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A B S T R A C T   

Graphene has received tremendous attention among diverse 2D materials because of its 
remarkable properties. Its emergence over the last two decades gave a new and distinct dynamic 
to the study of materials, with several research projects focusing on exploiting its intrinsic 
properties for optoelectronic devices. This review provides a comprehensive overview of several 
published articles based on density functional theory and recently introduced machine learning 
approaches applied to study the electronic and optical properties of graphene. A comprehensive 
catalogue of the bond lengths, band gaps, and formation energies of various doped graphene 
systems that determine thermodynamic stability was reported in the literature. In these studies, 
the peculiarity of the obtained results reported is consequent on the nature and type of the 
dopants, the choice of the XC functionals, the basis set, and the wrong input parameters. The 
different density functional theory models, as well as the strengths and uncertainties of the ML 
potentials employed in the machine learning approach to enhance the prediction models for 
graphene, were elucidated. Lastly, the thermal properties, modelling of graphene hetero-
structures, the superconducting behaviour of graphene, and optimization of the DFT models are 
grey areas that future studies should explore in enhancing its unique potential. Therefore, the 
identified future trends and knowledge gaps have a prospect in both academia and industry to 
design future and reliable optoelectronic devices.   
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1. Introduction 

Almost every facet of our civilization is governed by the continual discovery of novel materials with specified functions and 
performances [1–3]. Today, the computational density functional theory technique has substantially expanded the materials design 
process, either alone or in tandem with experimental research, owing to the relatively complex level of concepts and computer 
modelling [1–3]. Moreover, at the turn of the last decade, graphene, a single layer of graphite exfoliated by Geim and co-workers, 
became the focus of intense research due to its remarkable physical properties [4–6]. Since its discovery, several 2D materials have 
been synthesized, including hexagonal boron nitride, silicene, transition metal dichalcogenide, antimonene, and phosphorene [7–11]. 
The properties of these materials are markedly different from those of the parent compound due to changes in the size of the crystal 
structure and quantum confinement [12,13]. 

Despite the surge in 2D materials, graphene stands out among them for having exceptional electronic, optical, and thermal 
properties [14,15]. It has very high carrier mobilities (∼200,000 cm2V− 1S− 1) [16–18], unusual linear dispersion around the Dirac 
point [19,20], ultrahigh thermal conductivities (∼ 5000 W/mk) [21–23], room temperature ballistic carrier transport [24,25], large 
surface area (2630 m2/g) [26–28], a Young’s Modulus of 1 TPa [29,30], broadband optical absorbance (2.3%) [31–33], and a robust 
crystal structure, all of which reveal the material’s high quality and suggest its prospects for future optoelectronic devices [34–36]. 
However, its use in optoelectronics is limited due to its zero bandgap and relatively poor structural tunability [37–39]. Therefore, 
several reports have established different approaches to induce a sizeable band gap and efficiently modulate the intrinsic properties of 
graphene by stacking configuration, mechanical strain, electric and magnetic fields, and heteroatom chemical doping via DFT methods 
for next-generation electronics with designer functionalities [40–42]. 

In this paper, we present an extensive review of heteroatom doping of graphene employing the DFT within the last decade as well as 
the recently introduced data-driven ML-DFT models because these are regarded as the most effective method of manipulating the 
properties of graphene [43–45]. Moreover, these modifications in the properties of graphene are largely determined by the types of 
dopant atoms, their percentages, and the doping sites [42]. Additionally, these heteroatoms can either be electron acceptor (p-type) or 
electron donor (n-type) systems when substituted into graphene, depending on the number of valence electrons in the dopant atom 
[46–48]. Therefore, a comprehensive catalogue of the methods and results will provide insights into the achievements, present status, 
and shortfalls in the research area. To that end, in Section 2.1, we present an overview of the heritage of graphene as well as an in-depth 
review of the electronic and optical properties calculated using the density functional approach. Section 3.1 is dedicated to the models 
and implementation platforms for both traditional DFT and ML-DFT for the electronic structure calculation of graphene. Lastly, this 
section is concluded by revealing some knowledge gaps and future trends in the literature on the study of graphene. Section 4 presents 
a concluding remark. 

2. Overview of the heritage of graphene and selected properties 

Graphene has remained the “de facto” and most studied 2D material for almost two decades, with its discovery changing the dy-
namics of the materials world [49,50]. In 2013, about two scientific articles on the application of graphene were published every 96 
min, which was over forty journals every 24 h [51]. Interestingly, graphene research has further advanced, Fig. 1(a–b) reveals the 
status of the globally published related material and graphene research publication per year from 2010 to 2021. 

More broadly, graphene is the first of a large family tree of 2D nanomaterials as shown in Fig. 2 which includes a plethora of 
different carbon materials ranging from fullerenes (0D), carbon nanotubes (1D), graphene oxide (GO) to graphene quantum dots 
(GQDs), and other derivatives introducing physics for low-dimensional systems which have never ceased to amaze, proving to usher in 

Fig. 1. Fig. 1: (a) The Schematic illustration of Graphene’s globally published research articles from 2004 to 2021 and (b) graphene’s related 
publications from 2004 to 2021. Figure remodified from Ref. [52]. 
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a new generation system [53]. The earliest evidence of graphene was reported when Benjamin Brodie created carbonic acid in the 
second millennium, which he hypothesized was a new form of carbon and proposed the name “graphon”. In the ensuing century, only a 
few studies have described the layered structure of graphite oxide, which was shown to contain distinct atomic planes [54]. The 
discovery of graphite oxide paper was reported by Kohlschutter and Haenni [55,56] and subsequently, in the mid-‘90s, Ruess and Vogt 
[57] employed a transmission electron microscope to observe graphite oxide flakes with a thickness of a few nanometers that were 
produced by the evaporation of a suspension droplet placed on the TEM grid [55,56]. Meanwhile, Boehm et al. [58] initiated the 
chemical method of reducing graphite oxide in a diluted alkaline solution of hydrazine and hydrogen sulphide under proper conditions 
a few years later and subsequently proposed the term “graphene” in the late twentieth century to designate a variety of carbon-based 
compounds, which enables the isolation of mono and few layers graphitic layers [58,59]. However, Wallace [60] was the first to 
propose graphene as a theoretical construct to aid in the calculation of graphite’s band structure [61]. Moreover, a decade earlier, it 
was demonstrated that a 2D crystal could not exist because the system was not in equilibrium [62]. The idea was later expanded with a 
plethora of experimental evidence [62,63]. It was not until nineteen years ago that a successful method for separating graphene from 
graphite by mechanical exfoliation with scotch tape was discovered in Manchester [64,65]. This discovery sparked widespread interest 
in graphene, and numerous experts around the world have since conducted extensive research on this ubiquitous material [66]. Its 
large honeycomb network serves as the foundation for several other allotropes, as displayed in Fig. 2(a)–(e). This one-atom-thick layer 
of graphite called graphene demonstrates an extremely strong absorption for a monolayer atom that is wavelength-independent [39]. 
However, graphene has a gapless band structure, and the total absorption and quantum efficiency are still poor. Therefore, for gra-
phene to realize its potential a sizeable band gap must be created to enhance the optical properties for application in electronic devices 
with optimized stability and performance while widening the scope for novel electronic designs [67–71]. 

