from low yields24, was performed on

whole tissue sections in the 9-well adapter at a concentration of
10 U/µL rather than inside the microfluidic channels to increase the
availability of the reverse transcriptase. Furthermore, the concentra-
tion of ligase was increased from 15 to 20U/µL. Spatial barcoding was
achieved by two sequential ligation steps, which were performed at
lower temperatures and required shorter incubation times than RevT,
thus reducing the risk of leakage between channels. Together, the
chemistry optimization resulted in a three-fold increase in both read
and gene counts per spot compared to DBiT-seq (Fig. 2A, B). In the
second optimization round, we dehydrated and dried the tissue sec-
tions before applying each of the two PDMS chips to improve the
attachment of the microfluidic channels. To fill microfluidic channels
equally, inlet ports were primed with DNA barcode solutions by cen-
trifugation and bubble traps were added at the transition of the inlets
to the microchannels (Supp. Figure 1G). Collectively, these changes
increased the read and gene counts per spot two-fold and four-fold,
respectively (Fig. 2A, B).

It is noteworthy that the structural integrity of the cryo-sections
was strongly reduced after the deterministic barcoding workflow
because of the physical alignment of the PDMS chips to the tissue and
the enzymatic treatments. Thus, to obtain high-quality image data,
which are currently underutilized by standard ST methods25, we
acquired images before and after the xDBiT workflow. While the
images before the xDBiT workflow exhibited high-quality features
(Fig. 2C I), the features in the images collected after the deterministic
barcoding steps showed lower quality (Fig. 2C II) but contained the
marks required to align the ST data (Fig. 1C). Nuclei integrity was
unaffected after the xDBiTworkflow, and thus alignment images could
be registered to high-quality images using the provided Count-
sToAnndata pipeline to transfer the positional information of the
alignmentmarks to the high-quality images (see theMethods section).

To demonstrate the quality of the spatial transcriptomic data, we
projected the raw sequencing read counts per spot onto the nuclei
images as shown exemplarily for Actb in Supp. Fig. 3A. Resulting
overlay images showed stripe artifacts consisting of rows or columns
of spots with higher or lower read counts compared to their neigh-
boring elements. These artifacts have been reported previously16 and
can be effectively removed by normalizing each spot by the total
number of reads of the respective spot (Supp. Fig. 3B).

Sample multiplexing within the xDBiT approach was achieved by
implementation of a serpentine channel design. For this, the micro-
fluidic channels were elongated and the lengths of the resulting
channels variedbetween 117.7mmand 165.7mm.Wecharacterized the
effect of the channel length on the fluid flow behavior on a PDMS chip
bymeasuring the volumetric flow rate in all 38 channels when applying
a constant vacuum of 300mbar to the outlets. Flow rates showed a
negative linear correlation with the channel length as it was expected
from the Hagen-Poiseuille equation26 (Fig. 2D). Between the shortest
and the longest channels on the PDMS chips the flow rate differed by
26.5%. Time intervals for washing steps were adjusted to the lowest
flow rate on the chip to ensure aminimal volume exchange of 15 µL per
channel.

However, the advantage of sample multiplexing with xDBiT also
carried the risk of cross-contamination between samples. To check for
potential leakage between the individual wells of the 9-well adapter
during the RevT reaction, food dye-colored aqueous solutions were
used. Within an interval of 24 h no visible cross-contaminations were
detected (Supp. Fig. 5E). Subsequently, potential cross-contaminations
occurring after the RevT step were investigated in one xDBiT experi-
ment with eight liver sections, leaving the center well of the 3 × 3 grid
empty (Fig. 2E, Methods). Analysis of the resulting sequencing reads
revealed that only 5.5 to 9.5% of the RevT barcodes were cross-
contaminations from neighboring samples (Fig. 2E, Supp. Table 4, and
Supp. Fig. 5A). Notably, from the empty well (Fig. 2E, sample B2)
the cDNA concentration was not sufficient to perform a library
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preparation for sequencing. Importantly, with the double barcoding
strategy, cross-contaminations can be removed within the Read-
sToCounts pipeline (see Methods).

Taken together, the xDBiT workflow provides a multiplexing
method for ST and paired high-quality imaging. The cost per tissue
section is on the order of 125€ (see Supp. Figure 4).

Spatially resolved multi-organ dataset with xDBiT
To demonstrate the broad applicability of xDBiT, we generated
18 spatially resolved datasets from six different murine organs,
including the kidney, heart, cerebellum, spleen, liver, and pancreas
(Fig. 3). Depending on the organ, the UMIs and genes per xDBiT spot
varied between 5000–20,000 and 1000–5000, respectively (Fig. 3A,

B). The pancreas samples showed low UMI and gene counts and were
therefore excluded from further analysis (Supp. Fig. 5F). The sequen-
cing depth for all organ samples was close to saturation, which was
evaluated by computational subsampling analysis (Supp. Fig. 6).
Samples were only barcoded by indexing primers during the library
preparation. For removal of cross-contaminations, the background
expression level of genes was measured based on ST spots without
underlying tissue. Subsequently, only genes with an expression level
higher than twice the standard deviation of the mean background
signal were used for downstream analyses. Matching genes of the
individual samples before and after background correction against the
HOMER database27 confirmed the depletion of cross-contamination
signals (Supp. Fig. 5B, C).

Fig. 2 | Performance of xDBiT and quality assessment of the imaging data.
A, B Violin plots showing the number of UMIs A and genes B per 50 µm×50 µm
spot, normalized to the sequencing depth (per 106 reads) of the respective
experiment. The xDBiT method was obtained by sequential optimization of the
chemical protocol and workflow of the DBiT-seq method (Standard). For compar-
ison, counts from the previously published DBiT-seq datasets from fresh frozen
sections of murine embryos at stage E10 and E12 were added16. C Representative
high-quality (I) and alignment images (II) of mouse tissue sections acquired during
xDBiT workflow. Blue, magenta, and green colors denote DAPI, CD31, and phal-
loidin fluorescence signals, respectively. The quality of the fluorescence signal
decreases during the xDBiT workflow, which demonstrated the need for the initial
high-quality imaging round. Each organ has been measured between two and four
times, showing similar results. For a detailed overview on the experiments see

