
Penalized Estimation of Frailty-Based Illness-Death Models for 
Semi-Competing Risks

Harrison T. Reeder1,2,*, Junwei Lu3, Sebastien Haneuse3

1Biostatistics, Massachusetts General Hospital, Boston, Massachusetts, U.S.A.

2Department of Medicine, Harvard Medical School, Boston, Massachusetts, U.S.A.

3Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 
U.S.A.

Summary:

Semi-competing risks refers to the time-to-event analysis setting where the occurrence of a 

non-terminal event is subject to whether a terminal event has occurred, but not vice versa. Semi-

competing risks arise in a broad range of clinical contexts, including studies of preeclampsia, a 

condition that may arise during pregnancy and for which delivery is a terminal event. Models 

that acknowledge semi-competing risks enable investigation of relationships between covariates 

and the joint timing of the outcomes, but methods for model selection and prediction of semi-

competing risks in high dimensions are lacking. Moreover, in such settings researchers commonly 

analyze only a single or composite outcome, losing valuable information and limiting clinical 

utility—in the obstetric setting, this means ignoring valuable insight into timing of delivery 

after preeclampsia has onset. To address this gap we propose a novel penalized estimation 

framework for frailty-based illness-death multi-state modeling of semi-competing risks. Our 

approach combines non-convex and structured fusion penalization, inducing global sparsity as 

well as parsimony across submodels. We perform estimation and model selection via a pathwise 

routine for non-convex optimization, and prove statistical error rate results in this setting. We 

present a simulation study investigating estimation error and model selection performance, and a 

comprehensive application of the method to joint risk modeling of preeclampsia and timing of 

delivery using pregnancy data from an electronic health record.
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1. Introduction

Semi-competing risks refers to the time-to-event analysis setting where a non-terminal event 

of interest can occur before a terminal event of interest, but not vice versa (Fine et al., 

2001). Semi-competing risks are ubiquitous in health research, with example non-terminal 

events of interest for which death is a semi-competing terminal event including hospital 

readmission (Lee et al., 2015) and cancer progression (Jazić et al., 2016). An example where 

death is not the terminal outcome is preeclampsia (PE), a pregnancy-associated hypertensive 

condition that complicates between 2–8% of all pregnancies and represents a leading cause 

of maternal and fetal/neonatal mortality and morbidity worldwide (Jeyabalan, 2013). PE can 

develop during the pregnancy starting at 20 weeks of gestation, but once an individual has 

given birth they can no longer develop PE, so PE onset and delivery form semi-competing 

risks. Clinically, the timing of these events is of vital importance. Once PE arises, maternal 

health risks increase as the pregnancy continues, while giving birth early to alleviate these 

risks may in turn pose risks to neonatal health and development. Therefore, we are motivated 

to develop risk models that identify covariates affecting risk and timing of PE while also 

characterizing the timing of delivery after PE has onset.

Semi-competing risks data represent a unique opportunity to learn about outcomes jointly, 

by (1) modeling the interplay between the events and baseline covariates, and (2) predicting 

the covariate-specific risk of experiencing combinations of the outcomes across time. 

Unfortunately, analysts commonly collapse this joint outcome, considering either the non-

terminal or terminal event alone, or a composite endpoint (Jazić et al., 2016). While this 

enables the use of prediction methods for univariate binary or time-to-event outcomes, 

modeling risk for one outcome is both a lost opportunity and a severe misalignment with 

how health-related decisions are actually made; as the PE setting illustrates, clinical care is 

informed by the joint timing of PE onset and subsequent delivery, not just risk of PE.

Instead, frailty-based illness-death multi-state models (Xu et al., 2010; Lee et al., 2015) 

characterize the dependency of semi-competing risks and covariates, while also enabling 

absolute joint risk prediction across time (Putter et al., 2007). These methods comprise 

three cause-specific hazard submodels for: (i) the non-terminal event; (ii) the terminal event 

without the non-terminal event; and, (iii) the terminal event after the non-terminal event. 

Different covariates can affect each hazard differently, and the interplay of these submodels 

determines the overall covariate-outcome relationship. A person-specific random frailty 

shared across the submodels captures residual dependence between the two events.

Motivated by application to PE, we consider the task of developing joint risk models for 

semi-competing risks, specifically in high-dimensional settings such as electronic health 

records-based studies. Two questions framing model development emerge: (1) which 

covariates should be included in each submodel, and (2) can information about covariate 

effects be shared across submodels? To our knowledge only two published papers consider 

variable selection for these (and related) models, each with important limitations. Sennhenn-

Reulen and Kneib (2016) propose ℓ1-penalized estimation for general multistate models, with 

parameter-wise penalties inducing sparsity in each submodel and a fused penalty coercing 

effects for a given covariate to be the same across submodels. This framework, however, 
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does not permit a shared frailty in the model specification, focuses solely on ℓ1-penalization, 

and uses a Newton-type algorithm that does not scale to high dimensions. Instead, Chapple 

et al. (2017) propose a Bayesian spike-and-slab variable selection approach for frailty 

illness-death models. This framework, however, does not consider linking coefficients across 

submodels, and is computationally intensive even in low dimensions.

