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A scoping review of portable sensing for out-of-lab anterior
cruciate ligament injury prevention and rehabilitation
Tian Tan 1, Anthony A. Gatti1, Bingfei Fan 2, Kevin G. Shea3, Seth L. Sherman3, Scott D. Uhlrich4, Jennifer L. Hicks4, Scott L. Delp3,4,5,
Peter B. Shull 6✉ and Akshay S. Chaudhari 1,7

Anterior cruciate ligament (ACL) injury and ACL reconstruction (ACLR) surgery are common. Laboratory-based biomechanical
assessment can evaluate ACL injury risk and rehabilitation progress after ACLR; however, lab-based measurements are expensive
and inaccessible to most people. Portable sensors such as wearables and cameras can be deployed during sporting activities, in
clinics, and in patient homes. Although many portable sensing approaches have demonstrated promising results during various
assessments related to ACL injury, they have not yet been widely adopted as tools for out-of-lab assessment. The purpose of this
review is to summarize research on out-of-lab portable sensing applied to ACL and ACLR and offer our perspectives on new
opportunities for future research and development. We identified 49 original research articles on out-of-lab ACL-related assessment;
the most common sensing modalities were inertial measurement units, depth cameras, and RGB cameras. The studies combined
portable sensors with direct feature extraction, physics-based modeling, or machine learning to estimate a range of biomechanical
parameters (e.g., knee kinematics and kinetics) during jump-landing tasks, cutting, squats, and gait. Many of the reviewed studies
depict proof-of-concept methods for potential future clinical applications including ACL injury risk screening, injury prevention
training, and rehabilitation assessment. By synthesizing these results, we describe important opportunities that exist for clinical
validation of existing approaches, using sophisticated modeling techniques, standardization of data collection, and creation of large
benchmark datasets. If successful, these advances will enable widespread use of portable-sensing approaches to identify ACL injury
risk factors, mitigate high-risk movements prior to injury, and optimize rehabilitation paradigms.
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INTRODUCTION
Anterior cruciate ligament (ACL) injury is common in sports, with
an estimated 400,000 people injuring their ACL in the United
States each year1, leading to over 129,000 ACL reconstruction
(ACLR) surgeries2. Concerningly, nearly half of these patients are
under 20 years of age, and they suffer from not only over 20%
reinjury rates3,4 but also 50–80% knee osteoarthritis rates within a
decade of injury5,6. Knee osteoarthritis can lead to chronic pain
and significant disability requiring surgical treatments such as
total knee arthroplasty.
Research using biomechanical assessments, defined as quanti-

tative measurement of kinematics (i.e., motions) and kinetics (i.e.,
forces) during human movement, have demonstrated that ACL
injury risk and knee function following ACLR are associated with
biomechanical parameters such as dynamic knee valgus, and knee
extension and abduction moments during jump-landing and
gait7–11. Biomechanical assessment during dynamic movement is
crucial because ACL injuries occur during movement and thus
static observations are insufficient12,13. For this reason, clinical
measures like the Landing Error Scoring System (LESS) score are
proposed in an attempt to quantify ACL injury risk;14 however,
they rely on human raters and binary scores, making them less
objective and informative than quantitative Multiomic analyses
kinematic and kinetic assessment. Similarly, static physical
examinations such as the Lachman test and pivot shift test rely
on subjective feelings and experiences of the examiners that
reduce the assessment reliability15,16. Also, although ACLR

patients’ readiness to return to sport is traditionally assessed in
clinics via strength and hop tests, recent studies suggest that
readiness could be more holistically assessed based on kinematics
and kinetics during running17,18, squatting19,20, and single-leg
drop vertical jump21.
Preventing injury is a major goal of biomechanical assessments

which seek to identify individuals at high risk of injury and provide
feedback to prevent high-risk movement patterns. Identifying
those with high injury risk and training them to adopt less risky
movement patterns can lead to a wide range of health, societal,
and economic benefits, including reductions in injury rates, sports
drop-out rates, knee osteoarthritis incidence, and financial costs
associated with rehabilitation and symptom management22,23.
After an ACL injury, the goal of biomechanical assessment is to

guide and monitor the progress of comprehensive rehabilitation
to allow return to sport and other physical activities without
reinjury. Rehabilitation following ACLR should be customized
according to various individual factors, like the amount of healing
present in the ACL graft, activity level, and personal preferences24.
Periodic assessment of kinematics and kinetics during squatting
and walking can provide valuable insights into patients’ recovery
status25–27 and allow for customized physical rehabilitation
protocols, thus accelerating recovery, lowering the risk of a
secondary ACL injury, and helping athletes return to pre-injury
sports level28,29.
Traditionally, biomechanical assessment requires optical motion

capture and force plates. Although these devices are considered
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the gold standard for measurement, they confine the assessment
to specialized motion laboratories, making evaluation inaccessible
to a majority of people. Portable sensors, including inertial
measurement units (IMUs), depth cameras, red-green-blue (RGB)
cameras, electromyography (EMG), are more portable and less
expensive than gait lab equipment, making them promising for
out-of-lab assessment of pathologies like osteoarthritis30, atrial
fibrillation31, and Parkinson’s disease32. Similarly, these sensors
may offer tremendous opportunities for less expensive, wide-
spread ACL injury risk screening and injury-prevention training.
Recent portable-sensor-based assessment methods can be used in
clinics or homes33–35, thus increasing accessibility and afford-
ability, and potentially benefiting thousands of patients
following ACLR.
Although accessibility of portable-sensor-based assessments

can enable their broad ACL-related use, tools that are ready for at-
scale, clinical assessment of kinematics and kinetics do not yet
exist. Previous reviews report on wearable sensing (IMU, EMG,
pedometer, goniometer, and pressure insole) for knee health, as
opposed to all portable sensing studied in this review. In our
manuscript, we also characterize depth cameras and RGB cameras.
Also, prior reviews either did not specifically focus on ACL
injury30,36–38, or were focused on a specific aspect of sensor
performance such as asymmetry identification39. No study has
comprehensively reviewed the utility of portable sensing in ACL-
related assessment, and thus the ideal methods to use, which
clinically relevant parameters to assess, and at what point in the
clinical workflow they should be employed remain unclear. To this
end, we undertook this review to summarize the existing portable-
sensor-based ACL assessment literature, including current target
motions, sensing approaches, modeling techniques, and clinical
applications. We also offer our perspectives on (1) future work that

is necessary to achieve greater clinical impact and (2) new
opportunities that may enhance the validity, reproducibility, and
generalizability of the assessment methods.