Supp. Table 2. Scale bar: 100 µm. D Scatter plot showing the measured volumetric
flow rate as a function of the microfluidic channel length. The range of measured
channel lengths comprises all lengths integrated within the xDBiT PDMS chip
design. A linear regression model was fit using the ordinary least squares method
and the black line shows the resulting mean of the fit. The blue colored region and
the red dotted line indicate the 95% confidence and prediction intervals, respec-
tively. r Pearson correlation coefficient, p p-value. E Left: Experimental setup of the
reverse transcription. Colors denote the barcode that was used for the respective
well. Right: Stacked bar plot showing the percentage of reads found in awell, which
carried a certain well barcode. Colors denote the barcode and match the experi-
mental outline on the left. UMI Unique molecular identifier, PDMS
Polydimethylsiloxane.
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After preprocessing and dimensionality reduction using Uniform
Manifold Approximation and Projection (UMAP)28, the data showed no
visible batch effects (Supp. Fig. 7). Clustering using the Leiden
algorithm29 and projection of xDBiT spots onto the respective micro-
scopy images displayed spatially distinct clusters (Fig. 3C, D). Further,
differential gene expression (DGE) analysis between Leiden clusters
revealed known marker genes for the substructures of the respective
organs (Fig. 3E). For example, in the heart tissue section, we found the
cardiomyocyte markersMyl2,Myl3, andMb to be the top differentially
expressed genes30–32. In the liver section, the zonation markers Cyp2f2
and Cyp1a2 were expressed in mutually exclusive areas33 indicating

that transcriptomic XY resolution is sufficient to define zonated gene
expression patterns. In the cerebellar sections of the brain, we were
able to identify structures such as the arbor vitae (cluster 2) and the
cerebellar cortex comprised of clusters 1, 3, and 4 (Fig. 3C). Cluster 4
delineated the course of Purkinje cells in the cerebellar cortex, as
confirmed by gene ontology (GO) term enrichment analysis using the
STRING algorithm34 and the Brenda Tissue Ontology35 (see Supp.
Fig. 8A and Fig. 3).

In the spleen, DGE analysis revealed genes that are known to be
expressed in the red pulp, such as Slc25a21 orHbb-bs for cluster 0, and
genes expressed in the white pulp, such as Arhgap15 and Aff3 for

Fig. 3 | Spatial transcriptomics of multiplemurine organs with xDBiT. A,BUMI
and gene counts per spot obtained with the xDBiT method for tissue sections of
different murine organs. C Representative DAPI images of five murine organs
overlaid with xDBiT spatial gene expression.D Two-dimensional embedding of the
xDBiT transcriptomic data using UMAP28. Each spot represents one xDBiT spot.
Colors denote clusters that were determined using the Leiden algorithm29. E Top
differentially expressed genes of the identified Leiden clusters within the corre-
spondingorgans.While the continuous colorbardenotes the log-transformedgene

expression level, the distinct color bars refer to the Leiden clusters. F Pearson
correlation of tissue bulk transcriptomes from the ENCODE database36, 37 with
pseudo-bulk xDBiT spatial transcriptomic datasets of organ samples from two
independent xDBiT experiments. Detailed information is provided in Supp. Table 2
and 3, respectively. UMI Unique molecular identifier, UMAP Uniform Manifold
Approximation and Projection, c Cerebellum, h Heart, l Liver, s Spleen, k Kidney,
numbers indicate replicates. Icons were created by Freepik, Tru3 Art and Sma-
shicons from Flaticon.
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cluster 2. GO termenrichment analysis confirmed the identity of tissue
clusters (Supp. Fig. 8D). To further confirm the high quality of the
xDBiT datasets, a pseudobulk xDBiT dataset was created and com-
pared with published bulk RNA-seq datasets from the ENCODE
project36,37. Pearson correlation coefficients between the xDBiT pseu-
dobulk and bulk transcriptome data ranged from 0.55–0.83 (Fig. 3F).

Characterization of spatial gene expression
For spatial gene expression pattern analysis of the xDBiT ST data, we
applied MEFISTO, a factor analysis method to identify the driving
sources of gene variation in high-dimensional datasets while
accounting for spatial dependencies38. The factor analysis was per-
formed separately for each tissue section and identified a set of pre-
viously unobserved variables, called factors. These factors reveal the
covariance structure of the spatial transcriptomic dataset of the
respective tissue section. Sections from the same organ showed a
comparable number of factors that explained spatial gene expression
variations (Fig. 4A). While tissue sections from structurally more
complex organs like cerebellum or kidney contained up to six factors
explaining the variance in gene expression, in homogenously struc-
tured organs like liver or spleen only two factors were sufficient.
Investigation of the feature weights of individual factors revealed that
the corresponding gene sets influenced the factors in a positive or

negative direction (Fig. 4B). To further evaluate the performance of
MEFISTOona structurally complex organ, kidneywas chosen asmodel
tissue and the first four factors of one kidney section were selected for
downstream analysis (dotted frame in Fig. 4A). To show that MEFISTO
captured structural areas within the tissue sections, we projected the
factor values onto the fluorescence image of the respective kidney
tissue section (Fig. 4C). Factors 1, 2, 3, and 4 define the anatomical
regions of the inner and outer medulla, renal tubules in the cortex and
medulla, and blood vessels in the kidney, respectively. Similarly, the
spatial gene expression of the top positively weighted genes matched
the patterns of their corresponding spatial factors (Supp. Fig. 9A). To
support factor-to-region assignments, we performed GO term
enrichment analysis with the top positively weighted genes of the first
four factors (Fig. 4D). Analysis of factor 1 showed significant enrich-
ment for terms related to Henle’s loop, a functional structure of the
kidney located in the inner medullary region. For Factor 2, the analysis
did not show enrichment for specific anatomical regions, but posi-
tivelyweighted genes of this factorwere cell typemarkers for proximal
tubules, including Napsa and Serpin1f. Accordingly, the analysis of
positively weighted genes of factor 3 showed significant enrichment in
genes of thedistal tubules located in the renal cortex. Lastly, the spatial
pattern of factor 4 correlated with phalloidin and CD31 staining in the
cortical and inner medullary regions of the kidney (Supp. Fig. 9C).

Fig. 4 | Spatial pattern analysis on xDBiT spatial transcriptomic data using
MEFISTO factor analysis. A Results of MEFISTO factor analysis of all individually
analyzed xDBiT datasets38. The heat map shows the percentage of explained var-
iance (R2) for the first 8 factors of each xDBiT replicate. Dotted frame indicates the
representative kidney sample which was selected for downstream analysis in B–D.
B Scatter plot showing the weight of all genes for the first four MEFISTO factors in
the representative sample. Genes with the highest positive or negative weights are

labeled. C High-resolution fluorescence images with overlaid xDBiT spots colored
for the values of the respective first four MEFISTO factors. Blue: DAPI, Green:
Phalloidin; Red:CD31.DGO termenrichment analysis using the STRINGalgorithm34

and the Brenda Tissue Ontology database35. As input we used the top positively
weighted genes (>95% confidence interval) of the first four factors to reveal func-
tional and structural areas of the murine kidney.
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These findings were consistent with the GO term analysis, which
showed that genes of the cardiovascular system were enriched. In
conclusion, xDBiT ST data in combination with MEFISTO factor ana-
lysis allowed simultaneous identification and characterization of
functional regions in tissue sections from multiple murine organs.

