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Abstract
Background  Atherosclerosis (AS) is a chronic inflammatory disease, as a main cause leading to vascular diseases 
worldwide. Although increasing studies have focused on macrophages in AS, the exact relating mechanism is still 
largely unclear. Our study aimed to explore the pathogenic role and diagnostic role of macrophage autophagy related 
genes (MARGs) in AS.

Methods  All datasets were downloaded from Gene Expression Omnibus database and Human Autophagy Database. 
The differential expression analysis and cross analysis were performed to identify candidate MARGs. GO and KEGG 
enrichment analyses were conducted to obtain the functional information. Moreover, we analyzed the correlation 
between target gene and macrophage polarization in AS. The correlation between target gene and plaque instability, 
different stages of AS were also analyzed.

Results  Compared with normal samples, a total of 575 differentially expressed genes (DEGs) were identified in AS 
samples. A total of 12 overlapped genes were obtained after cross-analysis of the above 575 DEGs and autophagy 
related genes (ARGs). Then, 10 MARGs were identified in AS samples, which were significantly enriched in 22 KEGG 
pathways and 61 GO terms. The expression of HSPB8 was significantly down-regulated in atherosclerotic samples 
compared with normal samples (with largest fold change). Meanwhile, the proportion of M-CSF in low HSPB8 
expression AS group was higher than high expression AS group. Furthermore, the expression of HSPB8 was negatively 
correlated with most inflammatory factors.

Conclusion  The downregulation of MARG HSPB8 probably involves in the M2 macrophage polarization in AS 
samples. HSPB8 is a promising diagnostic marker for AS patients.
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Background
Atherosclerosis (AS) is a chronic inflammatory dis-
ease, as the main cause of vascular diseases around the 
world [1]. The development of AS has been increasingly 
indicated to be caused by a combination of genetic and 
environmental factors, including chronic inflamma-
tion, hypertension, diabetes, hypercholesterolemia, sed-
entary lifestyle and smoking [2–4]. AS is characterized 
by the formation of atherosclerotic plaques, consist-
ing of necrotic cores, lipids, calcified areas, endothelial 
cells, inflammatory smooth muscle cells, foam cells and 
immune cells [5–7]. Once AS plaques are eroded or rup-
tured, some thrombotic events will be triggered, which 
may be fatal in severe cases [3]. Macrophages are the vast 
majority of inflammatory cells in atherosclerotic plaques, 
determining lesion size, composition, and stability [5, 8]. 
In the plaques, macrophages contribute to the formation 
of AS through the uptake of oxidized low-density lipo-
protein particles (ox-LDL) and subsequent formation of 
foam cells [9]. Although increasing studies have focused 
on macrophages in AS, the exact relating mechanism is 
still largely unclear.

The role of macrophages in AS is considered to be 
inseparable from its polarization and phenotypic expres-
sion [10]. In the microenvironment of atherosclerotic 
plaque, the chemokines, lipids, cytokines and other mol-
ecules are able to regulate macrophage phenotype and 
promote the transformation of macrophage to pro-ath-
erosclerotic or anti-atherosclerotic state [5]. Therefore, 
a better understanding of the phenotypic diversity and 
function of macrophages is helpful to reveal the detailed 
macrophage related mechanisms in AS. In atheroscle-
rotic plaques, macrophages originate from the prolifer-
ating vascular resident macrophages and the infiltrating 
monocytes [11]. Monocytes differentiate into macro-
phages through a variety of pro-differentiation factors, 
including granulocyte-macrophage colony-stimulating 
factor (GM-CSF) and macrophage colony-stimulating 
factor (M-CSF) [12–15]. GM-CSF polarizes macro-
phages into an inflammatory M1-like phenotype, while 
M-CSF polarizes macrophages into an anti-inflammatory 
M2-like phenotype [16]. M1 and M2 macrophages are 
mutually transformed to control the progress of plaque 
stability [17].