RESULTS
Our search yielded 1344 articles, of which 49 articles were
included (Fig. 1), dating from 1990 to 2022. In all, 98% of articles
were published since 2007 and 51% since 2019 (Fig. 2a). IMUs
were the most common sensor used in isolation (22%), followed
by depth cameras (16%), RGB cameras (8%), and EMG (4%)
(Fig. 2b). Kinematic parameters were the dominant target (71%),
followed by spatiotemporal parameters (18%), kinetics (12%), and
muscle activation (10%) (Fig. 2c). The sum of percentages is
greater than 100% because several studies targeted parameters in
multiple categories. Direct feature extraction (37%) was the most
common analysis approach, followed by physics-based modeling
(24%), and machine learning (22%) (Fig. 2d). The majority of
studies used custom methods in their analysis (71%), while the
remaining studies (29%) used direct outputs from commercially-
available systems. ACL injury risk screening (57%) and rehabilita-
tion assessment (55%) were the most common clinical applica-
tions, with a smaller percentage focusing on injury prevention
training (6%). The sum of percentages is greater than 100%
because several studies targeted multiple clinical applications.

Sensing approach
IMU-based and RGB-camera-based studies had diverse configura-
tions in terms of the number and placement of sensors (Table 1).
The configuration of IMUs ranged from using one IMU for
capturing shank movement to using seven IMUs for capturing all
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Fig. 1 PRISMA flow chart. Search and study selection process for this review.
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the lower-body joint kinematics. IMU sensors were most
commonly placed on the shank, followed by the thigh, foot, and
waist. The configuration of RGB cameras ranged from using one
camera for capturing single-plane kinematics to using four
calibrated cameras for capturing 3-D kinematics. The configura-
tions of depth cameras were consistent in that seven out of eight
studies placed a depth camera in front of the subject.
Included studies used six different types of multi-sensor

combinations, and five of them involve IMU (Fig. 3). Seven studies
designed algorithms to fuse multi-sensor data to estimate

parameters35,40–45, whereas the remaining five studies indepen-
dently used different sensors to estimate different para-
meters46–50. Some sensor combinations might be redundant and
could potentially be simplified. For example, four grounded
optoelectronic bars were used to detect the initial foot-ground
contact during landing alongside a shank IMU44,45. The optoelec-
tronic bars might be unnecessary because an IMU can estimate
foot-ground collision by detecting the acceleration impulse51.
Also, two studies simultaneously used a shank-worn IMU to
measure tibial acceleration and a goniometer to measure knee
flexion angle48,49. The goniometer, which needs four belts to be
strapped to the knee, could be replaced by an additional IMU on
the thigh.

Target motions and biomechanical parameters
Jump-landing, cutting, gait, and squatting were the most
commonly measured activities in our included sample. Many
included studies estimated two primary kinematic parameters
associated with ACL injury risk - knee flexion angle and abduction
angle, mostly using IMUs, depth cameras, and RGB cameras
(Table 2). Several studies estimated four primary parameters
associated with ACL injury risk during jump-landing tasks, i.e.,
knee extension moment, knee separation distance, knee internal

Fig. 2 Characteristics of the included studies. a The number of articles has continually increased since 2007. b IMU was the most common
sensor. “Multisensor” represents studies that used two or more sensing modalities. c Kinematics, including joint and segment angles, were
most commonly estimated. Spatio-temporal parameters include timing of foot-ground contact, hop distance, and jump height, whereas
kinetics include ground reaction force (GRF) and joint moments. All of the outcome measures used in each study were counted in the totals.
d Direct feature extraction was the most common methodology.

Table 1. Configurations of the included studies that only used one
sensing modality.

Sensor Number Placement Paper

IMU 1 Shank 55,77,84

IMU 1 Waist 68,85

IMU 1 Ear 64

IMU 1 Wrist 81

IMU 2 Thigh and shank 51,71

IMU 2 Foot and shank 69

IMU 2 Both thighs 78

IMU 2 Both shanks 57

IMU 3 or more Multiple segments 33,56,58,59,63,65,66,76,86

Depth camera 1 Frontal plane 34,61,88,131–134

Depth camera 1 Sagittal plane 70

RGB camera 1 Frontal plane 60

RGB camera 1 Sagittal plane 67

RGB camera 2 Frontal and
sagittal plane

74

RGB camera 4 Ceiling 75

EMG 1 Proximal to the
patella

83

EMG 3 Vastus medialis
and tibial
tuberosity

79

Pressure insole 2 Foot 80

Soft fabric sensor 1 Above patella 62

Fig. 3 Studies used multiple sensing modalities. Eleven studies
simultaneously used two sensing modalities and one study used
three sensing modalities.
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rotation, and vertical GRF during jump-landing tasks. Although
knee abduction moment is a primary parameter that has been
associated with ACL injury risk7,8 as well as knee osteoarthritis52,53,
only one study estimated it during squatting35. Apart from primary
parameters, other target parameters can provide insights into ACL
injury risk and rehabilitation outcomes as well. For example, trunk
kinematics during drop jump54 and the LESS score14 can be used
to identify athletes with risky movement patterns. In addition,
some “non-primary” target parameters are correlated with primary
parameters, e.g., tibial acceleration with knee extension moment
during drop landing (r= 0.72)55, thigh angular velocity with knee
extension moment during single-leg forward hopping (r= 0.59)56,
tibial angular velocity with knee extension moment during gait
(r= 0.76)57, and tibial and thigh angular velocity with knee
abduction moment during drop vertical jump (r= 0.28–0.51)58.
Three studies conducted injury prevention training during drop