Deconvolution of xDBiT kidney dataset to spatially map
cell types
One challenging aspect of ST methodologies and their corresponding
computational tools is achieving single-cell resolution across an entire
tissue section. For example, existing spatial transcriptomic methods,
including Visium Spatial39, Slide-seqV240, DBiT-seq16, and xDBiT, con-
tain multiple cells per spot and are thus unable to reach single-cell
resolution. However, single-cell information can be extracted from
spatial transcriptomic spots with more than one cell using deconvo-
lution methods12–14. In this study, the cell2location analysis tool13 was
used in conjunction with a published single-cell transcriptome dataset
of the murine kidney41 to obtain the cell-type compositions of each
spot on an xDBiT kidney ST dataset (Supp. Fig. 10A). The most abun-
dant cell typeswere cells from theproximal straight tubule (34.6%) and
endothelial cells (17.3%), followed by cells from the loop of Henle
(15.7%) and the proximal convoluted tubule (10.8%) (Fig. 5A). These
findings are in agreement with those of previous studies that investi-
gated the cell type composition of murine kidneys42,43. Furthermore,
the predicted spatial distribution of these cell types matches the
anatomical structure of the kidney43 (Fig. 5B). This prediction was
further validated by visual correlation of the inferred number of
endothelial cells per spot and the fluorescence signal intensity of the
endothelial marker CD31 in the kidney section (Supp. Fig. 10B). While
cells of the proximal convoluted tubule were found predominantly in
the cortex of the kidney, the number of cells of the proximal straight
tubule was increased in the outer medulla. Cells of the loop of Henle
were mainly predicted to be in the medullar region of the section,
which coincides with the GO term analysis of MEFISTO factor 1 (see
Fig. 4C, D). To further challenge the xDBiT dataset, we askedwhether it
is possible to map podocytes, which are cell types located within the

glomeruli and have a crucial role in renal filtering processes. High-
quality fluorescence images allowed us to identify the position of
glomeruli in the tissue section based on phalloidin staining of F-actin,
which is a characteristic of glomeruli44. The number of inferred
podocytes correlated well with the position of the glomeruli, showing
high podocyte numbers in spots close to a glomerulus (Fig. 5C). That
xDBiT spots did not fully align with the glomeruli suggests that the
resolution of the spots was larger than the 50 µm×50 µm area. This
might be caused by the diffusion of molecules within the fixed tissue
and beneath the microfluidic channels. Notably, podocytes are
underrepresented in kidney datasets and require special isolation
methods45,46. The proportion of podocytes detected solely by single-
cell transcriptomic data was only 0.3%41 whereas other, less biased
studies predicted 3%, a much higher percentage of cells42,47. Cell2lo-
cation inferred a podocyte proportion of 1.7% and thus amore realistic
approximation of the kidney cell composition when ST was taken into
account (Fig. 5A and Supp. Table 5). In summary, the use of xDBiT in
conjunction with cell2location allows us to map all major renal cell
types in a kidney section and generate amore accurate representation
of rare cell types in complex microenvironments than scT alone.

Discussion
Spatially resolved transcriptomes of tissues from multicellular organ-
isms have greatly expanded our knowledge of complex cellular func-
tions and cell-to-cell communication in healthy and diseased
conditions. Single-cell transcriptomics, together with spatial tran-
scriptomics, have become central technologies for mapping cell types
in their tissue context and architecture. Most single-cell and spatial
transcriptomic studies use a hypothesis-free and explorative
design25,30,48–50. However, to pursue systematic and hypothesis-driven
research approaches, ST technologies must comply with the increas-
ing demand of providing multiple replicates per condition, time tra-
jectories, or sampling multiple organs from the same individual at
low costs.

In this study, we expanded the technology of Deterministic Bar-
coding in Tissue to simultaneously analyze nine individual tissue

Fig. 5 | Deconvolution of xDBiT kidney dataset to spatially resolve cell types.
A Data of one representative kidney section was deconvolved using cell2location13

and a single-cell RNA-seq dataset of the murine kidney41. Pie chart shows the cell
type composition of the deconvolved kidney section. B High-resolution fluores-
cence images overlaid with xDBiT spots colored for the deconvolution results of

four representative kidney cell types. Spot colors correspond to the minimum
number of cells predicted. C Detailed fluorescence image. Arrows denote the
position of glomeruli. Overlaid xDBiT spots show the number of podocytes pre-
dicted by cell2location. DAPI (blue), phalloidin (green), and CD31 (red). Scale
bar: 100 µm.
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sections. To achieve this, we developed new microfluidic chip plat-
forms to spatially barcode mRNA transcripts in spots with an area of
50 µm×50 µm. In combination with an optimized chemical workflow,
the transcript number of reads and genes per spotwere increased by 6
and 12-fold, respectively, compared to the original DBiT-seqmethod16.

xDBiT allowed barcoding of the samples using the 9-well adapter
during the initial RevT reaction and library preparation. Notably, we
did not observe liquid exchange between the wells of the 9-well
adapter. By barcoding samples both at the RevT and the sample
indexing level, we demonstrated that less than 9% of the final
sequencing reads resulted from cross-contaminations occurring after
the RevT step, indicating low cross-contamination among samples.
Importantly, within double-barcoded samples, cross-contamination
signals canbe removed computationallyby selecting sequencing reads
with matching RevT and sample indexing barcodes. Alternatively,
when using only a single barcoding strategy, cross-contamination
events can be removed computationally by analysis of the gene
expression background. However, we recommend the double-
barcoding of samples to exclude the possibility of sample cross-
contaminations.

Further downstream analysis showed that stringent read count
filtering leads to high-quality data. We show that stripe artifacts, which
are visible on the raw count data, can be effectively removed using
standard normalizationmethods51. However, the high stringency led in
some ST images to the removal of whole column or row elements.
Both, the so-called stripe artifacts and the empty rows or columns,
result most likely from heterogeneous flow conditions within the
horizontal or vertical channels of the PDMS chip. This could be further
optimized by introducing standard fluid interfaces to the chip,
ensuring homogenous fluid flow, and handling of air bubbles through
micromechanical features in addition to the already implemented
bubble traps at the transition from inlet to channel.

The presented results show high-quality spatially resolved tran-
scriptomic datasets from kidney, cerebellum, heart, spleen, and kid-
ney. With this we demonstrated that xDBiT is suitable for a variety of
tissues, which will facilitate studies focused on complex diseases and
multi-organdysfunction. Only for the pancreas sections xDBiT showed
low read and gene counts. This can be explained by the high RNAse
content of the pancreatic acinar cells and suggests that the develop-
ment of an optimized mRNA preservation protocol would be required
to investigate pancreatic tissue52.