Moreover, macrophage autophagy also plays an impor-
tant role in AS [18]. Autophagy is a process of self-
protection, which is essential for maintaining cellular 
homeostasis [19]. Autophagy has been associated with a 
variety of diseases, including malignant tumors, cardio-
vascular diseases, immune system disorders and neu-
rodegenerative diseases [20]. Macrophage autophagy 
defects have been indicated to accelerate AS develop-
ment by enhancing foam cell formation, cell death, and 
inflammation [21]. Although the exact mechanism of 

macrophage in the regulation of AS is unclear, certain 
autophagy related genes seem to be key factors contrib-
uting to AS. For example, it has been reported that in 
AS mouse models, macrophages lacking of autophagy-
related gene 5 (ATG5) could promote the oxidative stress 
and plaque necrosis [22]. Moreover, there are also some 
other markers for AS. Endothelin-1 and C reactive pro-
tein have recently been suggested to serve as promis-
ing markers for restenosis in AS obliteran patients [23]. 
Whereas, the current biomarkers for AS are far from 
meeting the clinical requirements. HSPB8 encodes the 
small heat shock protein B8 (HSPB8), associating with 
various cellular functions, including autophagy, cytoskel-
eton stabilization, apoptosis, oxidative stress, prolifera-
tion and differentiation [24]. Meanwhile, aberrant HSPB8 
expression has involved in causing a variety of diseases, 
such as breast cancer, lung cancer, glioblastoma and 
hepatocarcinoma [24–27]. However, the pathogenic role 
or diagnostic role of HSPB8 in AS has not been clarified 
yet as far as we know.

In this study, based on public data in multiple data-
bases, we screened macrophage-specific autophagy-
related genes in AS samples, meanwhile the hub gene 
was then identified and subjected to further analysis. Our 
findings may provide a new target for the diagnosis and 
treatment of AS.

Materials and methods
Data source
The GSE100927 dataset contained 104 AS samples (Agi-
lent-039494 SurePrint G3 Human GE v2 8 × 60 K Micro-
array) and GSE43292 dataset included 64 AS samples 
(Affymetrix Human Gene 1.0 ST Array), which were 
downloaded from Gene Expression Omnibus (GEO; 
https://www.ncbi.nlm.nih.gov/geo/) database. Autoph-
agy related genes (ARGs) were obtained from Human 
Autophagy database (http://www.autophagy.lu/index.
html) (Table S1). Additionally, GSE120521 (Illumina 
HiSeq 2500), GSE18275 (RNG-MRC_HU25k_EVRY), 
GSE28829 (Affymetrix Human Genome U133 Plus 2.0 
Array) and GSE23314 (Rosetta / Merck Human 44k 1.1 
microarray) datasets were also downloaded from GEO 
database.

Differentially expressed gene analysis
The “limma” R package (version 4.2.0, the same below) 
was used to screen differentially expressed genes (DEGs) 
from GSE100927 dataset with |Log2FC| > 1 and P 
value ≤ 0.05 [28].

Functional enrichment analyses
Based on the mutual DEGs, the “clusterProfiler” R pack-
age [29] was utilized to conduct the GO (Biological Pro-
cess, Molecular Function and Cellular Component) and 
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KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathway enrichment analysis. The P value < 0.05 was con-
sidered statistically significant.

The correlation between target gene and macrophage 
polarization in AS
To further evaluate the differences of GM-CSF and 
M-CSF in macrophages between high and low target 
gene expression AS samples, we divided the samples in 
the GSE18275 into different groups according to the 
median expression of target gene. As AS is accompanied 
by local production and release of inflammatory media-
tors [30], we analyzed the correlation between the target 
gene expression and interferon/receptor and interleukin/
receptor mRNA expression (such as IFNAR2, IL10RA, 
IL10RB, IL32, IL4R, IL-4, IL-10, IL-6, IL-1B and TNF).

The correlation between target gene and plaque 
instability, different stages of AS
The correlation between target gene and plaque insta-
bility was studied in dataset GSE120521. In addition, 
dataset GSE28829 was used to explore the expression of 
target gene at different stages of AS. Receiver operating 
characteristic (ROC) analysis was employed to determine 
the diagnostic value of target gene.