vertical jumps by combining visual feedback with wearable
IMUs59, an RGB camera60, or a depth camera61. In a drop vertical
jump, the subject drops off a box, lands with both feet on the
ground, and then immediately performs a maximum height
vertical jump. The first study trained subjects to control their knee
flexion angle and trunk lean estimated by three IMUs, and the
training outcomes included increased knee flexion angle,
increased trunk lean, reduced thigh angular velocity, and reduced
knee abduction moment59. The second study trained subjects to
maximize the overlap between their body contour estimated by
an RGB camera and the contour of an expert movement, and the
training outcomes included reduced vertical ground reaction force
and ankle dorsiflexion moment60. The third study trained subjects
to increase their knee separation distance estimated by a depth

camera, and the training outcomes included increased knee
flexion angle and knee separation distance61. Although these
training regimes have been demonstrated effective in modifying
ACL injury risk factors, their utility in reducing real-world injury
incidence rates have not been prospectively validated.

Accuracy and reliability
The validity of the sensing approaches proposed by 22 studies
(45%) was examined against the gold standard from force plates,
optical motion capture, and human raters. Three studies (6%)
examined their validity against parameters measured by another
portable sensing system, i.e. knee angles from goniometers62,
knee angles from a commercial IMU system63, and step time
asymmetry from pressure insoles64. The remaining 24 studies
(49%) did not examine the validity of the estimated parameters.
There were substantial differences in the accuracy metrics used
across studies, making it challenging to compare the performance
of different approaches. IMU-based studies reported root mean
square errors (RMSEs) of 1.1–6.5 deg for knee flexion angle
estimation33,51,65,66 and 3.3–10.9 deg for knee abduction angle
estimation33,65,66. The accuracy of knee abduction angle estima-
tion was poor considering the small knee abduction range of
motion. The RMSE of knee flexion angle estimation was 6.8 deg
when using eight calibrated RGB cameras35, while the RMSE was
as low as 1.7 deg when using one single RGB camera and two
reflective boards with Moiré patterns attached to the thigh and
shank67. Three studies examined the reliability of the sensing
approach, either within-day62,68 or between-day45 test–retest
repeatability based on intraclass correlation coefficients (ICC).

Table 2. Target motions and biomechanical parameters of included studies.

Category Parameter Jump-landing tasks Cutting Gait Squat

Primary kinematic parameters Knee flexion angle 33,34,51,59,61–63,65–67,71,75,86,133 33,65–67,86,132 33,42,48,49,63 35,63

Knee abduction angle 33,34,63,65–67,75,86 33,65–67,86,132 33,63 35,63,134

Knee separation distance 61,133 – – –

Knee internal rotation 63,66,67 66,67 63 35,63

Primary kinetic parameters Knee extension moment 71 – – 35

Knee abduction moment – – – 35

Vertical GRF 40,50,71 – 70 –

Additional kinematic parameters Trunk kinematics 33,51,59,65 33,65 33 –

Hip kinematics 33,63,75,86 33,86,132 33,63 35,63

Ankle kinematics 33,63,75,86 33,86 33,63 35,63

Tibia kinematics 45,55,56,58,59,75,77 132 46,48,49,57,84 45

Thigh kinematics 56,78 – 84 –

Additional kinetic parameters Hip kinetics – – – 35

Ankle kinetics – – – 35

Anterior-posterior GRF – – 70 –

Medio-lateral GRF – – 70 –

EMG Quadriceps EMG – – 42,46,47 47,79

Hamstring EMG – – 42,47 47

Spatio-temporal parameters Jump height 85 – – –

Hop distance 69 – – –

Human contour 60 – – –

Foot-ground contact 50,51,69,133 – 46,64,68 –

Step count – – 81 –

Categorical metrics Injury risk rated by experts – – – 76

Time after surgery – – 43 –

Recovery status – – 41,42 –

“LESS” score 44,74,88,131 – – –
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Excellent repeatability was observed in the knee flexion angle
estimated by a soft fabric sensor (ICC ≥ 0.9)62.

Methodology of biomechanical parameter estimation
We categorized the methodologies for the analysis of the acquired
data into three separate categories: (1) physics-based modeling
that includes studies with kinematics reconstructed from raw
sensor measurements and kinetics estimated via inverse dynamics
or musculoskeletal models, (2) machine learning models to
estimate subjects’ status or estimate parameters, and (3) direct
feature extraction using investigator-defined parameters from the
raw sensor data.
Eleven studies primarily used physics-based modeling. Integra-

tion of gyroscope data was combined with several drift
compensation methods to estimate the sensor and body segment
orientation in eight investigations42,45,51,59,63,65,66,69, and seven of
these studies used the relative orientation between two segments
to derive joint angles42,45,51,59,63,65,66. Only one study used
musculoskeletal modeling, which estimated the GRF by simulating
25 artificial muscle-like actuators placed under each foot70.
Most of the machine learning studies focused on building

classification models, whereas only one study built a regression
model (linear regression) to predict kinetic parameters71. Two
other studies implemented an existing deep-learning-based
keypoint detection algorithm, OpenPose72,73, to estimate joint
centers from 2-D videos; one of these studies used the keypoints
to derive planar joint angles74 and the other predicted the “LESS”
score75. Classification models including Support Vector
Machines44,46,76, Linear Multinomial Logistic Regression76, Deci-
sion Trees44,76, Naive Bayes76, K Nearest Neighbors44,76, and Fuzzy
Clustering41,43 were used to identify walking states, identify
subjects at high ACL injury risk, and classify the time (e.g.,
0–3 months, 3–6 months, and 6 months or more) after ACLR
surgeries.
A few studies directly used raw sensor measurements for

assessment40,48–50,55–58,62,64,68,77–80, for example, extracting peak
acceleration and angular velocity from the thigh or shank IMU
data for assessment40,55–58,77,78. Some of these direct measure-
ments could provide useful insights as they are correlated with
primary parameters (section 2.2), but this approach may be
limited, compared to physics-based and machine learning
approaches which directly estimate primary force-related

measures. Characteristics of the IMU data (e.g., local peaks) can
also be used to segment gait cycles and derive step time
asymmetry64,68.