Despite the ST technology advances reported here and by others,
the lateral diffusion ofmolecules in the barcoding step of STmethods,
limits the resolution of barcoding-based ST methods to the range of
5–10 µm53. However, ST datasets with subcellular resolution require
elaborate algorithms to segment single cells based on the spatial
transcriptome6. Rather than further increasing the resolution of spatial
transcriptomic methods, an alternative approach is the use of single-
cell transcriptomic datasets and computational methodologies to
increase the resolution of the datasets in silico. Thus, a large and
complex experimental design with the objective of mapping cell
transcriptomes and retaining tissue context requires more affordable
technologies. Here, we have shown that xDBiT is a low-cost ST tech-
nology (ca. 125 € per sample) that provides robust and accurate ana-
lysis of spatial gene expression patterns. The achieved transcript read
depth on xDBiT spots, together with deconvolution tools, is sufficient
to resolve rare cell types, such as podocytes in the glomeruli of the
mural kidney. Thus, xDBiT is an ST methodology that optimally bal-
ances the cost and throughput. Further engineering efforts will focus
on increasing the screening areas, in addition to readdepth. The xDBiT
workflow could be further scaled to larger screening areas by
increasing the microfluidic channel length as well as the microfluidic
chip platform. One limiting factor of the xDBiT approach is the fluid
resistance, which scales linearly with the channel length. From our
correlation analysis between the fluid flow rates and microchannel

lengths in the xDBiT PDMS chips, we can conclude that microchannels
with <260mm length can be operated under the chosen pressure
conditions. Thus, we anticipate that a higher degree of multiplexing
than presented here could be achieved. Longer channels would
require, however, a higher fluid forward pressure to drive fluid flow,
which in turn would induce leakage between the microchannels and
disruption of the underlying tissue.

Furthermore, barcoding strategies withmicrofluidic channels can
be combined with a multitude of modalities, including DNA-barcoded
antibodies17, chromatin accessibility19, and epigenomic readouts18. To
increase adaptability, xDBiT libraries can be sequenced using standard
next generation sequencing platforms. Deterministic barcoding can
also be performed with archived formalin-fixed and paraffin-
embedded (FFPE) samples, however with lower read depth54. This is
expected due to the fact that FFPE-derived RNA is highly degraded and
chemically modified, and affects downstream sequencing
processes55,56.

Since the microfluidic workflow has adverse effects on the
integrity of the tissue sections and image information is needed to
further enhance the power of spatial transcriptomic data25, we
introduced two imaging steps to allow the acquisition of high-
quality image data. This allows the platform being used for the
analysis of high-resolution image features in conjunction with
transcriptomic information.

Finally, in addition to technical advances, we have provided an
open-sourceanalysispipeline togenerate xDBiTdatasets andmake the
method easily accessible. This includes a semi-automatic image
registration pipeline and the introduction of alignment marks to
robustly align the fluorescent images with ST data. In summary, using
xDBiT,we expanded the toolbox of spatial transcriptomicmethods for
higher throughput measurements and improved both the tran-
scriptomic and image quality of the resulting datasets.

Methods
Ethics statement
Animal experiments were carried out in compliance with the German
Animal Protection Act and with the approved guidelines of the Society
of Laboratory Animals (GV-SOLAS). All animal used within this study
were kept at the HMGU Core Facility Laboratory Animal Services (CF-
LAS), Neuherberg, Germany. All procedures were carried out in com-
pliancewith GermanAnimalWelfare Legislation and the regulations of
the Government of Upper Bavaria, Germany. Animal housing was
approved according to §11 of the German Animal Welfare Act and
performed in accordance with Directive 2010/63/EU.

Husbandry and tissue collection
Wild-type C57BL/6 J mice were purchased from Charles River UK Ltd
(Margate, United Kingdom) and were maintained under specific
pathogen-free conditions under strict 12 h dark-light cycles. All mice
were kept in a positive pressure system, maintaining a temperature
between 19 and 23 °C, 55% humidity, and had free access to water and
standard mouse chow diet.

Three male C57BL/6 J mice (age 3–4 months) were used in the
multi-organ study. For the cross-contamination experiment, two
male C57BL/6 J mice (ages 3 months and 22.5 months) were used. At
the time of experiment, mice were sacrificed in accordance to GV-
SOLAS regulation, and were subsequently dissected. Heart, liver,
kidney and spleen were collected from the same two mice while the
brain sample was collected from a different mouse. The organs cryo
preserved using Tissue-Tek OCT Compound (CellPath Ltd, UK) into
Tissue-Tek Cryomolds (Sakura Finetek, USA). All cryo embeddings
were frozen in pre-chilled 2-methylbutane on dry ice. After freezing,
cryo embeddings were transferred into −80 °C freezer for long term
storage. For the brain, cerebrum and cerebellum were embedded
separately.
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Statistics and reproducibility
In total, two independent xDBiT experiments with each nine tissue
sections from six organs (heart, kidney, liver, spleen, pancreas and
cerebellum) have been performed. A detailed information on the
samples can be found in Supp. Table 2. No statisticalmethod was used
to predetermine the sample size. The pancreas samples were excluded
from downstream analysis due to low read counts. The experiments
were not randomized and the investigators were not blinded to allo-
cation during experiments and outcome assessment.

Master mold fabrication
Master molds for the horizontal and vertical PDMS chips were fabri-
cated according to standard SU-8 (SU-8 3050;Microresist Technology,
Germany) photolithographyprotocols57. Toprevent PDMSadhesion to
the SU-8 mold, the surface was spin-coated with a thin film (<1 µm) of
CYTOPTM (AGC Chemicals, Japan). To evaporate the CYTOPTM solvent
the SU-8 mold was heated to 160 °C for 1 h.

Horizontal and vertical microfluidic chip fabrication
Horizontal and vertical microfluidic PDMS chips were manufactured
by casting a 5mm PDMS (Sylgard® 184, Dow Corning, MI, USA) layer
(ratio 10:1 of basematerial to curing agent) onto the SU-8mastermold.
After degassing for 1 hour in an evacuated desiccator at room tem-
perature (rt), the PDMS was cured for 1 h at 80 °C. The cured PDMS
chip was peeled off, cut into the required size and inlets and outlets
were punched using a 14 gauge needle.

Fabrication of non-PDMS adapters
To press the PDMS chips onto the tissue sections, a plastic clamp was
milled in acrylic glass. Well adapters that allow the precise application
of reagents onto the tissue sections andmolds for PDMS gaskets were
3D-printed with a DLP stereolithography printer (Pico2HD, Asiga,
Australia) using the resin PlasGRAY (Asiga, Australia). Printing para-
meters including light intensity and exposure time were set according
to the manufacturer’s material file. After exposure, the printed part
was removed and sonicated in isopropanol for 10min. Afterwards, the
printed parts were incubated for 4 h at room temperature to remove
excess isopropanol and post-cured at 2000 flashes per side (Otoflash
curing unit).

Fabrication of PDMS adapters and gaskets
PDMS gaskets and the vacuum adapter were manufactured by replica
molding using 3Dprintedmolds. After 3D printing as described above,
the molds were dip-coated with CYTOPTM (AGC Chemicals) and incu-
bated on a hotplate for 8 h at 80 °C. For gaskets, a 5mm layer of PDMS
(ratio 10:1 of basematerial to curing agent) was poured into onewell of
a 6-well plate. The mold was pressed upside down into the PDMS and
thematerial was degassed for 1 h in an evacuated desiccator at rt. After
curing for 1 h at 80 °C, the PDMS gasket was peeled off carefully and
excessmaterial was removedwith a knife. For the vacuum adapter, the
moldwas glued to the bottomof awell and PDMSwas poured over the
mold. Degassing and curing was performed as described and a hole
was punched in one of the sides using a 2mm punching needle. An
overview of all modules required in the xDBiT workflow is shown in
Supp. Fig. 1 A–G.