Results
Identification of candidate macrophage autophagy related 
genes in AS
Compared with normal samples, totally 575 DEGs were 
identified in AS samples basing on dataset GSE100927, 
including 422 up-regulated genes and 153 down-regu-
lated genes (Fig. 1A and B, Table S2). A total of 12 over-
lapped genes were obtained after cross-analysis of the 
above 575 DEGs and ARGs (Fig. 1C), and the expression 
of the 12 overlapped genes in AS were shown in Fig. 1D. 
Among which, 10 genes were expressed in macro-
phages, based on the macrophage related mRNA profile 
in GSE18275 (Fig.  1E). Thus, 10 macrophage autophagy 
related genes (MARGs) were identified in AS samples, 
including CASP1, CTSD, CDKN2A, CCR2, SERPINA1, 
RGS19, CTSB, HSPB8, BID and CXCR4.

Results of GO and KEGG functional enrichment analysis
We conducted GO and KEGG enrichment analyses on 
the above 10 MARGs. These 10 MARGs were signifi-
cantly enriched in 22 KEGG pathways (Table S3)(The 
pathways were obtained based on KEGG [31–33]) and 
61 GO terms (Table S4). Significant KEGG pathways 
included apoptosis, autophagy, chemokine and lipid and 
atherosclerosis signaling pathways, and the top 20 path-
ways were shown in Fig. 2A and B. Significantly enriched 
GO terms included chemokine receptor activity and 
tumor necrosis factor receptor pathways, and the most 

significantly enriched 20 GO terms were displayed in 
Fig. 2C and D.

Moreover, we performed a differential expression 
analysis on these 10 MARGs in an independent cohort 
GSE43292. The results showed that the fold change 
of HSPB8 was the largest (Fig.  2E, Table S5, log FC = 
-0.938204687, P < 0.0001). Therefore, HSPB8 was selected 
for our subsequent analysis in AS.

HSPB8 was correlated with the macrophage polarization 
in AS
Given the significant effects of different subtypes of mac-
rophages on AS patients, the proportions of M-CSF and 
GM-CSF in AS samples with differential MARG HSPB8 
expression were analyzed. All AS samples in dataset 
GSE18275 were divided into high and low HSPB8 expres-
sion AS groups, according to the median expression level 
of HSPB8. We found that the proportions of M-CSF in 
low HSPB8 expression group were significantly higher 
than that in high HSPB8 expression group (Fig.  3A). In 
low HSPB8 expression AS group, significantly higher 
M-CSF proportions indicated that anti-inflammatory M2 
macrophage was the predominant subtype (Fig. 3A).

The correlation between HSPB8 and various inflamma-
tory factors was then evaluated based on GSE100927. We 
found that IL4, IL4R and IL6 in the HSPB8 high expres-
sion group was significantly up-regulated compared 
with the HSPB8 low expression group, while IFNAR2, 
IL10RA, IL10RB, IL12RB1, IL12RB2, IL32, IL10, IL6R, 
IL1B, IL1A, TNF, TNFAIP2 and TNFAIP8L2 were signif-
icantly down-regulated (Fig. 3B). Subsequent correlation 
analysis showed that HSPB8 was negatively correlated 
with IFNAR2, IL10, IL10RA, IL10RB, IL12RB1, IL12RB2, 
IL1A, IL1B, IL32, IL6R, TNF, TNFAIP2, TNFAIP8L2 
(PCC < -0.4, P < 0.05), but HSPB8 was positively cor-
related with IL4, IL6 and IL4R (PCC > 0.4, P < 0.05) 
(Fig. 3C).