2.1. The structural properties of pure graphene material 

Graphene is a remarkably 2D layer with a C–C bond length of 1.420 Å, as displayed in Fig. 2b, (the simplest and most important 
crystalline allotrope of carbon atoms), which originates in a tightly packed hexagonal lattice with a purely sp2 orbital hybridization at 
ambient temperature [72,73]. This σ bond results in some impressive mechanical properties [74]. A three-sided network with a 
two-atom basis for each cell makes up the structure. The graphene lattice vectors in Eq. (1) are expressed as follows [69]: 

a1 =
a
2

(
3,

̅̅̅
3

√ )
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a
2

(
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̅̅̅
3
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The distance between near-set neighbor atoms is expressed as a = 1.42Å. The vectors of the reciprocal-lattice in Eq. (2) are 
determined by: 
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The sp2 hybridization consists of orbitals from the S, Px and Pz families. In the hexagonal phase, three different carbon atoms form 
covalent bonds with one other, leaving one free electron for each carbon atom. This free electron is held in the Pz orbital, which is 
above the plane and creates the π bond. Moreover, the exceptional properties of this 2D nanomaterial rely heavily on this free radical 
[75,76]. The half-filled π band allows the highly mobile non-bonding electrons to travel easily in graphene. Therefore, the π -band 

Fig. 2. The Schematic illustration of the Origin and the transformation of graphite to graphene’s atomic structure. The transformation process 
shows that graphene, a 2D basic unit of carbon can be folded into (C) 3-D Graphite (D) rolled into 1-D nanotubes (E) and folded into 0-D Fullerene. 
Figure remodified from Ref. [80]. 
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reduces at half-filling to two inequivalent locations at the corners of the first Brillouin zone, resulting in Dirac cones [77]. Furthermore, 
in the bilayer and multilayer graphene, the π-bonds produce a van der Waals interconnection with the layers of graphene [78,79]. 

2.2. The electronic properties of pure graphene 

The tight-binding method was employed by Wallace in investigating the electronic band structure of a monolayer of graphite [60, 
81,82]. And subsequently, Castro Neto and others have also reported graphene’s electronic properties and discussed how these 
properties are determined by stacking graphene layers [69,83]. Thus, graphene has drawn so much research interest for optoelectronic 
applications due to its high electron mobilities (15,000 cm2/V) at room temperature and unusual electronic behaviours such as the 
quantum hall effect (QHE), which mimics massless transportation, leading to its high superconductivity [84]. The QHE is further 
discussed later in this section. Moreover, it’s worth noting that structural holes allow phonons to pass through unhindered, resulting in 
high thermal conductivity in graphene. Additionally, graphene displays a semi-metallic behaviour; the band structure reveals the 
unoccupied (π*) and occupied (π) bands overlap at the same K point just below the Fermi energy level with linear dispersion near it. In 
addition, the density of states contains the valence and conduction bands, with a disappearing density at the Fermi level, which is 
mostly generated by π states, as displayed in Fig. 4(c) [85–87]. Moreover, the schematic illustration of the formation process based on 
the basic elements of graphene’s bonding properties, the honeycomb structure, the SEM image of graphene’s single layer and the 
calculated band structure of graphene is displayed in Fig. 3(a–f). 

Furthermore, the upper side of the linear dispersion curve shown in Fig. 3(f), describes the π* (upper conduction) energy anti- 
bonding band, and the bottom side, which defines the energy bonding band. At the Dirac point k, the π* and π band are reduced, 
indicating that pure graphene is a two-dimensional gapless semimetal [88]. The charge carriers in graphene are generally defined by 
the Dirac equation and not the Schrodinger equation due to the uniformity of the crystal lattice, which comprises two identical carbon 
sublattices A and B. 

Moreso, the electronic sub-bands consisting of a mixture of equal and unequal wave functions for the two sublattices overlap at the 
Brillouin zone’s edge, giving rise to a cone shape around the Dirac point describing the electron dynamics as the energy and the quasi 
momentum lies in the same plane i.e., the dispersion relationship in metals and semiconductors is shaped like a parabola as displayed 
in Fig. 4(a) and (b) [89]. The Dirac points at the edge of the graphene Brillouin zone are very critical for the graphene physics as 
displayed in Fig. 4(a). The placements of these objects in momentum space are determined by Eq. (3) [90]. 

K =

(
2π
3a1

,
2π

5.196 a1

)

,K ′

=

(
2π
3a

, −
2π

5.196a1

)

(3) 

The three nearest-neighbor vectors in Eq. (4) are expressed as follows in real space: 

Fig. 3. (a–c) Schematic illustration of the formation process from the basic element of graphene bonding properties and (d) the mono-layer gra-
phene SEM image (e) the honeycomb lattice and its Brillouin zones. The L.H.S. reveals the interpenetrating triangular lattices that make up the 
lattice structure of 2D graphene. The vectors of the closest neighbors are represented by δi, = 1, 2, 3 and a1 and a2 unit is the lattices respectively. 
The R.H.S reveals the Dirac Cone which is created by the valence and conduction band crossing at the K and K′ point This is indicated in (f) the band 
structure of pure graphene. Figure remodified from Ref. [88]. 
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δ1 =
a1

2
(1, 1.732) δ2 =

a1

2
(1, − 1.732) δ3 = − a1(1, 0.00) (4)  

while in Eq. (5), the six closest neighbors are situated at: 

δ1 = ± a1, δ2 = ± a2, δ3 = ± (a2 − a1) (5)  

2.2.1. The quantum Hall effect of graphene material 
Edwin Hall hypothesized that the magnetic field caused a transverse voltage in the wire when he reported the classical Hall-effect in 

the late 19th century. An electron gas with a strong magnetic field splits into Landau levels because of the magnetic field. The orbital 
for each level is described in Eq. (6) [92]: 

Fig. 4. (a) Schematic illustration of the energy bands near the Fermi level in graphene. The horizontal plane in the first Brillouin zone of graphene. 
The conduction and valence band meets at the K and K′ points in the Dirac cone. (b) The conic energy bands near the K and K′ points. (c) The density 
of states with the fermi energy near the Fermi level. Figure remodified from Ref. [91]. 