Experimental design
The number of subjects recruited in the included studies ranged
from 9 to 169, with the median being 24 (Fig. 4a). Twenty-five
studies (51%) did not exhibit biases across the sex of included
subjects, in that the percentages of females were between 34%
and 66% (Fig. 4b). Importantly, five studies (10%) focused on
females44,45,48,49,61,71,81 (Fig. 4b), as females are more than twice as
likely as males to have a first-time non-contact ACL injury82.
However, four studies (8%) recruited only male subjects without
providing a scientific rationale. Twenty-one studies (43%)
recruited patients following ACLR. The time from ACLR to
experimental testing were within 3 months46,57,64,68,79,83,
3–12 months35,40–43,46,50,56,57,63,64,78,80,84,85, or more than
12 months50,56,69,81 for the recruited patients. Eight studies
(16%) recruited athletes at high risk of ACL injury, including
basketball players44,45, soccer players75,86, and gymnasts61. Eight
studies (16%) explicitly reported that their experiments were
performed out of lab, including clinics40,63,64, hospitals68, soccer
fields86, and unconstrained daily life46,80,81.
None of the studies that estimated ACL injury risk factors

prospectively evaluated their estimation results against subjects’
future injury occurrence. One study recruited thirteen basketball
players, and one of them suffered from an ACL injury within
2 weeks after the first test session45. The injury was caused by an
incorrect landing phase after a single-leg jump with a pivot-shift
mechanism. Analysis of shank-worn IMU data revealed that the
variances of her tibial orientation and acceleration were sig-
nificantly larger than the 12 uninjured players during a counter-
movement jump test, indicating poor leg stability and load
absorption capability. For rehabilitation assessment, six studies
(12%) have used portable sensors to track post-surgery long-
itudinal changes of quadriceps EMG79,83, step count46,81, and level
of gait asymmetry64,81.

Quality assessment
The upper quartile, median, and lower quartile of overall scores
are 88%, 75%, and 68%, respectively (Table 3). Most of the studies
clearly stated their aims (Q1, 94%), sufficiently described their
methods (Q11, 82%), and adequately described their results (Q12,
92%). A few studies might have funding sources or conflicts of
interest that may affect the authors’ interpretation of the results
(Q19, 39%). Only a small portion of studies justified the sample
size (Q3, 16%) or explicitly stated that subjects were recruited from
multiple locations (Q5, 27%).

Readiness for deployment
We adapted the V3 framework87 to categorize the included
studies into three stages based on their readiness for deployment
(Fig. 5). The original V3 framework was not well-suited for our
review as most of the included studies used existing portable
sensing hardware and thus do not require stage I - “hardware
verification”. Our framework omitted this stage and used stage II -
“analytical validation” and stage III - “clinical validation” of the V3
with an additional level (preliminary clinical validation) in between
to allow more fine-grained distinction of the levels of clinical
validation that were performed.
72% of the included studies are in stage I, analytical validation,

as they proposed a novel method in-laboratory and associated its
outcome with ACL injury risk or rehabilitation status. 24% of the
included studies are in stage II, preliminary clinical validation, as
they demonstrated their clinical utility. These studies successfully
used portable sensors to detect deficits in patients following

Fig. 4 Subjects characteristics of the included studies. a Number
of subjects and b percentage of female subjects.
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Table 3. AXIS quality assessment results of the included studies.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Overall (%)