The diagnostic value of HSPB8 in AS patients
Subsequently, we have also evaluated the diagnostic value 
of HSPB8 in AS patients. There are two types of athero-
sclerotic plaques, stable plaques and unstable plaques. 
The fibrotic cap of the stable plaques is thick and the lipid 
core is small [34]. In contrast, unstable plaques are prone 
to rupture, characterized by more macrophages, thin 
fibrotic cap, large necrotic center, plaque erosion, calci-
fied nodules [35, 36]. Therefore, the risk coefficient of 
unstable plaques is higher, which is more likely to cause 
myocardial infarction and cerebral infarction. After ana-
lyzing the AS data including clinical plaque information 
(GSE120521), we found that significantly lower HSPB8 
expression was observed in AS with unstable plaques, 
compared with AS with stable plaques (Fig. 4A), indicat-
ing a higher risk of AS subsequent disease. Moreover, 
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Fig. 1  The results of differential expression analyses. A-B. Volcanic map and heat map of differentially expressed genes, respectively. C. Venn diagram 
showing overlapped genes. D. The expression of 12 overlapped genes in AS. E. Totally 10 macrophage autophagy related genes (MARGs) were identified 
in AS samples
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Fig. 2  The results of GO and KEGG functional enrichment analysis. (A) Bubble map of significant KEGG pathways. (B) Loop map of significant KEGG 
pathways. (C) Bubble map of significant GO terms. (D) Loop map of significant GO terms. (E) The expression of 10 MARGs in an independent cohort 
GSE43292.
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compared with early AS, there was significantly lower 
HSPB8 expression in advanced AS (GSE28829, Fig. 4B), 
which also implied a higher possibility of subsequent 
diseases. Furthermore, the results of ROC analysis sug-
gested that HSPB8 could be used as a diagnostic marker 
of AS (area under curve (AUC) = 0.9148612, Fig. 4C).

Discussion
AS is a complex disease process and the number one 
killer worldwide [2]. In our study, we explored the poten-
tial pathogenic mechanism of AS basing on multiple 
AS public datasets. The expression of HSPB8 was sig-
nificantly down-regulated in AS samples compared with 

Fig. 3  Polarization analysis of macrophages. (A) The proportion of macrophage differentiation factors, M-CSF and GM-CSF. (B) Bar chart of interferon/
receptor and interleukin/receptor. (C) Heat map of the correlation between HSPB8 and interferon/receptor and interleukin/receptor
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normal samples. Meanwhile, the proportion of M-CSF in 
low HSPB8 expression group was higher than that in high 
expression group. Moreover, the expression of HSPB8 
was negatively correlated with most inflammatory fac-
tors. In brief, our study suggested that low HSPB8 expres-
sion probably promoted the M2 macrophage polarization 
in AS samples.

After the analysis of data in GEO and Human Autoph-
agy Database, 10 candidate MARGs were identified in 
AS, then HSPB8 with the largest fold change exhibiting 
lower expression in AS was selected for our subsequent 
analysis. In some malignancies, HSPB8 has been dem-
onstrated to be silenced by DNA methylation [37, 38], 
while the underlying epigenetic modification of HSPB8 in 
AS remains largely unknown, deserving further explora-
tion. In addition, it has been indicated that HSPB8 acti-
vation plays a crucial role in controlling inflammation 
and promoting tissue repair [39]. HSPB8 is also named 
small stress protein like-protein (HSP22) [40]. The over-
expression of HSP22 has been reported to protect endo-
thelial damage by inhibiting inflammation and oxidative 
stress [41]. Whether low expression of HSPB8 exerts an 
opposite role in endothelial damage of AS can not be 
concluded from present work, but it deserves further 
investigation. Yu et al. have suggested that HSP22 sig-
nificantly inhibited endothelial cell activation and vascu-
lar lesions [42]. It is well known that severe reduction of 
coronary blood flow causes ischemic injury in the heart 
[43]. Recent studies have revealed the potential of HSP22 
in reducing ischemic injury [44, 45]. The crucial role of 
HSPB8 in vascular diseases partly supported our find-
ings in AS, and more related details should be clarified 
in future.