Fig. 5. The QHE for massless fermions in monolayer graphene. Hall Conductivity σxy and longitudinal resistivity ρxx of graphene as a function of 
their concentration at B = 14 T and T = 4 .K σxy = (2e /

̅̅̅
h

√
) V1

2 is determined from the measured dependencies of ρxy (Vg) and ρxx (Vg) as σxy =

ρxy /(ρ
2
xy + ρ2

xx). The nature of 1/ρxy is similar but shows a discontinuity at Vg ≈ 0, which was avoided by plotting σxy. The quantization sequence in 
the two-layer graphene’s inset displays the σxy at integer j, where it is normal. Figure remodified from Ref. [102]. 
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Graphene’s highly unique charge carriers exhibit massless relativistic behaviour and are one of the material’s most fascinating 
features, i.e., the Dirac fermions as displayed in Fig. 5. When confined to magnetic fields, Dirac fermions act in a manner that is 
significantly aberrant in the energy spectra of the Landau levels compared to electrons, as demonstrated by the anomalous integer 
quantum Hall effect [93]. The Landau energy levels of graphene can be written as: 

Ej = ± (j)VF(2eℏ|j|B)1/2 (7) 

Therefore, Eq. (7) provides the clearest proof for the non-interacting Dirac fermion model [92]. Therefore, j = 0,±1,±2, The Fermi 
velocity is represented by VF , e is the elementary charge, where ℏ the reduced Planck’s constant is and can be expressed as ℏ = h

2π and B 
represents the magnetic field. 

However, the chiral quasiparticles show that graphite possesses a Berry phase 2 that is dominated by a parabolic dispersion and a 
double-degenerate zero-energy. The Landau level contains two distinct orbital states (K − K′points) with the same energy, i.e., both the 
electrons and holes share the same level [93,94]. This reveals the anomalous integer QHE where Eq. (8) describes the Hall conductivity 
[93]: 

σxy = ±
(4j + 2)e2

h
(8) 

The electronic structure of graphene, however, exhibits an anomalous quantization that is replaced by a non-empty, half-integer 
Berry’s phase. The quantum Hall effect in a single layer of graphene is sharply different from the standard QHE for both holes and 
electrons. This sets graphene apart from other traditional 2D carbon-based electronic materials with a definite carrier mass [95,96]. 
The anomalous quantum hall-effect was first reported by Novoselov et al. [96] which is illustrated in Fig. 5a. This is calculated at В = Τ 
and T = 4 K [96]. As a result, the charge Hall conductance is precisely quantized as described in Eq. (9), when the Fermi level is in the 
energy gap [93]: 

σxy =
2e2

h
(9) 

Furthermore, Qiao et al. [97] reveal that Rashba spin-orbit coupling, and exchange fields can cause graphene to develop a visible 
gap. Furthermore, a gap as large as 5.5 meV appeared at the Dirac points, resulting in a topological effect using first-principles cal-
culations. This further validates the anomalous QHE in graphene [98]. Thus, a Dirac cone is created by plotting the energy of the 
topological electrons against momentum indicating graphene has a very high thermal conductivity [99,100]. Moreover, Cynse et al. 
[101] discovered a fourfold splitting in the Coulomb interaction for quantum hall. It is possible to produce a Hamiltonian that only 
contains graphene and correctly depicts the impurity by using first-principles calculations and a genetic algorithm technique. The 
physics of graphene exhibits a pronounced breaking of the structure for lower Landau levels, high magnetic fields, and fast-moving 
electrons, and this disorder exponentially increases with the magnetic field. 

2.3. The optical properties of pure graphene material 

Electronic transitions are fundamental for the optical properties of solids in general. They are inextricably linked to their electronic 
structures and are crucial to their application. As a result, optical anisotropy has been observed in graphene superlattices, with the 
level of anisotropy being determined by the thickness of the graphene layer and not the composition [103] Furthermore, the empirical 
results have demonstrated that the optical and energy loss spectra of graphene indicate a redshift of absorption bands and the π + σ 
electron plasmon, as well as the removal of mass plasmons, as contrasted to graphite [104,105]. The optical properties, absorption 
coefficient, reflectivity, complex refractive index, dielectric function, etc. Have been investigated in several studies. The dielectric 
function specifies the features of electromagnetic waves as they flow through a medium by describing the linear response of the 
medium to electromagnetic radiation [106–109]. The complex dielectric function is expressed in Eq. (10) below: 

ε(ω)= ε1(ω) + iε2(ω) (10) 

Hence, ω is the photon frequency, ε1(ω) and ε2 (ω) are the real and imaginary parts of the complex dielectric function in Eq. (10), 
respectively [110]. In more detail, Fermi’s golden rule is as follows in Eq. (11) because of the direct inter-band transition [111]: 

ε2(ω)=
2e2π
Ωε0

∑

k,c,v

⃒
⃒
(
Ψc

k

⃒
⃒u • r

⃒
⃒ Ψv

k

)
|
2 δ

(
Ec

k − Ev
k − E

)
(11)  

ω = The electromagnetic radiation’s frequency, Ω = volume of the cell, ε0 = permittivity of free space, c = conduction band, v =

valence band, u = vectors characterized by the polarization of the incident electric field, and r = vector location. 
The real and imaginary parts ε2(w) of a dielectric function ε1(ω) can be compared using the Kramers-Kroing relation in Eq. (12) 

[111]. 
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ε1 (ω)=
1
π P

∫ ∞

− ∞
ε2

ω′

ω′
− ω dω′ (12)  

P represents the integral’s primary value. 
The amount of energy lost by the wave when it passes through a solid is indicated by the light absorption coefficient [111]. 

Moreover, despite its high absorption coefficient, one-atom-thick graphene absorbs only 0.023 of visible light and has a reflectance of 
less than 0.001 of infrared light, according to several experimental findings [112–114]. This is due to the linear dispersion of the 
electron, which causes it to behave like a massless material, which is amazing for a monolayer material [115–117]. However, this is 
rather poor for applications in photodetection [118,119]. Hence, the absorbed white light is determined by the atomic structure and 
not the properties of the material [120]. The amount of white light absorbed increases linearly [121,122]. In addition, graphene is a 
promising candidate for sensing broadband in the terahertz and infrared ranges, but this results in its short exciton lifetime, which is 
harmful to exciton splitting and high photoresponsivity [123–125]. Moreover, graphene’s absorption spectrum is empty in the ul-
traviolet region, ranging from (900–300) × 10− 9 m, with a maximum absorption peak about 270 nm [126]. In summary, several 
studies established that graphene has a Drude-like intra-band conductivity based on Ω = 0, followed by an area of reduced conductivity 
at higher energies before a sudden rise to a steady comprehensive framework value of σ0 = πe2/

2h indicating that graphene exhibits 
semi-metallic behaviour [125,127,128]. The transitions between the fully filled valence band and the unfilled conduction band are 
known as inter-band transitions, and this accounts for its optical sensitivity [129–132]. However, an extensive study is required on the 
optical properties of graphene employing the density functional calculations to tailor it for applications in optoelectronics. 