60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100
80 1 1 1 1 1 1 NA 1 1 1 1 1 NA NA 1 1 1 1 1 1 100
84 1 1 1 1 1 1 NA 1 1 1 1 1 NA NA 1 1 1 1 1 1 100
78 1 1 0 1 1 1 NA 1 1 1 1 1 NA NA 1 1 1 1 1 1 94
132 1 1 0 1 1 1 NA 1 1 1 1 1 NA NA 1 1 1 1 1 1 94
35 1 1 1 1 0 1 NA 1 1 0 1 1 NA NA 1 1 1 1 1 1 88
40 1 1 1 1 0 1 NA 1 1 1 1 1 NA NA 1 1 1 1 0 1 88
48 1 1 0 1 0 1 NA 1 1 1 1 1 NA NA 1 1 1 1 1 1 88
49 1 1 0 1 0 1 NA 1 1 1 1 1 NA NA 1 1 1 1 1 1 88
56 1 1 1 1 0 1 NA 1 1 1 1 1 NA NA 1 1 1 0 1 1 88
66 1 1 0 1 0 1 NA 1 1 1 1 1 NA NA 1 1 1 1 1 1 88
68 1 1 1 1 0 1 NA 1 0 1 1 1 NA NA 1 1 1 1 1 1 88
69 1 1 0 1 0 1 NA 1 1 1 1 1 NA NA 1 1 1 1 1 1 88
70 1 1 0 1 0 1 NA 1 1 1 1 1 NA NA 1 1 1 1 1 1 88
74 1 1 0 1 1 1 NA 1 1 1 1 1 NA NA 1 1 1 0 1 1 88
55 1 1 0 1 0 1 NA 1 1 1 1 1 NA NA 1 1 1 0 1 1 82
57 1 1 0 1 0 1 NA 1 1 1 1 1 NA NA 1 1 1 0 1 1 82
71 1 1 0 1 0 1 NA 1 1 0 1 1 NA NA 1 1 1 1 1 1 82
75 1 1 0 1 1 1 NA 1 0 1 1 1 NA NA 1 1 1 1 0 1 82
77 1 1 0 1 0 1 NA 1 1 1 1 1 NA NA 1 1 1 1 0 1 82
86 1 1 0 1 0 0 NA 1 1 1 1 1 NA NA 1 1 1 1 1 1 82
33 1 1 1 1 0 1 NA 1 1 0 0 1 NA NA 1 0 1 1 1 1 76
44 1 1 0 1 0 1 NA 1 1 0 1 1 NA NA 1 1 1 0 1 1 76
46 1 1 0 1 0 0 NA 1 1 1 1 1 NA NA 1 1 1 0 1 1 76
50 1 1 0 1 1 0 NA 1 1 0 0 1 NA NA 1 1 1 1 1 1 76
59 1 1 0 0 0 1 NA 1 1 1 1 1 NA NA 1 1 1 1 0 1 76
61 1 1 0 1 1 1 NA 1 0 0 0 1 NA NA 1 1 1 1 1 1 76
65 1 1 0 0 0 0 NA 1 1 1 1 1 NA NA 1 1 1 1 1 1 76
83 1 1 0 1 0 0 NA 1 1 1 1 1 NA NA 1 1 1 1 0 1 76
85 1 1 0 1 0 0 NA 1 1 1 1 1 NA NA 1 1 1 1 0 1 76
88 1 1 0 1 0 0 NA 1 1 1 1 1 NA NA 1 1 1 1 0 1 76
81 1 1 0 1 0 1 1 1 0 0 1 1 NA NA 1 1 1 1 0 1 72
34 1 1 0 1 0 0 NA 1 1 0 0 1 NA NA 1 1 1 1 1 1 71
58 1 1 0 0 0 0 NA 1 1 0 1 1 NA NA 1 1 1 1 1 1 71
79 1 0 0 1 0 1 NA 0 0 1 1 1 NA NA 1 1 1 1 1 1 71
131 1 1 0 1 0 1 NA 1 1 1 1 1 NA NA 1 1 0 0 0 1 71
133 1 1 0 1 0 0 NA 1 1 0 1 1 NA NA 1 1 1 1 0 1 71
63 1 1 0 1 1 0 NA 1 1 0 1 0 NA NA 1 0 1 1 0 1 65
67 1 1 0 1 0 0 NA 1 1 0 1 1 NA NA 1 1 1 0 0 1 65
41 0 0 0 1 1 0 NA 1 0 0 1 1 NA NA 1 1 1 1 0 1 59
43 1 1 0 1 1 0 NA 1 1 0 0 1 NA NA 1 1 0 0 0 1 59
45 1 1 0 0 0 0 NA 0 0 1 1 1 NA NA 1 1 1 0 1 1 59
76 1 1 0 0 0 1 NA 0 0 0 1 1 NA NA 1 1 1 1 0 1 59
51 1 1 0 0 0 0 NA 1 1 0 0 1 NA NA 1 1 0 0 1 1 53
134 0 0 0 1 0 1 NA 1 1 0 1 1 NA NA 1 1 0 0 0 1 53
62 1 1 0 0 0 0 NA 0 0 1 0 1 NA NA 1 1 0 1 0 1 47
42 1 0 0 1 1 0 NA 0 1 0 0 0 NA NA 1 0 0 1 1 1 47
47 0 1 0 0 0 0 NA 1 0 0 0 0 NA NA 1 1 1 0 0 1 35
64 1 1 0 0 0 0 NA 1 0 0 1 0 NA NA 1 1 0 0 0 0 35

1= positive response, 0= negative response or unclear, and NA= not applicable.
Quality of reporting: Q1, Q4, Q10, Q11, Q12, Q16, and Q18; Quality of study design: Q2, Q3, Q5, Q8, Q17, Q19, and Q20; Potential biases: Q6, Q7, Q9, Q13, Q14,
and Q15.
NA was excluded for computing the overall score of each study.
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ACLR40,46,48,50,80, identify subjects with high-risk movement
patterns44,51,76,86,88, and enable injury prevention training that
led to significant reductions in ACL injury risk factors59–61.
However, before the deployment of these studies, further clinical
validation is needed to validate their test-retest reliability as well
as effectiveness in accelerating the post-ACLR recovery, or
predicting and reducing real-world injury incidence rate. 4% of
the included studies are in stage III, clinical validation, as they have
proved their utility among the target population (e.g., athletes,
patients following ACLR) outside of laboratories (e.g., sports fields,
clinics). The only two studies in this stage monitored the
longitudinal changes of quadriceps EMG and performed feedback
training during rehabilitation exercises among an ACLR
cohort79,83, and one of them was published in 199083. Rando-
mized controlled trials showed that EMG biofeedback accelerated
the recovery of quadriceps strength and knee range of motion in
early-stage rehabilitation.

DISCUSSION
The use of portable sensing for ACL injury risk stratification and
rehabilitation has been increasing at an accelerated rate, with 98%
of our reported studies occurring since 2007 and 51% since 2019
(Fig. 2). These studies have been dominated by the use of IMUs
(43%) as well as depth and RGB cameras (24%). Such portable
technologies for assessing mechanics have primarily been
leveraged to collect kinematic data at the knee during jump-
landing tasks, and, to a lesser extent, during cutting and gait
motions. While these portable sensing studies have laid important
groundwork for a variety of ACL-related biomechanical assess-
ment tasks, future validation studies are needed to characterize
the validity and reliability of such approaches, prior to the clinical
deployment. This review highlights current knowledge gaps and
future opportunities for the underlying technologies as well as
their clinical applications. In the following, we provide our
perspective on how to improve existing modeling methods and
achieve broader clinical impact.
Using portable sensing to estimate traditional parameters or