Flow rate measurement
To measure the flow rate in the different channels of the xDBiT PDMS
chip, a horizontal PDMSchipwasmountedonaglass object slide. 10 µL
of food color dyed water was added to all inlets. Vacuum was applied
to the outlets until all channels were filled completely. Then, the out-
letswere emptied using a vacuumaspirator. To start themeasurement,
the vacuum adapter was attached to the outlets and 300mbar vacuum
were applied for 60 seconds. Then, the vacuum adapter was removed
and the volume in the outlet channels was measured using a 10 µL

pipette. This procedure was conducted 2 times, yielding four data
points per channel length. Linear regression was performed using the
Python package statsmodels (v0.12.2) with the ordinary least squares
method.

Tissue preparation
For sectioning, the organs were warmed to −15–18 °C inside the cryo-
stat (Leica). Object slides with marked placement areas were cooled
inside the cryostat before use for at least 5minutes. The tissue blocks
were sectioned with a thickness of 10 µmusing RNAse free equipment,
placed in predetermined positions on the object slide (Supp. Fig. 1H)
and attached by warming the backside of the object slide with a finger.
The sectioned samples were stored at −80 °C.

Generation of optimal RevT primer barcode sets
To prevent reverse transcription bias from RevT primer barcodes, we
usedmixes ofmultiple RevTprimers in the RevT reaction. BARCOSEL58

was used to generated nine sets of RevT primers with 4 barcodes
per set (Supplementary Data 2). For the cross-contamination analysis
experiment these nine sets were used individually for each sample
well. In the multi-organ experiments we did not barcode the wells in
the RevT step separately and insteadmixed sets 1-4 to further increase
the diversity. The RevT primers (Supplementary Data 1, Sigma) were
dissolved in ultrapurewater at a concentration of 100 µMandmixed at
this concentration.

Preparation of ligation barcoding plates
A complete list of the barcoded ligation oligos used for xDBiT can be
found in Supplementary Data 3 and 4. The ligation oligos were dis-
solved inultrapurewater at a concentration of 100 µMand stockplates
were stored at −20 °C. Separately for ligation round #1 and ligation
round#2, 36 ligation barcode oligoswere annealedwith the respective
bridge oligo (Supplementary Data 5). In brief, 21.1 µL of a bridge oligo
(1mM, Sigma) were mixed with 296 µL water and 317 µL 2× annealing
buffer (5mM Tris, 100mM NaCl) to a final concentration of 33.33 µM.
Then, 4 µL of one ligation barcode oligo (100 µM) and 12 µL of the
diluted linker were mixed in a 96 well plate. Using a PCR cycler, the
oligoswere denaturated at 95 °C for 2minutes and cooled to 20 °C at a
rate of −0.1 °C/s to anneal the strands. The annealed oligo stock plates
were stored at 4 °C for short-term or −20 °C for long-term storage.
Before the experiment, 1 µL of each barcode was distributed to fresh
PCR plates, later called ‘Ligation Barcoding Plate’ #1/#2.

Fixation, permeabilization and blocking
The object slide with tissue sections was thawed at 37 °C for 1min on a
heated plate. Clamp, 1-well adapter and PDMS gasket (Supp. Fig. 1E)
were assembled, aligned and attached to the tissue slide. The tissue
sections were washed with 1× RNAse-free phosphate buffered saline
(PBS, Invitrogen) supplemented with Murine RNAse inhibitor (1 U/µL,
“RI”, New England Biolabs) and ribonucleoside vanadyl complex (RVC,
10mM, New England Biolabs) and fixed in 4% paraformaldehyde (PFA,
Sigma) for 40min at room temperature (RT). After three washes in 1×
PBS complementedwith RVC (10mM, “PBS +RVC”), the tissue sections
were permeabilized with 0.2% Triton X-100 (Sigma) in PBS + RI for
10minutes at RT and blocked for 30min at RT with 1% bovine serum
albumin (BSA, Thermo Fisher).

Staining and high-resolution confocal imaging
The CD31 primary antibody (Thermo Fisher, PA5-16301) was diluted
1:50 in antibody diluent (PBS +RI supplemented with 0.1% Tween-20
and 3%donkey serum), added to the sections and incubated for 30min
at RT. After 3Xwash in PBS-T (0.1% Tween-20) supplementedwith RVC
(PBS-T + RVC), nuclei, actin filaments and primary antibody were
stained using DAPI (1.25 µg/mL, Sigma), Phalloidin-iFluor647 (1.25×,
Abcam) and AF555 secondary antibody (Invitrogen, A-31572; dilution:
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1:500) in antibody diluent for 30minutes at room temperature in the
dark. The tissue sections were washed three times in PBS-T supple-
mented with RI (PBS-T + RI) and mounted in 85% ultrapure glycerol
(Sigma) supplemented with 2U/µL RI using #1.5 coverslips (Menzel).
Images were acquired using an LSM 880 confocal microscope (Zeiss)
with a 20×/0.8 objective (Zeiss) at a final resolution of 0.24 µm/pixel
using the ZEN 2.3 SP1 FP3 (black) software.

Reverse transcription (RevT)
The coverslip was removed by holding the object slide in a 45° angle
with the coverslip facing down into 3X saline sodium citrate (SSC)
buffer until the coverslip falls off. The sections were dipped 3X in
ultrapure water and dried under airflow. Clamp and 9-well adapter
(Supp. Figure 1F) were assembled, aligned and attached to the tissue
slide. PBS + RI supplementedwith 1% BSAwas added and stored at 4 °C
for maximum 30minutes until the next steps were performed. An
RevT reaction mix was prepared from 514.8 µL ultrapure water
(Thermo Fisher), 158.4 µL RevT buffer (5×, Maxima H Minus RT Kit,
Thermo Fisher), 39.6 µL dNTPs (10mM, New England Biolabs), 19.8 µL
RI, 19.8 µL RevT primer set and 39.6 µL Maxima H Minus Reverse
Transcriptase (200 U/µL, Thermo Fisher). A total of 80 µL of the mix
were added to each well, the wells were sealed and the slide was
incubated for 30minutes at RT and 90minutes at 42 °C in a closed
thermoshaker without agitation. To ensure equal heat distribution and
minimize evaporation an aluminum block was placed between object
slide and hot plate andwet tissues were added to the closed container.
Afterwards, the tissue sections were washed once in PBS-T + RVC and
the 9-well adapter was removed.

Spatial barcoding by ligation (horizontally or vertically)
The object slide was dipped 3× into ultrapure water to remove salts
and the tissue sections were dehydrated stepwise by incubation in 70,
85, and 99.5% ethanol for 1min each and dried briefly under airflow.
The horizontal (ligation round #1) or vertical (ligation round #2) PDMS
chip was aligned, attached to the tissue sections and placed into the
clamp (Supp. Figure 1D) and the screws were tightened uniformly and
strongly to prevent leakage.