2.4. Modification of the electronic and optical properties of graphene by chemical doping 

This is employed to modify the intrinsic behaviour of graphene to achieve optimized performance by doping a controlled per-
centage of foreign atoms in its symmetry [133,134]. The formation energy, bond length and band gap of the different doped graphene 
structures reported in literature are displayed in Table 1. Meanwhile there are two methods reported for the chemical doping of 
graphene generally: (1) The adsorption of specified materials such as gases, chemicals, metals among others into the graphene surface. 
(2) Foreign atoms are substituted into graphene, replacing the C atom. Therefore, the substitution of heteroatoms for the carbon atoms 
in graphene induces structural and electronic changes, contributing to the modifications of the system’s thermal, carrier mobility, 
fermi level, electronic and optical properties [135–137]. This can result in either a nucleophile (electron donor), an n type or an 
electrophile (electron acceptor), a p type semiconductor. Nitrogen (n-type) and boron (p-type) are the most studied dopant atom 
because of their similar atomic radii to carbon, with nitrogen having an extra electron and boron being electron-deficient [138–140]. 
However, nitrogen has attracted more interest than boron due to its ease of substitution into graphene [141,142]. Moreover, the 
Graphitic-N (sp2 hybridization), pyridinic (sp2 hybridization), and pyrrolic N (sp3 hybridization) are the three most common N 
bonding configurations [143]. Studies shows that the pyridinic-N bonding configuration is relatively stable in the presence of 
mono-vacancy while pyrrolic bonding energetically favours divacancy defect [144–146]. The graphitic configuration favours an 
n-type while both pyrrolic and pyridinic favours a p-type doping [147]. Fig. 6(a) and (b) reveals the structural and electronic band 

Table 1 
The calculated parameters for pure and different doped graphene systems.  

System (%) Band Gap (eV) Bond length (Å) Formation energy (eV) References 

Graphene 0.00 1.42 NA [155–157] 
Beryllium doped Graphene (12.50) 1.44 1.56 25.56 [158,159] 
Beryllium doped Graphene (12.50) 1.44 

0.89 
1.46 2.96 [160,161] 

Beryllium doped Graphene (25.00) 1.42 1.55 5.19 
25.56 

[110,162] 

Boron doped Graphene (12.00) 0.32 1.42 1.42 [163,164] 
Boron doped Graphene 0.30 1.47 3.46 [165–167] 
Boron doped Graphene 0.32 1.49 − 27.30 [168] 
Sulphur doped Graphene 0.57 1.62 8.33 [162,169] 
Silicon doped Graphene (6.25) 0.70 1.65 − 0.87 [170] 
Silicon doped Graphene 2.00 1.91 NA [171] 
Nitrogen doped graphene 1.30 1.39 0.32 [172,173] 
Nitrogen doped Graphene 0.21 1.39 − 6.63 [157,174] 
Phosphorous doped Graphene (3.13) 0.32 1.77 − 6.42 [175–177] 
Aluminium doped Graphene 0.40 1.73 9.86 [157,169] 
Iron doped Graphene 1.70 1.67 7.24 [174,178,179] 
Nitrogen-Aluminium doped Graphene 0.47 1.69 13.5 

13.4 
[157] 

Beryllium–Nitrogen doped Graphene (25.00) 1.54 1.75 13.54 [158,180] 
Beryllium-Sulphur doped Graphene 0.58 (Be) 1.53–1.54 

(S) 1.36–1.38 
2.45 [162] 

Beryllium-Sulphur doped Graphene 0.37 NA 4.85 [181]  
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change of a N/G graphene. Moreover, Rafique et al. [148] observed that nitrogen doping preserves linear energy dispersion around 
graphene’s Dirac cone using the ab initio method. The studies on N-doped graphene have focused on the influence of the total per-
centage of N-doping in graphene, while few studies have investigated the positions of the N-dopant atom and the impact of the 
different C–N bonding configurations. However, B-doped graphene, as revealed by Beheshti and his colleagues, results in an 
electron-deficient structure [148]. 

Likewise, Be-doped graphene are reported in literature. However, despite its physical and electronic potentials as indicated by 
density functional approach, it suffers from very high formation energy which has limited its viability for synthesis compared to the N- 
and B-doped graphene [110]. Nonetheless, atomic elements with larger atomic radii than carbon such as silicon, sulphur, germanium 
are being substituted into graphene lattice to modify its intrinsic properties [149–151]. Moreover, Marinopoulos et al. [152] reports 
that the graphite’s absorption spectra for the light parallel to the c axis and the increasing of interlayer spacing resulted in the stacking 
of the graphene layers unit cell with less intense mutual interaction [152]. The absorption spectra of the graphene sheet structures are 
displayed in Fig. 7b and (c). At the same time, Nath et al. [153] compared the reflectivity of pure graphene to that of B/N doped 
graphene and observed a redshift of the main peak at higher doping concentration (See Fig. 8) [154]. However, despite the potentials 
of employing ab initio studies to chemically dope graphene reported in literature several discrepancies exist in their results (see 
Tables 1–5) which may be as a result of the choice of the exchange correlations functionals, and basis set as well as wrong input 
parameters. Meanwhile, in the next section, a brief discussion of the different generations of exchange correlation functionals 

Fig. 6. The (a) optimized geometry and (b) the electronic band structure of Nitrogen-doped graphene. The Nitrogen atom is symbolized by the red 
ball and the bond lengths indicated in the rings are measured in Å. Figure remodified from Ref. [107]. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. (a) Graphite and (b) graphene sheet geometries with 2(c/a)hex and (c) 3(c/a)hex for E⊥C optical absorption spectrum. Figure remodified 
from Ref. [152]. 
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employed in density functional theory is presented. We have also surveyed machine learning, which was recently proposed as a way of 
improving density functional theory models by employing a large amount of training data from first principles calculations to accu-
rately predict and tailor the properties of graphene for optoelectronics. 

3. Overview of DFT models for the optoelectronic properties of graphene 

3.1. Density functional models employed for predicting properties of graphene 

It is one of the most popular computational approaches applied in condensed matter physics and quantum chemistry and is based 
on the concept that electron density can be employed as a basic variable to solve the electronic structure problem of materials as well as 
the total electronic energy [214–219]. It relies on the Hohenberg-Kohn’s theorem and gives completely quantum solutions to solving 
the Schrodinger equation, by mapping the many body systems of interacting electrons into a simplified single-particle problem 
[220–222]. The Born-Oppenheimer approximation is used to represent the degenerate N-ground system’s state energy as illustrated in 
Eqn. (13), which is a special functional of the electron density [223]: 

E[ρ(r)] =F[ρ(r)] + J[ρ(r)] + Qee[ρ(r)] (13)  

where the overall functional F[ρ(r)] is given by the sum of the kinetic energy functional T[ρ(r)] and the nuclear-electron interaction 
energy functional represented by Ven[ρ (r)] and the quantum electron-electron energy represented by Qee[ρ(r)]. Furthermore, the first 
attempts at density functionals were made in the early twentieth century by Thomas and Fermi theory, which predicted mutually 
independent movements of the electrons and a local density approximation characterizing the kinetic energy associated with the 
motion [224–227]. Moreover, this functional failed miserably in regions with large spatial changes in electron density [228]. However, 
about four decades later, Kohn and Sham demonstrated in their paper that the problem of electron kinetic energy using a basis set can 
be accurately approximated by a single slater determinant to represent an imaginary system of non-interacting electrons (columbic 
interaction ignored), with the same ground state density as the exact correlation functional [223,229,230]. 