identify new parameters associated with ACL injury risk represents

a significant research opportunity. Jump-landing tasks were the
most popular dynamic motion among included studies and have
been established as being well suited for identifying athletes at
greater risk of ACL injury7. Cutting motions were less popular, but
could be complementary to jump-landing tasks because knee
kinematics and kinetics were significantly different during these
two motions when assess in-lab11,89. Thus, simultaneous evalua-
tion of jump-landing and cutting movement quality would
provide a broader array of real-world conditions for more reliable
injury risk screening. Systematic reviews of lab-based assessments
have established that the knee angles, knee moments, and vertical
GRF during jump-landing tasks and cutting are primary para-
meters for understanding ACL injuries and rehabilitation7,8.
Among these primary parameters, knee angles were estimated
by many of the reviewed studies; however, only one included
study estimated knee extension moment71 and no study
estimated knee abduction moment during jump-landing tasks or
cutting. Recent research has shown that knee abduction moment
during gait can be estimated from simulated 2-D video data using
neural networks90 or from real 2-D video data using neural
networks and musculoskeletal simulation91. Future research
should test these methods for dynamic activities relevant to ACL
injury risk screening, such as jump-landing and cutting motions.
A particular challenge with studies to establish new metrics for

injury risk screening, however, is the low occurrence of ACL
injuries that makes it challenging to pair pre-injury mechanical
patterns to injury occurrence. Previous studies recruited hundreds
to thousands of athletes from high-risk sports (typically young
female basketball and football players) to validate traditional ACL
injury risk factors such as joint laxity measured using a knee
arthrometer92 and knee abduction moment measured by marker-
based motion capture and force plates10. In contrast, despite the
portable nature of the sensing approaches, the included studies
estimated parameters with 9–169 subjects (the median is 24), and
only 16% recruited athletes. Consequently, ACL injury incidence
was rare among the included studies (only one study reported an
incident45), suggesting the need for future studies that validate
clinical utility through prospective evaluation of the estimated
parameters against real injury occurrence. One solution to scarcity

I. Analytical Validation

Studies that proposed a novel method for
estimating outcomes that are associated with
ACL injury risk or rehabilitation status.

II. Preliminary Clinical Validation

Studies that successfully detected risky
movement patterns, detected post-ACLR
deficits, or enabled injury risk reduction.

III. Clinical Validation

Studies that proved their utility among the
target population outside of laboratories.

72%

24%

4%

Fig. 5 Categorization of the included studies into three stages based on their readiness for deployment. Studies in stage I provided proof-
of-concept evidence, studies in stage II demonstrated their clinical utilities, and studies in stage III proved their clinical utilities.
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of data from injured athletes is the creation of a standardized
pipeline of sensor deployment, data processing, archiving, and
data sharing, which could enable multi-center data collection from
a large number of athletes in the real world. While all portable
sensors will make multi-center more accessible, deployment of
such a multi-center effort is particularly convenient for RGB and
depth cameras, which can passively collect data from multiple
subjects without the burden of donning and doffing the sensors.
Furthermore, such datasets will enable the identification and
prospective validation of novel parameters that may more
accurately predict ACL injury risk than traditional parameters.
The prospective studies of ACL injury risk mentioned previously

will be pivotal for providing targets for preventative training. It has
been shown that young athletes can be trained to adopt less risky
posture and reduce injury risk9. However, effective training
typically requires multiple sessions per week during both pre-
season and in-season93 along with verbal feedback from expert
coaching staff based on subjective visual observations94. In reality,
with practical constraints such as demanding exercise protocols
for athletes and limited availability of coaches knowledgeable in
injury prevention, such training and feedback are challenging to
implement. Prior studies have demonstrated that the subjectivity
of such feedback may also lead to athletes experiencing
considerable variability between recommendations amongst
coaches95. In contrast to the subjective verbal feedback from
human observations, the visual feedback enabled by portable
sensors is tangible, quantifiable, and more importantly, objec-
tive59–61. Further, the capabilities for automatic tracking of training
and progress provided by portable sensing technologies could
also open the door to new strategies, such as gamification, to
motivate and engage athletes in completing injury prevention
programs96,97.
Current efforts focus on the paradigm described above for

testing specific movements, providing feedback, and athletes
learning to change that movement. However, lab-based methods
cannot measure risk factors during practice or game-play; thus
real-world changes to risky behaviors in response to training are
unknown. Portable sensors are now commonly used to measure
athletes’ position in field sports using GPS, or movements using
IMUs98, from which ACL injury risk factors can be extracted.
Longitudinal tracking of risk factor improvements during practice
and game-play provides a novel avenue to determine the
effectiveness of injury prevention training. Additionally, in-game
and in-practice tracking allows data collection in a much larger
volume in terms of the duration and the number of athletes
compared to traditional in-lab environments. The sheer scale of
data may overcome relatively lower quality of portable sensors
and enable the identification of novel risk factors that were not
possible in a solely lab-based environment.
Patients following ACLR need 4–12 months of rehabilitation to

restore movement quality99,100. After rehabilitation, patients’
readiness to return to sport is commonly determined by whether
their inter-limb symmetry in muscle strength, hop distance, and
hop task completion time are larger than 90%101–103. While these
tests are beneficial since they can be implemented in clinics,
previous studies reported that strength tests lack functional
relevance to sporting situations104. Furthermore, it was reported
that since hop tests only indirectly assess knee function and
loading, they may mask asymmetry in lower limb biomecha-
nics103,105–107. Hop tests are also sensitive to small alterations in
the test procedures108. Apart from strength and hop test
measures, asymmetrical knee kinematics and kinetics during gait
and double-leg squat as well as improper single-leg squat
mechanics such as increased knee abduction angle may reveal
dysfunctional movement patterns26,27,109. One barrier impeding
the adoption of parameters during squatting and gait into return-
to-sport decision-making is their reliance on force plates and
marker-based motion capture from specialized laboratories. Many