To rehydrate the tissue, 5 µL of PBS + RI were added to each
inlet and the channels were filled by applying 300 mbar vacuum to
the outlets using a PDMS vacuum adapter (Supp. Fig. 1G) and
incubated for about 10min at RT. A ligation reaction master mix
was prepared from 149.66 µL ultrapure water, 26.3 µL T4 DNA
Ligase buffer (New England Biolabs), 2.51 µL 10% Triton X-100
(Sigma), 13.1 µL Murine RNAse inhibitor, 5.25 µL Tartrazine (10mg/
mL, Carl Roth) and 13.2 µL T4 DNA ligase (New England Biolabs).
4 µL of the master mix were added to the Ligation Barcoding Plate
#1 or #2 (see above) respectively for a total of 5 µL and centrifuged
down briefly.

The inlets of the PDMS chip were emptied using a vacuum
aspirator with attached pipette tip and 5 µL of each barcodewas added
to the inlets according to the inlet filling scheme (Supp. Table 1). The
outermost channels were filled with an alignment marker mix con-
sisting of 80 µg/mL anti-BSA antibody (Invitrogen) in antibody diluent.
To remove air bubbles in the inlets, the chipwas centrifuged at 100 × g
for 1min. The channels were filled using vacuum as described before.
Inlets and outlets were sealed and the chip was incubated at 37 °C in a
closed thermoshaker without agitation. To ensure equal heat dis-
tribution and minimize evaporation an aluminum block was placed
between object slide and hot plate and wet tissues were added to the
closed container. After 15min the vacuumwas applied again to remove
air bubbles in the channels and the chip was incubated another 15min
at 37 °C for a total of 30min reaction time. The inlets were emptied
with the vacuum aspirator and the channels were washed for 5min
with PBS-T + RI. Afterwards, the channels were emptied and the chip
was removed.

Secondary staining and alignment imaging
The alignment markers were stained with 4 µg/mL donkey anti-rabbit
AlexaFluor 555 secondary antibody (Invitrogen, A-31572) in PBS-T + RI
supplemented with 3% donkey serum, 1.25 µg/mL DAPI and 1.25×
Phalloidin-iFluor647 for 30minutes at room temperature in the dark.
Afterwards, the tissue sections were washed three times in PBS-T + RI
andmounted as described before. Images were acquired using an LSM
880 confocal microscope (Zeiss) and a 20×/0.8 objective (Zeiss) at a
final resolution of 0.49 µm/pixel using the fastest possible
scanning mode.

Lysis and sample collection
The coverslip was removed from the tissues and the 9-well adapter
attached as described before. Lysis buffer was prepared from 10mM
Tris-Cl pH 8.0, 200mM NaCl (Sigma), 50mM EDTA pH 8.0 (Life
Technologies), 2% SDS (Bio-Rad) and 2mg/mL proteinase K (New
England Biolabs). The tissue sections were lysed separately in 75 µL
lysis buffer for 2 h at 55 °C. To prevent evaporation, the wells were
closed with a PDMS piece which was fixed with tape and incubation
was conducted in a closed container containing wet tissues. After-
wards, possibly remaining parts of the tissue sections were scraped off
with the pipette tip and the lysateswere collected in nine separateDNA
LoBind tubes (Eppendorf). The wells were washed once with 40 µL of
lysis buffer and the washing solution was pooled with the lysate.
Samples were stored at −80 °C.

cDNA purification
396 µL of Dynabeads MyOne Streptavidin C1 (44 µL per sample,
Thermo Fisher) were washed three times in 800 µL 1× B&W buffer (see
manufacturer’s manual) supplemented with 0.5% Tween-20 and 0.05
U/µL RI and resuspended in 950 µL of 2× B&W buffer supplemented
with RI (100 µL + 5% per sample). The lysates were thawed at rt,
brought to 100 µL with ultrapure water and 5 µL PMSF (200mM, Cell
Signaling) were added and incubated for 10minutes at rt to block
Proteinase K activity. To bind the cDNA to the beads, 100 µL of the
resuspended Dynabeads were added to the lysates, vortexed and
incubated for 1 h at rt under agitation (1200 rpm). Afterwards, the
beads were washed two times in 1× B&W-T +RI for 5min at rt under
agitation. Likewise, a final washing step was performed in 10mM Tris-
Cl pH 8.0 buffer supplemented with 0.01% Tween-20.

Template switch
A template switching reaction mix (TSR mix) was prepared from
360 µL ultrapure water, 180 µL RevT buffer (5×), 180 µL Ficoll PM-400
(20%, Sigma), 90 µL dNTPs (10mM), 22.5 µL Murine RNAse inhibitor,
22.5 Template Switching Oligo (Supplementary Data 5, 100 µM, Ella
Bioscience) and 45 µL Maxima H Minus Reverse Transcriptase
(200U/µL). The beads with the bound cDNA were placed against a
magnetic rack and washed once in ultrapure water. Then, the beads
were resuspended in the TSR mix and incubated for 30min at RT and
90min at 42 °C under agitation (1200 rpm). Afterwards, the samples
were placed against a magnetic rack and washed once in
ultrapure water.

PCR amplification
A PCR mix was prepared from 869 µL ultrapure water, 1034.6 µL Kapa
Hifi 2XMasterMix (Roche), 82.8 µL cDNA amplification forward primer
(10 µM, oSR321211_TSO_fwd, Supplementary Data 5) and 82.8 µL
reverse primer (10 µM, oSR321212_TSO_rev, Supplementary Data 5).
Each sample was resuspended in 220 µL PCRmix and split equally into
4 different PCR tubes. PCR was performed using following program:
95 °C for 3min, then 5 cycles of 98 °C for 20 s, 65 °C for 45 s and 72 °C
for 3min. Afterwards, the reaction mixtures were pooled and placed
against a magnetic rack. 200 µL of each sample were transferred to a
fresh tube and 2 µL of SYBR Green qPCR dye (100 µM, Jena-Bioscience)
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were added. To account for differences in the cDNA content between
the samples an optimal number of PCR cycles wasdetermined for each
sample separately. Duplicates of 10 µL of each samplewere transferred
into a qPCR plate and measured in a Viia 7 qPCR machine (Applied
Biosystems) using following program: 95 °C for 3min, then 40 cycles
of 98 °C for 20 s, 67 °C for 20 s, 72 °C for 1min. The optimal cycle
number was defined as the cycle where the qPCR curve reaches 25% of
its maximum intensity. The remaining 180 µL per sample were dis-
tributed into two PCR tubes and the following qPCR program was run
with the previously determined cycle number n: 95 °C for 3min, then n
cycles of 98 °C for 20 s, 67 °C for 20 s, 72 °C for 3min, and a final
extension at 72 °C for 5min, then hold at 4 °C. Afterwards, the qPCR
reactions were pooled per sample.

cDNA purification
The amplified cDNA was purified using SPRIselectTM beads (Beckman
Coulter) following a left sided size selection with a bead-to-sample
ratio of 0.8×. In brief, 160 µL of sample were mixed with 128 µL of
resuspended SPRIselect beads and incubated for 5min at rt. Beads
were washed two times in 85% ethanol and air-dried for 3min. The
cDNA was eluted in 20 µL ultrapure water by incubation at 37 °C for
10min. The supernatantswere transferred to a fresh tube resulting in 9
tubes of purified cDNA. Thequality of the cDNAwas analyzedusing the
Bioanalyzer High Sensitivity DNA chip (Agilent) and samples were
stored at −20 °C.