The literature has reported over 300 functionals over the last three and a half decades, and with the current trend, it is expected to 
double in the next ten years [215,231]. These are the semi-empirical and non-empirical functionals, which envelope parameters fitted 
from data and free parameters deduced by fitting standard specifications, respectively [223,232,233]. A few examples of semi-
empirical functionals include B3LYP, ωB97X-2, B 97, while non-empirical functionals include PBE, TPSS, SCAN, etc. However, for a 
detailed presentation, see Refs. [223,234–238]. Regardless, the five distinct classifications of the XC functionals are displayed in Fig. 9. 
This is a progressive illustration known as Jacob’s ladder, which demonstrates that each rung corresponds to functionals that elicit a 
certain kind of approximation with the chemical accuracy increasing by moving up the ladder and is more advanced [239–242]. 
However, the top rung has a higher computational cost [243,244]. Moreover, the precision of the energies and electron densities 
increases with each step until the turn of the century [244–246]. However, the energies have continued to advance while the accuracy 
of the electron density is declining [247]. This could be because conventional fitting ignores characteristics with high density de-
pendencies. However, this is debatable [247]. 

Fig. 8. The reflectivity for pristine graphene (a) as compared with graphene dual doped at different percentages of BN in increasing order of 
concentrations of boron at different percentages (b), 12.75% (c) 18.75% (d) and 37.5% (e) and 75% respectively for perpendicular and parallel 
polarization. Figure remodified from Ref. [154]. 
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Table 2 
A summary of the applications and gaps of doped graphene systems in literature.  

Focus of Study Comments/Inference Prospects Gaps Reference 

DFT study of CO adsorption 
in Boron-doped and 
Nitrogen-doped 
graphene (B/NG)  

1. The stabilities of Nitrogen and Boron 
showed an anisotropy behaviour and 
response to CO adsorption  

2. B/NG doping is a more effective gas 
detector due to its high sensitivity.  

3. B/NG improves adsorption energy. 

Chemical Sensor of 
toxic gases  

1. Limited theoretical studies in 
relation to doping sites on the 
composition of co-doping of 
B/NG  

2. Reduced Charge transfer 

[182–184] 

DFT study of the adsorption 
of boron doped 
graphene (B/G)  

1. It turns to a less electronegative 
network.  

2. It is an efficient storage material for Li- 
Ion batteries  

3. Induces P-type conductivity 

Li-ion Batteries  1. Broken symmetry which 
implies structural deformities  

2. Different doped graphene 
structures are not stable. 

[185,186] 

First principles calculations 
of calculations of 
calcium decorated boron 
doped graphene  

1. Boron doping limits clustering problem 
by increasing metal adsorption strength 
on graphene compared to Transition 
metal coated graphene 

Hydrogen Storage  1. Individual Calcium atoms are 
not stable on graphene.  

2. Weaker bond observed in the 
B-doped graphene system 

[187] 

Ab initio calculations of the 
electronic structure of 
Boron and Nitrogen 
doped graphene sheets  

1. Graphene changed from a semi-metal 
to semiconductor with an increasing 
number of dopants.  

2. The size of the band gap is determined 
by the lattice position of the dopant 
atoms. 

Polymer-based 
electrolytic fuel 
cells  

1. There are variations in the 
stability of the doped 
systems. 

[107] 

Ab initio studies of the 
geometry, and electronic 
properties of Beryllium 
and Boron doped 
graphene  

1. The percentage and the position of the 
dopants is important in modifying the 
band structure of graphene.  

2. The band gap created can be used to 
design transistor devices.  

3. Hexagonal doping was reported to be 
superior to rectangular doping due to 
its higher band gap 

Electronic devices  1. Rectangular doping 
engineered a lower band gap.  

2. At higher doping percentage 
the symmetry was broken 
and a decrease in the 
cohesive energy 

[159] 

Ab initio study of doping of 
Alkaline earth (Be, Mg, 
Ca, and Sr) metals on 
graphene  

1. A full electron transfer of a + 1.6e− was 
observed for Be/G.  

2. Spin polarized electronic structures and 
ionic bonding observed in (Mg, Ca, Sr) 
indicating magnetic properties.  

3. They are energetically stable revealing 
its viability as a doping motif 

Magnetic 
Semiconductors  

1. Be/G does not exhibit any 
magnetic properties.  

2. Inconsistency in the charged 
transfer compared to existing 
results 

[188]  

Table 3 
A summary of the different doping types, applications, and gaps of doped graphene systems in literature.  

System Doping Type Applications Gaps in Literature References  

1. Dissociation of H2S 
on Fe-doped 
graphene  

2. Adsorption of NO on 
Fe-doped graphene. 

N-type 
Semiconductor 

Sensors 
Low dimensional 
materials  

1. In adsorption with H2S the impact of Fe with S is 
weak at certain distances  

2. Instability in the interactions between the 
adsorbent and adsorbate which results in the 
desorption process due to the positive electric fields 

[178,189] 

Aluminium doped 
graphene 

N-type 
Semiconductor 

Sensors  1. Less efficient than Beryllium doped graphene in 
terms of electronic engineering  

2. High formation energy associated with its unusual 
reactivity.  

3. Low rate of absorption in the Visible light range. 

[157,190] 

Sulphur doped graphene N-type 
Semiconductor 

Electronic devices  1. Decrease in the work function and band gap at 
higher doping concentration.  

2. It has poor magnetic moment  
3. Large formation energy which affects the ease of 

substitution into graphene when compared into 
nitrogen dopants. 

[191,192] 

Platinum doped 
graphene 

N-type 
Semiconductor 

Electronics, 
Optoelectronics, and 
sensors.  

1. Structural deformities in graphene  
2. Rare atomic elements  
3. Limited theoretical and experimental studies 

[193]  
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Additionally, the orbital shell describes the characteristics of solids. As a result, Herring postulated that an orbital’s base during 
World War II is an orthogonalized plane wave, which is a linear combination of core and plane waves (OPW) [248,249]. Convergence 
restrictions were present in this model, although this was overcome by using secular determinants in the OPW and pseudopotentials 
developed by Philip and Kleinman [250,251]. The pseudopotentials describe the interaction between the nuclei and the core electrons 
and enable the modelling of crystals such as graphene with any atomic element on the periodic table [252–255]. Examples of widely 
used pseudopotentials embedded in simulation software for calculating and modelling graphene with any atomic element are the 
projected augmented plane waves and ultrasoft pseudopotentials [256–258]. 

Table 4 
A summary of the different doping types, applications, and gaps of doped graphene systems in literature.  

System Doping Type Applications Gaps in Literature References 

Pure graphene NA Electronics, Photonics, 
Optoelectronic devices, 
etc.  

1. Its intrinsic electrical conductivity and very 
high resistivity limit its rate of absorption.  

2. Zero-band gap 

[194–196] 

Beryllium doped 
graphene. 
Be-decorated 
Fullerenes. 

P-type Semiconductor Nano-electronics and 
Optoelectronic devices 
Hydrogen Storage 
Transistors  

1. Very large formation energy, and poor 
stability.  

2. Reduced charge transfer  
3. Decrease in the volume of H2 adsorbed due 

to the dissociation of H2 molecule.  
4. No record of its experimental synthesis in 

literature based on our knowledge. 