studies have proposed portable-sensing methods to estimate
knee kinematics (Table 2). Also, as previously mentioned, portable
sensors coupled with neural networks and musculoskeletal
simulation have shown promise at predicting knee kinetics71,90,91.
Using these technologies to develop assessments that are fast and
accurate enough for clinical deployment could enable better
return-to-sport decision making and potentially lower the risk of
reinjury. Clinical validation studies could start with young
athletes3,4, since their high reinjury rate could increase statistical
power. Additionally, the ability to track biomechanical changes
over time will both inform the rehabilitation approaches of
clinicians and promote long-term patient engagement.
According to the AXIS assessment results (Table 3), the quality

of study design is generally high; however, there is a risk of bias
due to sample size and representativeness, which adversely
affects the validity and generalizability. Specifically, the number of
subjects is low (the median being 24) in most of the studies, and
most studies did not provide justifications for the sample size
(84%). Further, many studies recruited healthy subjects from a
smaller biased pool (e.g., university students) (82%), and many
other studies recruited patients from a single clinic or hospital, an
inherent source of bias (62%). Few studies examined the test-
retest repeatability of portable sensing. Also, accuracy metrics
were not well-defined and thus hard to interpret in several studies,
for example, it was unclear whether normalized RMSE (NRMSE)
was obtained by normalizing RMSE over each trial, all the trials of
each subject, or all the trials of all the subjects33,63. Additionally,
metrics of different measures may not be directly compared, for
example, RMSE and R2 of the entire biomechanical parameter
profile should not be compared against those of specific time
points (e.g., initial contact, peak, or midstance)66. These limitations
highlight the opportunity of establishing the validity and reliability
of sensor-based measures for ACL-related assessments.
Most of the included studies used direct feature extraction and

IMU data integration with drift compensation to estimate
parameters; however, they cannot provide insights into GRF or
joint kinetics. In contrast, machine learning, despite being
computationally expensive and prone to overfitting in low-data
regimes110, has shown its potential for estimating kinetics in an
end-to-end manner111–113 or in combination with musculoskeletal
modeling91. Few included studies have attempted to use machine
learning to estimate kinetic parameters associated with an ACL
injury, so this field remains unstudied and represents important
future opportunities; here we offer a few ideas.

● Using transfer learning to augment training data for machine
learning models in conditions with limited data. For example,
machine learning models can be pre-trained on large corpora
of data collected during easier-to-measure motions (e.g.,
walking) and/or data synthesized from readily available
sources (e.g. ref. 114). Subsequently, those models can be
fine-tuned on data collected during drop vertical jump or
cutting where massive data collection is more difficult.

● Incorporation of machine learning to enhance physics-based
modeling. For example, physics-based models simplify the
human body using parameterized formulas, where parameters
were traditionally determined empirically or using population
averages. Alternatively, these parameters can be learned from
collected data using machine learning115,116.

● Extraction of 3-D joint angles from camera data. Calculation of
3D joint kinematics requires collection of ≥3 non-collinear
markers per rigid segment. Body keypoint detection algo-
rithms employed by the included studies only extract joint
centers, making derivation of 3-D joint angles (flexion,
abduction, and internal rotation) impossible. Future studies
may consider employing novel algorithms for extracting body
meshes117–120 or conventional biomechanical markersets that
can be used to derive 3-D angles.
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Machine learning models have a strong dependency on
datasets, so it can be challenging to generalize the results to
new datasets. To prevent overfitting and guarantee the models’
reliability and generalizability, we suggest future studies follow the
general recommendations provided to biomechanists by Halilaj
and colleagues110. Here we offer a few additional recommenda-
tions for ACL-related assessment.

● Use the target population for model training and testing. If the
dataset is from a general population cohort, the model may
not generalize to an athlete cohort who are stronger and
faster, or to a patient cohort with pathological movement
patterns.

● Use a large and representative dataset, for example, a dataset
collected from multiple laboratories with a balanced distribu-
tion in sex, height, weight, and age of included subjects. A
small dataset collected by one single operator using one set of
devices can suffer from biases such as biased marker
positioning121. If the model is trained on such datasets,
whether those biases are inherited by the model needs to be
investigated.

● Do not test the model using the data from the subjects that
were involved in model training, unless additionally training
data can be easily acquired from new subjects in practical
applications.

Benchmark datasets are curated, publicly available sets of data
for enabling objective comparisons between studies and rigorous
selection of state-of-the-art methods122. They have already proven
their fundamental importance in research areas such as computer
vision. Although many included studies estimated the same
biomechanical parameter during the same type of motion
(Table 2), significant differences exist in their recruited cohorts
of subjects, sources of ground truth, and metrics of validity. It is
therefore difficult to impossible to truly compare the validity,
sensitivity to parameter changes, or test-retest repeatability
between these methods. Although a few comprehensive biome-
chanical datasets containing multiple portable sensors have been
published123–125, none have focused on ACL-specific tasks. To
make it easier for future researchers to select the optimal sensing
approach and estimation method, we here call for collection and
publication of a benchmark dataset, ideally following a standar-
dized pipeline (section 3.1.1) and open science principles to
ensure its findability, accessibility, interoperability, and reusabil-
ity126. Such an ideal dataset should contain simultaneously
collected ground-truth kinematics, GRF, and multiple portable
sensor data (Table 1 and Fig. 3) during a range of ACL-specific
motions (Table 2). A dataset that includes repeated measures on
the same or separate days will enable assessment of measurement
reliability, and thus calculation of the minimum detectable change
which is crucial for clinical use on an individual basis127.
We are unable to aggregate or statistically compare the