Library preparation and sequencing
The concentration of the cDNA was determined using a Qubit 1×
dsDNA assay (Invitrogen) and the sequencing library was generated
using the Nextera XT DNA Library Preparation Kit (Illumina). The
quality of the library was assessed using the Bioanalyzer High Sensi-
tivity DNA chip (Agilent). Samples were sequenced on a NovaSeq
6000 system (Illumina) at a sequencing depth of minimum 50,000
reads per spot using a 100 cycles kit in paired-end mode. Following
read length configurations were used: R1: 74 cycles, i7: 6 cycles, R2: 58
cycles. Importantly, when using the discussed double barcoding
approach, a 200 cycles kit is required. The settings are then, R1: 100
cycle, i7: 6 cycles, R2: 100 cycles.

Pipeline overview
Integration of sequencing results and imaging data was performed
using a custom pipeline which is published open-source on Github
(https://github.com/jwrth/xDBiT_toolbox) and combines two pre-
viously published analysis pipelines: Drop-seq tools v2.1.059 and
splitseq_toolbox60 with custom Python and Bash script. Further, it uses
functions from the Picard toolbox61. The pipeline consists of 2 main
steps: (1) ReadsToCounts and (2) CountsToAnndata (Fig. 1D). The first
part of the pipeline needs to be run on a Linux machine while the
second part was tested both on a Linux and Windows machine. In the
following sections the pipeline is explained briefly. Detailed instruc-
tions to process xDBiT data can be found in the Github repository. For
plotting the Python packages matplotlib v3.5.162 and seaborn v0.11.263

were used. Image transformations were predominantly performed
using the OpenCV package64.

ReadsToCounts
This script takes two FASTQ files (Read 1 and Read 2) and barcode-
coordinate information as input and processes them as follows: Read
1 sequences are trimmed and filtered using cutadapt v3.765 and map-
ped against the mm10 (GRCm38) mouse genome using STAR-2.7.4a66.
Uniquemolecular identifiers (UMIs) and spatial barcodes are extracted
from Read 2 using the Drop-seq tool TagBamWi-
thReadSequenceExtended. A custom Python 3 pipeline, using samtools
(v1.9)67 and pysam (v0.19.1)68, assigns coordinates using barcode
information provided in a CSV file. Reads without a valid x- or

y-barcode are discarded in this step. The DigitalExpression function is
used to collapse the UMIs and generate a spot/gene countmatrix. RNA
metrics are calculated using CollectRnaSeqMetrics. Importantly, by
running the ReadsToCounts pipeline in ‘xDbit’ mode, it also takes the
RevT barcode (z-barcode) into account. This allows the removal of
potential cross-contaminations.

CountsToAnndata
In this step the spot/gene count matrix and imaging data are aligned
and integrated. In brief, the positions of the alignmentmarker vertices
are extracted semi-automatically from the alignment images using
napari69 and Squidpy (v1.1.2)23. The coordinates of the vertices are used
to register alignment image and xDBiT spots by performing an affine
transformation using OpenCV64. In order to align the high-resolution
images of the first imaging round with the xDBiT spots, the SIFT
algorithm22 is used to extract common features between the alignment
DAPI image and the high-resolution DAPI image. Based on the coor-
dinates of these features an affine transformation matrix is deter-
mined, which is used to align the xDBiT spots to the high-resolution
image. The dataset is saved in the AnnData format20. In this study we
included intronic reads (Supp. Fig. 5D) into the analysis.

Sequencing saturation analysis
To investigate the saturation of the sequencing runs, we subsampled
the sequencing reads before library construction using the sub-
sampling feature of samtools view (v1.9)67. To run the analysis on
multiple files using multiple cores, python and Bash scripts were
developed, which can be found on https://github.com/jwrth/xDBiT_
toolbox/ReadsToCounts/subsampling (v2.1) together with a more
detailed instruction on the commands to be used. The analysis has
been tested on a Linux system.

Preprocessing
Pre-processing of the count matrices was performed using the Python
3 tools Scanpy v1.8.221 and Squidpy v1.1.223. To remove thebackground,
we excluded spots with a mean DAPI signal below a certain threshold.
Removed background spots were used to filter out all genes that had a
mean background expression µb below a threshold tg in all samples.
The threshold tg was defined as:

tg =μb +2*SDb

with SDb =
ffiffiffiffiffiffi

μb
p

We assumed a Poisson distribution of the background read counts and
calculated an approximation of its standard deviation SD. To estimate
the remaining cross-organ spillover we selected 100 specific genes per
organ from the HOMER database27. The xDBiT datasets were grouped
by organ and we calculated per organ how many of the 100 organ-
specific genes are present in the individual xDBiT datasets. All further
analyses were performed according to current best practices in single-
cell RNA-seq and Spatial Transcriptomics analysis23,51 and can be
reproduced using Jupyter Notebook (for more information see Data
and Code availability). Counts were normalized, log-transformed, and
the top 2000 highly variable genes were determined. Batch correction
was performed per section using scanorama70 (v1.7.2).

Dimensionality reduction and clustering
For visualization in lower dimensional space, we calculated the top 50
principal components and generated a two-dimensional representa-
tion using UniformManifold Approximation and Projection (UMAP)28.
To group the spots into transcriptomically similar clusters the Leiden
algorithm29 was applied. Overlay plots of transcriptomic spots and
image data were generated using a custom plotting function.
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Differential gene expression analysis
Differentially expressed genes for each Leiden cluster were calculated
by applying Scanpy’s rank_genes_groups using the Wilcoxon rank-sum
test and default settings. The top 3 differentially expressed genes were
visualized using rank_genes_groups_heatmap. For downstream analyses
the 300 most significantly differentially expressed genes were used.
Information about protein expression of differentially expressed genes
in the respective tissues has been taken fromTheHuman Protein Atlas71.

Gene Ontology (GO) term enrichment analysis
For GO term enrichment analysis we used APIs of the STRING web
server34. A detailed description on the how the enrichment is calcu-
lated can be found in ref. 72. The resulting False Discovery Rate (FDR)
shows p-values corrected for multiple testing using the Benjamini-
Hochberg procedure. Enrichment scores are represented as negative
log10 of the FDR. For our analysis we searched for enrichments in the
Brenda Tissue Ontology database (BTO)35 and the Biological Processes
GO database73,74.

Cross-contamination testing in 9-well adapter
The occurrence of potential cross-contaminations between the wells
of the 9-well adapter was tested using water colored with “golden
yellow” and “royal blue” icing color (Wilton). The icing colorwas added
to the water until it reached the desired color. The 9-well adapter was
attached to an empty object slide as sown in Supp. Fig. 1F) and the
colored water was added in a checkered pattern. Photos were taken
using a Canon PowerShot SX620 HS digital camera before and after
24 h incubation at room temperature.