[158,159,197] 

Boron doped 
graphene 

P-type Semiconductor Electronic devices. 
Optoelectronic devices 
Li-ion batteries 
Circuits, Memory 
devices  

1. Less effective in engineering the band 
structure of graphene  

2. In the long wavelength limit for parallel 
polarization, the static dielectric constant 
depends on the impurity concentration.  

3. No absorption at high doping percentage.  
4. Poor catalytic activity in Non-aqueous Li- 

ion batteries 

[159,163,165, 
168,198–200] 

Hydrogen adsorption 
on Nitrogen-doped 
graphene. 

N-type 
Semiconductor 
(Graphitic) 
P-type semiconductor 
(pyrrolic and pyridinic) 

Optoelectronics devices  1. The role of each of the C–N bonding 
configuration remain elusive  

2. There was a rapid decrease in the 
absorption coefficient in the visible light 
range. 

[13,46,172, 
201–203] 

Silicon doped 
graphene 

P-type Semiconductor Semiconducting devices  1. Lower effective masses for the carriers of 
siliphene compared to traditional 
semiconductors such as Si and GaAs  

2. Very wide band gap may not be suitable for 
field effect transistors  

3. Clustering of silicon atom in graphene at 
higher doping concentration. 

[169,171, 
204–206]  

Table 5 
A summary of the different doping types, applications, and gaps of doped graphene systems in literature.  

System Doping Type Applications Gaps in Literature References  

1. B-/N doped 
graphene 

N-type 
Semiconductor 

Fast Computer 
Processors, Circuits  

1. Weak contributions of the π electrons resulting in 
decrease in the electronic conductivity  

2. Large redshift in the absorption coefficient towards the 
visible light spectrum  

3. Torsional deformation at the main peak 

[107,172,202, 

207–210] 

Be-/N doped 
graphene 

P-type 
semiconductor 

Nano-electronics and 
optoelectronic devices 

Beryllium still has large formation energy although much 
reduced despite co-doping with Nitrogen and decrease in 
stability despite indicating the possibilities of being syn-
thesized at high doping concentrations. 

[110] 

Be-/S doped 
graphene 

N-type 
semiconductor 

Electronic and 
Optoelectronic devices  

1. The system’s stability falls with an increase in the 
dopants concentration which is evidenced by the 
defects formed in the system.  

2. Reduced optical peak intensities at higher doping 
concentration. 

[211,212] 

N–Al doped 
graphene 

N-type 
Semiconductor 

Electronic devices Large formation energy impedes its stability. 
Poor optical absorption 

[213]  
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Moreover, the first implementations of DFs employed LDA functionals [259,260]. However, this functional is plagued with con-
troversies due to systematic errors and the overestimation of the interaction energies. The limitation was circumvented by GGA ap-
proximations, which consider spatial variation and not only the spin densities [261,262]. However, this failed to accurately define the 
localized states; it underestimates the band structure and phonon properties of crystals, even in graphene. This has resulted in the 
development of more advanced XC functionals, such as Meta-GGAs and hybrid functionals, which incorporate the reliance on K.E. 
densities and Hartree Fock, respectively, to reach chemical accuracy heaven [248,263,264]. This is displayed in Table 6, highlighting 
their distinguishing features. In summary, DFT is widely recognized for calculating the electronic structure of graphene due to its 
well-proven theories, which have been extensively validated, and an increasing volume of papers in the literature has greatly 
contributed to its acceptance in the scientific community [265–267]. Furthermore, the different simulation codes and platforms 
employed for DFT calculations are displayed in Table 7. However, density functional calculations may not accurately reflect the 
electronic properties of large and complex systems with strong electronic correlation or non-local effects, which is where ML-DFT 
functionals are handy [218,220,261]. Therefore, an overview of this newbie in computational material science is presented in the 
following sub-section. 

3.2. Machine learning models for predicting the properties of graphene 

Machine learning (ML), a form of computer pattern recognition that automatically improves with experience, has had a substantial 
impact on several fields of science during the last decade [319–322]. Moreover, in the late 20th century, Doren and co-workers noted 
that ML had evolved into a technique for the design of atomistic potentials by leveraging it to approximate unknown factors [323]. 
However, despite the challenging task of distinguishing between machine learning, a branch of artificial intelligence, and ab initio 
DFT-based calculation without some measure of arbitrariness [324,325]. 

The convergence of these two major fields has resulted in a new direction of deep learning first-principles calculations in 
computational material science and chemistry for developing systems affecting our daily lives, such as flexible electronic devices, voice 
recognition, and self-driving cars, among other things [324]. As a result, a variety of ML-potentials, including neural network po-
tentials (NNPs) [326–329], Gaussian approximate potentials (GAP) [330,331], moment tensor potentials (MTP) [332,333], and kernel 
ridge regression (KRR) [334,335], have been reported in the literature for this purpose [336–339] A brief description of a few of the 
potentials used in machine learning DFT and their applications, is given in Table 8. A review of all the ML potentials is beyond the 
scope of this study. The potentials generate a force field or potential energy surface, which is the atomic localization of potential energy 
and atomic forces [340]. Furthermore, the Born-Oppenheimer approximation defines the potential energy surface (PES) [341,342]. 
Therefore, the training data, such as their corresponding energies, forces, and stress, can be employed to execute the Molecular dy-
namics simulations in determining the electronic structure with precision comparable to the ab initio approach without incurring a 
large computing burden [343,344]. The earliest potential, the neural network, is confined to low-dimensional systems, while the 
second variant is known as the high-dimensional neural network [343,345]. Here, the maximum atomic energy contributions induced 
by the energy vary depending on the local environment, which is characterized by atom-centered symmetry function descriptors [343, 
346]. This ensures that the requirement for the linear, rotational, and permutation invariance for many body systems of any con-
figurations is met [347–349]. The descriptors are the central element of the ML model, which has to do with an iterative process known 
as the numerical encoding of the input cases or materials [350]. 

Moreover, the prediction scheme should possess a numerical encoding to be considered quantitative [351,352]. However, a suf-
ficient understanding of the problems and goals is essential in the right selection of the numerical encoding which considers the 
materials properties related to the intended property [352]. The descriptor may need to incorporate important information regarding 
the atomic level elements that may govern these behaviours since the accuracy required of the predictions depends on the relevant 
characteristics or a specified property of a 2D material, such as the optical properties of graphene [353]. Moreover, the common 

Fig. 9. The Jacob’s Pardew ladder rung describing the hierarchy of the XC functionals. Figure remodified from Ref. [317,318].  
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Table 6 
A summary of the different XC functionals employed in density functional calculations.  

Functional Description Strengths Weakness Uncertainties References 

Local Density 
Approximation 
(LDA) 

It makes an approximation of the XC 
energy, which depends on the electron 
density at defined points 

It gives a solid representation of the 
chemical bond and electronic properties 
of graphene. Moreso, it is more efficient 
than the self-consistent field HF 

The calculated band gap is 
underestimated and has poor accuracy. 