In AS, the proportion of M-CSF was higher in the low 
HSPB8 expression group, that is, a large number of mac-
rophages were polarized into M2 macrophages, which 
were consistent with previous findings [46, 47]. It is well 

known that macrophage polarization plays a pivotal role 
throughout the progression of AS [47]. M1 and M2 mac-
rophages play different roles in inflammation, depending 
on microenvironmental stimuli [48, 49]. When changes 
in microenvironment are sensed, macrophages can 
switch between M1 and M2 phenotypes [50]. Further-
more, both M1 and M2 macrophages accumulate along 
with the degree of lesion in atherosclerotic plaque [50]. 
Early atherosclerotic plaques were mainly infiltrated by 
M2 macrophages, but with the progress of plaques, M1 
macrophages gradually increased and occupied the major 
position [51, 52]. Gong et al. have documented that in the 
murine model, M1 macrophages were enriched in the 
unstable plaques, while M2 macrophages were reduced 
[46]. However, little is known about the dynamic pheno-
typic changes of macrophages at different stages of AS, 
and there is the possibility of replacement or local pro-
liferation in macrophages [50, 53, 54]. Thus, more details 
concerning the mechanism of macrophage polarization 
in AS need to be further explored in the near future.

Additionally, AS is usually accompanied by chronic, 
low-grade inflammatory reaction [55]. We analyzed the 
differences in inflammatory factors between groups 
with different levels of HSPB8 expression. In HSPB8 
high expression group, IL4, IL4R and IL6 were signifi-
cantly upregulated, but IFNAR2, IL10, IL10RA, IL10RB, 
IL12RB1, IL12RB2, IL1A, IL1β, IL32, IL6R, TNF, 
TNFAIP2 and TNFAIP8L2 were significantly downreg-
ulated. Recent evidence has indicated that the impor-
tant effect IL-1β exerted on AS [56, 57]. IL-1β induced 
inflammatory reaction in endothelial cells and pro-
moted the accumulation of inflammatory cells in blood 
vessels, which usually occurred at the beginning of AS 
[58]. As a pro-inflammatory factor, IL-32 is involved in 
the inflammatory cascade that leads to AS and further 
promotes plaque instability [59]. Jin et al. have docu-
mented TNFAIP2 promotes atherogenesis by enhancing 

Fig. 4  The expression of HSPB8 in different AS samples. (A) HSPB8 expression in AS samples with sable and unstable plaques. (B) HSPB8 expression 
in AS samples from different stages. (C) ROC curve verification of HSPB8.
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oxidative stress induced inflammation [60]. All the above 
studies indicated that promoting some inflammatory 
factors may accelerate the development of AS. In gen-
eral, M2 macrophage polarization inhibits the expres-
sion of inflammatory factors to suppress the disease [46]. 
But a study showed that IFNc/LPS stimulates M-CSF to 
polarize macrophages toward M1-like phenotype [61]. 
Therefore, this may explain the upregulation of inflam-
matory factors in the present study. On the other hand, 
our results have implied the strong correlation between 
low HSPB8 expression and high proportion of M-CSF 
as well as inflammatory factors. Although in this work, 
whether AS patients with differential HSPB8 expression 
showed different responses in the treatment can not be 
concluded temporarily, our findings proposed an inter-
esting probability involving the personalized treatment of 
AS patients.

Although the potential role of HSPB8 involving mac-
rophage polarization and autophagy in AS has been 
explored in this work for the first time, there were still 
some limitations in our study. Firstly, though our work 
has included as much data as possible, our present results 
were limited by publicly obtained data. More AS macro-
phage polarization related expression profiles would be 
more conducive to a deepening analysis. Moreover, the 
diagnostic role of HSPB8 in AS should be further vali-
dated in a larger sample size.

Conclusion
In summary, based on large amounts of public data, 
MARG HSPB8 has been identified as a diagnostic marker 
for AS patients for the first time. Meanwhile, HSPB8 
expression is associated with the macrophage polariza-
tion and inflammatory factors in AS, which probably 
accelerates the progression of AS indirectly. Although 
more details still deserve to be further investigated, our 
findings provide novel reference information regarding 
the macrophage polarization related mechanisms and 
treatment strategies for AS.
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