Analysis of post-RevT cross-contaminations
To test for cross-contaminations between the samples occurring after
the RevT, an experiment with eight liver sections was performed,
leaving the center well free. Samples were barcoded twice, i.e., during
the RevT reaction at the beginning of the xDBiT workflow (Fig. 1A III),
and during library preparation of the individually retrieved samples at
the end of the xDBiT workflow (Fig. 1A VI + VII). Unique barcodes were
added via RevT primers (see Supplementary Data 2) and indexing
primers, respectively. The xDBiT experiment was performed using the
standard protocol described above and a library preparation for all
nine wells was performed. From the center well we were not able to
retrieve enough cDNA for library preparation and sequencing.
Sequencing was performed on a NovaSeq 6000 system (Illumina)
using a 200 cycles kit. The used settingswereR1: 100 cycle, i7: 6 cycles,
R2: 100 cycles. To calculate the percentage of cross-contamination
reads, only read 2, containing the RevT barcodes and spatial barcodes
were analyzed. For the analysis the ReadsToCounts script wasmodified
to disregard read 1 and instead only run up to the barcode filtering
steps to retrieve counts of the spatial barcodes and RevT primer bar-
codes. This script can be invoked using the ‘–spatial_only‘ flag. Further,
to be able to catch information about reads from other wells, infor-
mation about all 36 barcodes used in the experiment was added to the
barcode legend file. Count values of the foundbarcodeswere stored in
the ‘recording_dictionary.json‘ file in the ‘rna_out‘ folder. From this
information, the percentage of RevT barcodes in the different wells
were calculated. The Jupyter notebook showing the analysis is pro-
vided in the Github repository.

Correlation with bulk sequencing data
To compare xDBiT ST data with published bulk sequencing data we
generated a pseudobulk dataset of the xDBiT dataset by summing up
the counts of all spots per gene. Bulk RNA-sequencing datasets were
downloaded from the ENCODE project website36,37 and are listed in
Supp. Table 3. Both the bulk and the pseudobulk datasets were nor-
malized to transcripts per million (TPMs) and log transformed. To
analyze the correlation of datasets per organ the Pearson correlation

coefficient was calculated pairwise and results were visualized as
heatmap.

Comparison with published DBiT-seq datasets
Previously published DBiT-seq datasets from embryonic sections16

were downloaded from the Gene Expression Omnibus database with
the accession code GSE137986. Of the whole dataset following
experiments were retrieved for the comparison: GSM4189613 (Embryo
stage E10—162,684,631 raw reads) and GSM4189612 (Embryo stage
E12—53,619,846 raw reads). In addition to the xDBiT datasets, we used
for comparison (1) a dataset that was generated in-house following the
protocol of the original DBiT-seq method and (2) a dataset that was
generated using the original DBiT-seq PDMS chip without serpentine
channels but with the optimized biochemical protocol of xDBiT. All
datasets were normalized to the total number of raw sequencing reads
and then compared by the normalized values of total counts per spot
and number of genes per spot.

Image processing
For image processing and generation of figures, we used Fiji ImageJ
v1.53c75 and theQuickfigures toolkit76. Stitching of the tiled imageswas
performed using a custom ImageJ script utilizing the Grid/Collection
Stitching algorithm77.

MEFISTO factor analysis
MEFISTO factor analysis38 was performed using the Python package
mofapy2 (v0.6.4). Datasets of each tissue section were analyzed sepa-
rately. Spatial spot coordinateswere used as covariates andonly highly
variable genes were selected for the analysis. Following parameters
were used for the analysis: factors=10; frac_inducing: 0.5; sparseGP=-
True; start_opt=10; opt_freq=10. Models were saved as hdf5 files and
downstream analysis was performed using themofax toolbox (https://
github.com/bioFAM/mofax). To investigate the first four factors
functionally, for each factor the top weighted genes (> 95 confidence
interval) were selected and used for GO term enrichment analysis
using the STRING algorithm34 as explained above.

Cell type mapping in xDBiT kidney data
To map the cell types from single-cell datasets onto xDBiT spatial
transcriptomics data of the murine kidney, we applied cell2location
(v0.1)13. The single-cell RNA-seq dataset was retrieved from a previous
publication including P0 and adult mice samples41. For the analysis,
only cells fromadultmicewere selected andmitochondrial geneswere
removed fromboth the single-cell and the representative xDBiTkidney
dataset. Genes were filtered using the cell2location gene_filter func-
tion, filtering out genes that were detected in less than five cells and
less than 0.05 % of cells. Anndatas were prepared for analysis using
scvi-tools (v0.16.4)78. The single-cell model to infer expression sig-
natures of cell types was trained in 250 epochs. Spatial mapping was
performed with default parameters, except for: N_cells_per_loca-
tion=20; detection_alpha=20; max_epochs=30000; batch_size=None;
and train_size=1. To show the minimum number of cells, we used the
5% quantile of the resulting posterior distribution, reflecting the con-
fidently predicted number of cells.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw sequencing data and preprocessed xDBiT data, including spa-
tial transcriptomicdatawith aligned images aswell as data of the cross-
contamination studies, have been deposited and are publicly available
on GEO under the accession number GSE207843. CAD plans to man-
ufacture the xDBiTmastermolds using photolithography aswell as the
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plans of the 3D-printed andmilled parts necessary for theworkfloware
stored in the ‘cad’ folder of the publicly available Github repository
https://github.com/jwrth/xDBiT_toolbox (v2.1)79. All source data, that
is not sequencing data and necessary to replicate the figures, is
deposited in the Github repository under ‘publication/source_data’.
Data forGO termenrichment analysiswas obtained fromBrendaTissue
Ontology database (BTO)35 and the Biological Processes GO
database73,74. Protein expression data was obtained from The Human
Protein Atlas71. Previously published DBiT-seq datasets were obtained
from GEO under following accession numbers: GSM4189613 (Embryo
stage E10 – 162,684,631 raw reads) andGSM4189612 (Embryo stage E12
– 53,619,846 raw reads). Bulk polyA plus RNA-seq data was obtained
from ENCODE database: ENCSR000CGZ (Heart), ENCSR000CHA
(Kidney), ENCSR000CGW (Spleen), ENCSR966JPL (Spleen),
ENCSR000CHB (Liver), ENCSR000CGX (Cerebellum). The kidney
single-cell RNA-seq dataset used for deconvolutionwas retrieved from
GEO under the accession number GSE157079.

Code availability
All code, including notebooks, functions and environment files with
package versions to rerun the analysis, is publicly available in the
Github repository https://github.com/jwrth/xDBiT_toolbox (v2.1)79.
The computational pipeline, consisting of the scripts ReadsToCounts
and CountsToAnndata can be found in the subfolders with the corre-
sponding names. ImageJ scripts to stitch images from tile scans are
deposited in the folder named ‘imagej’.
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