The calculated results of the LDA are 
generally considered to be less accurate 
than the GGA or hybrid functionals 

[268–272] 

Generalized 
Gradient 
Approximation 
(GGA) 

It relies on the local electron density 
gradient and the electron density 

It corrects the underestimation of the 
calculated band gap with LDA 

The calculated band gap is overestimated They are seen as being more accurate than 
LDA. However, they are less reliable than 
the hybrid functionals 

[273–276] 

Hybrid Functionals It combines the Hartree-Fock (HF) 
exchange integral and the exchange 
functional 

In terms of the band gap and electronic 
structure of graphene, it outperforms 
both the LDA and GGA XC functionals 

It’s application in large systems is 
constrained by the exact exchange’s 
expensive cost, which scales with the 
number of electrons 

Predictions may have fewer uncertainties. 
However, they are more computationally 
expensive 

[277–281] 

Meta-GGA 
functionals 

It employs the electron density, its 
gradient, and the K.E. density to 
distinguish between single orbital and 
orbital overlap regions 

It accurately describes the electronic 
structure and normalizes LDA/GGA’s 
under and overestimation of the 
calculated band gap 

It is computationally more expensive than 
LDA and GGA 

It has considerably larger uncertainties 
compared to both the LDA and GGA 
potentials. These are evident in the total 
energies, geometries, and electronic 
structure 

[282–284] 

Double hybrid 
Functionals 

It contains a virtual K–S orbitals, in 
which non-local Fock exchange sub-
stitutes a portion of the semi local DFT 
exchange, as well as non-local effect 

Better precision for molecular 
structures and binding energies 
It provides a more accurate account 
of the effects of long-range electron 
correlation caused by London 
dispersion forces 

It is computationally more expensive 
than LDA and GGA 
Some of them have intrinsic 
deficiencies, such as the large basis 
set superposition error and missing 
London dispersion effects 

It is laborious to determine its 
uncertainties because the accuracy 
relies on the exact functionals and 
system under study 
Undefined DF or atomic or atomic basis 
set combination can introduce 
systematic error into the system 

[285,286]  
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descriptor is the electronic property obtained without complicated calculations, while more accurate descriptors that include the 
valence band in the d-band core are computationally expensive. This implies striking a balance between the cost and prediction ac-
curacy [354,355]. Today, the third and fourth variant descriptors were able to describe long-range interactions beyond the local 
chemical environments but relies on the local charges [343]. 

However, the predictions of the ML potentials are subject to uncertainties which are challenging to verify due to the approximate 
models of the real bonding physics of the system. These can either be numerical, structural, and parametric [356–359]. The factors that 
the numerical uncertainty considers are the size of the computational domain, and the set-up time for the input. The structural and 
parametric uncertainties that relate to the accuracy of the ML potentials are more burdensome [359,360]. The Bayesian approaches, 
the gaussian process regression offer a logical route for measuring the prediction’s level uncertainty [361,362]. The Bootstrapping is an 
alternative, simple and flexible approach to access the uncertainties [363]. There are other approaches, but they come at a substantial 
additional expense. Moreover, the uncertainty can be utilized to gradually and constantly enhance prediction models which may be 
achieved by optimizing the costs between exploration and exploitation [364]. The uncertainty and the strength of some of these 
potentials are revealed in Table 9. 

The ML algorithm can be grouped into supervised modelling, unsupervised modelling [365], semi-supervised modelling [366], and 
reinforcement modelling. The supervised learning contains both the input and the output data, i.e., label data. Unsupervised modelling 
is used on unlabeled data with no inherent ground truth. In addition, the se mi-supervised models have a larger input than output as 
they combine the strengths of supervised and unsupervised models [367,368], and the reinforcement models do not require previous 
knowledge and instead acquire knowledge and experience via interaction with the environment. 

It is important to note that the role of model selection is to determine the best approach and parameters for a particular task [364]. 
Thus, the label of the input data sets, and the known physical image of descriptors and properties of interest heavily influence the 
selection of the most suitable approach, which is the heart of the selection process [354]. Therefore, for a comprehensive description of 
ML and its applications in DFT, consult refs, [218,369–371]. However, despite the exciting prospects of ML-DFT, we observed that it 
has not yet been widely applied to graphene in the literature, which may be a result of insufficient data sets which is required for 
obtaining accurate results and the complexity of the electronic structure of graphene, etc. Moreover, the existing knowledge gap in the 
literature, which will provide meaningful insights into the future trends and directions in study of graphene for applications in op-
toelectronics, are presented in the following sub-section. 

Table 7 
A summary of the DF’s simulation codes based on their basis types.  

Name Software License References 

Plane-waves basis sets CASTEP Commercial [10–13] 
VASP Commercial [14–16] 
ABINIT General Public License [17–19] 
BigDFT General Public License [297,298] 

Linearized augmented plane wave WIEN2K Commercial [299–301] 
FLEUR Massachusetts Institute of Technology [302–304] 

Atom centered basis set SIESTA General Public License [305–307] 
ORCA free [308,309] 
Gaussian Commercial [310–312] 
Q-Chem Commercial [313,314] 

Real-space grids GPAW General Public License [315,316]  

Table 8 
Summary of description and applications of ML potentials.  

Machine Learning 
Potentials 

Descriptions Applications References 

Neural Network The neural networks are used widely in ML potentials to 
calculate energy and forces from atomic locations. The 
conventional neural networks are characterized using 
feed forward neural networks which can be enhanced 
physically to offer extrapolation capabilities outside the 
scope of the training data. However, it can only be 
employed in low dimensional systems 

To predict the energetics of lithium intercalation 
into graphite with accuracy comparable to DFT 
models 
To enhance the rate of convergence and prediction 
accuracy for the inverse optical design of inverse 
optical design of graphene-based metamaterials 

[370,372, 
373] 

Gaussian 
approximate 
potentials (GAP) 

The total energy disintegrates into local atomic 
contributions which are determined using the gaussian 
process regression from ab initio data 

It creates the graphene interatomic potential 
To predict finite temperature phonon spectra and 
the thermal expansion of graphene 

[218,344, 
374,375] 

Moment Tensor 
potentials 

It is an active learning approach that is analogous to GAP, 
and has descriptors based on tensor operations that 
essentially approximate any PES. It induces less energy 
and force test errors at greater precision and speed of 
calculation 

It is trained to modeled atomic interactions 
To calculate thermal and mechanical properties 

[369,376]  
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Table 9 
The strength, weakness, and uncertainties of ML potentials.  

Name Strength Weakness Uncertainties References 

Neural Network Their non-linear functional is flexible 
which enables accurate and faster 
electronic structure calculations  

1. Identifying its hyperparameters and developing 
training regimens that prevent overfitting can be 
difficult  

2. Interpretability and explainability is lacking for 
practically accurate results for large time data 

The uncertainty in the construction of the potential energy 
surface of graphene relies on the efficiency of the training set 
essential for improved transferability required of NN potential 

[322,324, 
377] 

Gaussian 
Approximation 
Potential 

It is faster than first principles approach 
and is independent of the size of the 
training set.  

