Table 1.
Method | GEA (↑) | GEF (↓) | GES (↓) | GECF (↓) | GEGF (↓) |
---|---|---|---|---|---|
Random | 0.148 ± 0.002 | 0.579 ± 0.007 | 0.920 ± 0.002 | 0.763 ± 0.003 | 0.023 ± 0.002 |
Grad | 0.193 ± 0.002 | 0.392 ± 0.006 | 0.806 ± 0.004 | 0.159 ± 0.004 | 0.039 ± 0.003 |
GradCAM | 0.222 ± 0.002 | 0.452 ± 0.006 | 0.263 ± 0.004 | 0.010 ± 0.001 | 0.020 ± 0.002 |
GuidedBP | 0.194 ± 0.001 | 0.557 ± 0.007 | 0.432 ± 0.004 | 0.067 ± 0.002 | 0.021 ± 0.002 |
IG | 0.142 ± 0.002 | 0.545 ± 0.007 | 0.727 ± 0.005 | 0.110 ± 0.003 | 0.021 ± 0.002 |
GNNExplainer | 0.102 ± 0.003 | 0.534 ± 0.007 | 0.431 ± 0.008 | 0.233 ± 0.006 | 0.027 ± 0.002 |
PGMExplainer | 0.133 ± 0.002 | 0.541 ± 0.007 | 0.984 ± 0.001 | 0.791 ± 0.003 | 0.096 ± 0.004 |
PGExplainer | 0.194 ± 0.002 | 0.557 ± 0.007 | 0.217 ± 0.004 | 0.009 ± 0.000 | 0.029 ± 0.002 |
SubgraphX | 0.324 ± 0.004 | 0.254 ± 0.006 | 0.745 ± 0.005 | 0.241 ± 0.006 | 0.035 ± 0.003 |
SubgraphX far outperforms other methods in accuracy and faithfulness while PGExplainer is best for stability and counterfactual fairness. In general, gradient methods produce the most fair explanations across both counterfactual and group fairness metrics. See Tables 3–4 for results on edge and feature explanation masks.