performance of portable sensing approaches because the

included studies reported different accuracy metrics and investi-
gated different motions and biomechanical parameters. As a
result, the validity and reliability of portable sensing for ACL-
related assessment aggregated across the included studies cannot
be computed. Our review of the literature demonstrates a lack of
consensus in portable sensing performance and points to the
need for benchmark datasets with ground-truth measurements,
which would enable objective comparisons between studies.
Another limitation is that we did not formulate clinical research
questions following the patient, intervention, comparison, out-
come (PICO) framework128, which may limit the clinical impact of
our review. This is because we attempted to include technology-
focused studies that would otherwise be excluded by the PICO
framework due to not strictly following clinical research principles.
For example, 72% of the included studies are in the analytical
validation stage, and most of them focused on technology
development without designing controlled experiments or
recruiting a patient cohort. We believe that assessing the
successes and gaps in current technical studies could pave the
way for more clinical validation studies that could fit the PICO
framework.
In this manuscript, we summarize the state of using portable

sensors to enable a range of ACL-related biomechanical assess-
ments. Through these studies, we showed that portable sensing
can potentially be used to monitor patient progress through the
rehabilitation process and train athletes to reduce injury risk
factors. However, despite their promising results, the validity and
reliability of these portable sensing methods are not well-
established. Thus, we highlight numerous opportunities that exist
in the validation and benchmarking of portable sensing
approaches for estimating various biomechanical parameters
during injury risk screening, injury prevention training, and
rehabilitation assessment. We also highlight two important
opportunities for future research in: (1) exploring sophisticated
modeling techniques to enable more accurate assessment and (2)
standardizing data collection and processing methods to pave the
way for procurement of large benchmark datasets, and multi-
center trials for clinical validation. The sheer amount of portable
sensor data may enable large-scale prospective studies for the
identification of new ACL injury risk factors, leading to novel
targets for preventative training. The capabilities for automatic
tracking of training and progress provided by portable sensing
technologies could open the door to new strategies, such as
gamified platforms, to motivate and engage athletes and patients
in completing training programs. If successful, these advances will
enable widespread use of portable-sensing approaches to
estimate ACL injury risk factors, mitigate high-risk movements,
customize rehabilitation paradigms for improved long-term health
outcomes, and quantify return-to-sport readiness.

Table 4. Specific search terms used for the literature review.

General Specific terms

ACL ACL OR anterior cruciate ligament

AND

Sensing OR feedback pressure insol* OR force insol* OR acceleromete* OR gyroscop* OR IMU OR IMUs OR inertial measurement uni* OR inertial
senso* OR electromyogra* OR EMG OR video OR cellphon* OR smartphon* OR camer* OR depth OR Kinect OR wearabl* OR
portabl* OR field-based OR out of lab OR *n field OR feedback OR biofeedback

AND

Clinical application injury risk OR risk factor OR risk metrics OR risk mitigation OR risk reduction OR injury prevention OR screening OR
rehabilitation OR rehab OR trainin* OR retrainin* OR return to spor* OR return to play OR secon* injury OR reinjur*

*Denotes wildcard matching.
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METHODS
Literature search approach
Our scoping review was conducted in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA-2020) guidance129. We searched articles pub-
lished up to 6 March 2022 from the following databases: Medline
(1950-) and Web of Science Core Collection (1950-). The search
focused on retrieving articles that included: (1) ACL, (2) portable
sensing approaches such as IMU, EMG, video, and pressure insole,
and (3) clinical applications such as injury risk screening (Table 4).
We only considered articles written in English and those contained
at least one term from each of the three categories above either in
their title, abstract, or keywords.

Inclusion and exclusion criteria
Two authors (T.T. and A.A.G.) independently reviewed titles,
abstracts, and keywords of all the retrieved articles. Inclusion/
exclusion disagreements were resolved by full-text review and
discussion to reach consensus. We excluded dissertations, theses,
conference proceedings, and conference abstracts. We also
excluded articles whose primary purpose was not development,
validation, or use of portable sensing for ACL-related assessment.
In addition, we excluded articles that did not involve human
subjects, articles that required human raters or manual labeling for
qualitative assessment, and articles that used force plates and
marker-based motion capture measurements as input data for
assessment. Articles were not excluded if those measurements
were used as the gold standard to determine the validity of
portable sensing approaches.

Outcome extraction
We carefully read and extracted the following outcomes from the
included articles: area of application (i.e., injury risk screening,
injury prevention training, rehabilitation assessment), sensing
approach (e.g., IMU, RGB camera, EMG), target motion (i.e.,
jump-landing tasks, cutting, gait, squatting), target biomechanical
parameter (e.g., knee flexion angle, vertical GRF), category of the
parameter (e.g., kinematics, kinetics), methodology of estimation
(i.e., physics-based modeling, machine learning, direct feature
extraction), developer of the method (i.e., academic laboratories,
commercial companies), number of subjects, sex ratio, involve-
ment of athletes, experiment site (e.g., laboratory, clinics),
validation (e.g., validated against force plates and optical motion
capture), and repeatability (e.g., test-retest reliability). We also
assessed whether included articles validated their clinical utility in
detecting patients’ recovery status, accelerating rehabilitation,
predicting future ACL injury occurrences, or enabling feedback
training for injury risk reduction. Some terminologies were unified
or simplified if they depicted the same fundamental measure-
ment. For example, knee flexion angle, knee extension angle, and
sagittal plane knee angle were unified as knee flexion angle.

Quality assessment
The Appraisal tool for Cross-Sectional Studies (AXIS) was used to
assess the quality of the included studies130. AXIS includes 20
questions (Supplementary Table 1), with seven related to quality
of reporting, seven related to quality of study design, and six
related to potential biases. Two authors (T.T. and A.A.G.)
independently assessed each study by scoring each question
with 1 (positive response), 0 (negative response or unclear), or NA
(not applicable to this study). Disagreements were resolved by
review and discussion to reach consensus. The overall quality of
each study was reported as the percentage of positive responses
over positive plus negative responses (excluding NA). The AXIS
tool does not provide cut-off values for high or low study quality,
and we did not exclude studies based on the assessment results.
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