1. For huge data, the inference stage of GAP requires 
matrix inversion which increases the computing 
cost  

2. Overfitting of the models which has resulted in 
unphysical behaviours  

3. It fails to capture the interlayer interactions; it is 
not applicable to multilayer graphene structures 

The transferability of GAP has a high degree of uncertainty to 
accurately predict outside the training set. 
Moreover, the specific implementation and the training set 
relies on the accuracy of GAP 

[378,379] 

Moment Tensor 
Potentials 

It is computationally cheaper and save 
more time than DFT calculations. 

The learning algorithm is built through a time- 
consuming trial and error cycles in which the trained 
potential efficiency is manually evaluated 

This is currently being investigated and has not been 
completely established. However, its accuracy might be 
affected by the size of the configuration domain and the input 
data. 

[380,381]  
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3.3. Knowledge gaps of graphene research 

Despite the expanding scope of density functional theory and the emerging ML-DFT approach in providing an enormous under-
standing of the electronic structure at absolute temperature and optical excitations of graphene, some grey areas remain unresolved.  

1. Band gap calculation: The band gap calculation of graphene structures is a controversial topic in the literature, with different 
exchange-correlation functionals employed in ab initio studies predicting different values due to imbalances in the delocalization, 
static correlation error, and the wrong selection of parameters, making the choice of XC functionals system dependent. Moreover, 
the lack of training data for ML models has restricted their applications in predicting the electronic properties of graphene [323].  

2 Van der Waals (vdW) interactions: The inability of the XC functionals employed in the ab initio studies to describe long-range 
electron correlations for the properties of graphene Thus, the lack of dispersion forces is one of the most significant problems in 
first principles calculations [382]. Moreover, training of the non-local ML potential is system-specific, and to accurately describe 
the non-local functional with different parameters, a large amount of training data is required [383].  

3 Vibration and Temperature Effects: The effects of the vibrations from DFT calculations are not defined for both the band structure 
and spectroscopy level in graphene. This limits the role of polaronic effects, including the effect of temperature, which is important 
for optoelectronic applications that are frequently temperature dependent.  

4 Modelling of graphene-based heterostructures: There are limitations in the accurate modelling of graphene-based heterostructures, 
such as the graphene-hBN layer and graphene silicon heterostructures. This is due to the complexity of their systems, which involve 
the interaction of different parameters. This has restricted the modelling of the interactions and the properties of these hetero-
structures, resulting in discrepancies in the calculations of their electronic and optical properties. Moreover, ML potentials require a 
large time series of data to accurately predict these properties. 

3.4. Future trends of graphene research 

Graphene’s electronic properties have received most of the interest in research to this point, whereas few models have been 
developed on its thermal conductivities from different illustrations of phonons and even from density functional theory, molecular 
dynamics simulations, and ML training data to accurately determine its phonon transport. This will improve the imagination and 
provide comprehensive information on graphene’s phonon scattering [384]. Moreover, by exploring its thermal conductivity, it can 
help solve the heat dissipation problem in electronic devices and aid in the design and commercialization of high-performance future 
optoelectronic and thermodynamic devices, e.g., heat engines, with optimized performance and stability. 

Recently, graphene/hBN heterostructures have been considered the foundation for next-generation optoelectronics due to their 
high electron mobilities and tunable band structure. Currently, graphene-based heterostructures are being tested in optical commu-
nication satellites, superfast electronics, and photodetectors [171]. However, accurate and transferable DFT and ML models to 
determine the strong anisotropic tensor in the overall optical response of graphene heterostructures are required to facilitate their 
implementation in real-world optical systems [385,386]. 

Graphene has been reported to display inherent superconducting and nonconducting behaviour by creating a superlattice of two 
graphene layers rotated at a magic angle of 1.1◦. Therefore, employing traditional DFT and ML-DFT to accurately predict the un-
conventional superconducting and insulating nature of large and complex graphene are essential in the near future for the design and 
fabrication of nano-superconducting quantum optical devices and nano-superconducting transistors [387]. 

Moreso, graphene is regarded as the thinnest and strongest 2D material, which highlights its prospects for application in ultrathin 
and ultralight aviation composite materials. Interestingly, it also has the potential to reduce the weight of the aircraft by 1%, saving 
almost $1 billion in fuel usage. Moreover, graphene-based coatings with distinct electronic properties might use electricity to generate 
thermal energy and transport it to the external surface, or they could improve conductivity and electromagnetic shielding to guard 
against lightning strikes. Therefore, optimization of the DFT and ML-DFT frameworks in future studies to modify graphene’s structural 
and electronic properties is critical for the design and large-scale manufacturing of these graphene-based devices [388,389]. 

4. Conclusions 

This review presents a detailed theoretical foundation, models employed in density functional theory, and recent research efforts in 
computational material science with the aid of machine learning to accurately predict the properties of graphene. The electronic and 
optical properties of the chemically doped graphene systems using the DFT approach were extensively discussed, with special 
emphasis on their prospects, doping type, and reported gaps in the literature. Moreover, these gaps can be associated with the choice of 
the exchange correlation functionals, basis sets, and wrong inputs of parameters, which affect the accuracy of its predictions. Despite 
this, traditional DFT models are at the heart of the electronic structure calculation of graphene, and the results are validated exper-
imentally. Similarly, recent advances in machine learning have demonstrated tremendous potential for speeding up and improving the 
accuracy of DFT predictions of long-range electron correlations of graphene properties. However, the results obtained from ML-DFT 
have not been validated experimentally yet. Hence, the marriage of these two approaches is projected to play a key role in addressing 
the knowledge gaps in the study of graphene and ensuring it fulfills its promise. 
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[236] A. Gö, Density-functional Theory beyond the Hohenberg-Kohn Theorem, n.d. 
[237] Density Functional Methods in Chemistry, Springer, New York, 1991, https://doi.org/10.1007/978-1-4612-3136-3. 
[238] J. Grotendorst, Forschungszentrum Jülich, Computational Nanoscience: Do it Yourself! Winter School, 14 - 22 February 2006, Forschungszentrum Jülich, 

Germany ; lecture notes, n.d. 
[239] J.M.L. Martin, G. Santra, Empirical double-hybrid density functional theory: a ‘third way’ in between WFT and DFT, Isr. J. Chem. 60 (2020) 787–804, https:// 

doi.org/10.1002/ijch.201900114. 
[240] C. Zhang, F. Tang, M. Chen, J. Xu, L. Zhang, D.Y. Qiu, J.P. Perdew, M.L. Klein, X. Wu, Modeling liquid water by climbing up Jacob’s ladder in density 

functional theory facilitated by using deep neural network potentials, J. Phys. Chem. B 125 (2021) 11444–11456, https://doi.org/10.1021/acs.jpcb.1c03884. 
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[302] E. Şaşloğlu, H. Hadipour, C. Friedrich, S. Blügel, I. Mertig, Strength of effective Coulomb interactions and origin of ferromagnetism in hydrogenated graphene, 

Phys. Rev. B 95 (2017), https://doi.org/10.1103/PhysRevB.95.060408. 
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