In this paper we propose a novel high-dimensional estimation framework for penalized 

parametric frailty-based illness-death models. A critical challenge in this setting, however, 

is that the likelihood-based loss function is non-convex. This renders the development of 

theoretical results and efficient computational tools particularly difficult. Moreover, to our 

knowledge no prior literature has examined theoretical properties of penalized frailty-based 

illness-death models. In relevant work, Loh and Wainwright (2015) prove error bounds 

for non-convex loss functions with non-convex penalties, but the conditions underlying 

their result do not directly apply to this setting. Taking into account these various issues, 

the contributions of this paper are threefold. First, we propose a framework for selecting 

sparse covariate sets for each submodel via individual non-convex penalties, while inducing 

parsimony via a fused penalty on effects shared across submodels. Second, we develop a 

proximal gradient optimization algorithm with a pathwise routine for tuning the model over 

a grid of regularization parameters. Finally, we prove a high-dimensional statistical error rate 

for the penalized frailty-based illness-death model estimator. We present a simulation study 

investigating estimation and model selection properties, and develop a joint risk model for 

PE and delivery using real pregnancy outcome data from electronic health records.

2. Penalized Illness-Death Model Framework

2.1 Illness-Death Model Specification

Let T1 and T2 denote the times to the non-terminal and terminal events, respectively. As 

outlined in Xu et al. (2010), the illness-death model characterizes the joint distribution of T 
= (T1, T2) by three hazard functions: a cause-specific hazard for the non-terminal event; a 

cause-specific hazard for the terminal event in the absence of the non-terminal event; and, a 

hazard for the terminal event conditional on T1 = t1. These three hazards can be structured as 

a function of covariates, denoted X, and an individual-specific random frailty, denoted γ, to 

add flexibility in the dependence structure between T1 and T2, as follows:

ℎ1
c t1 ∣ X1, γ = lim

Δ 0
Δ−1Pr T1 ∈ t1, t1 + Δ ∣ T1 ⩾ t1, T2 ⩾ t1, X1, γ , t1 > 0,

ℎ2
c t2 ∣ X2, γ = lim

Δ 0
Δ−1Pr T2 ∈ t2, t2 + Δ ∣ T1 ⩾ t2, T2 ⩾ t2, X2, γ , t2 > 0,

ℎ3
c t2 ∣ t1, X3, γ = lim

Δ 0
Δ−1Pr T2 ∈ t2, t2 + Δ ∣ T1 = t1, T2 ⩾ t2, X3, γ , t2 > t1 > 0,
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where X1, X2, and X3 are each subsets of X. Practically, in order to make progress, one must 

specify some form of structure regarding the dependence of each hazard on X and γ. In this 

paper we focus on the class of multiplicative-hazard regression models, of the form:

ℎ1
c t1 ∣ X1, γ = γℎ1 t1 ∣ X1 = γℎ01 t1 exp X1

⊤β1 , t1 > 0, (1)

ℎ2
c t2 ∣ X2, γ = γℎ2 t2 ∣ X2 = γℎ02 t2 exp X2

⊤β2 , t2 > 0, (2)

ℎ3
c t2 ∣ t1, X3, γ = γℎ3 t2 ∣ t1, X3 = γℎ03 t2 ∣ t1 exp X3

⊤β3 , t2 > t1 > 0, (3)

where h0g is a transition-specific baseline hazard function, g = 1, 2, 3, and βg ∈ ℝdg is a 

dg-vector of transition-specific log-hazard ratio regression coefficients. For ease of notation 

of the hazard functions, we subsequently suppress conditionality on γ and Xg.

Within this class of models, analysts must make several choices about the structure of the 

specific model to be adopted. First, it must be decided how exactly the non-terminal event 

time T1 affects h03(t2 | t1) in submodel (3). The so-called Markov structure sets h03(t2 | t1) 

= h03(t2), meaning the baseline hazard is independent of t1. Alternatively, the semi-Markov 

structure sets h03(t2 | t1) = h03(t2 − t1), so the time scale for h3 becomes the time from 

the non-terminal event to the terminal event (sometimes called the sojourn time) (Putter 

et al., 2007; Xu et al., 2010). Semi-Markov specification also allows functions of t1 as 

covariates in the h3 submodel, to further capture dependence between T1 and T2. While 

the choice of structure changes the interpretation of h3 and β3, the proposed penalization 

framework and theory allow either specification. Rather than focus on one or the other, we 

use semi-Markov specification when writing equations to simplify notation, as well as in the 

simulation study. However, in our application to pregnancy data we use Markov models to 

facilitate interpretation of the resulting estimates on the scale of gestational age.

A second important choice concerns the form of the three baseline hazard functions. 

Given the overarching goals of this paper, we focus on parametric specifications with a 

fixed-dimensional kg-vector of unknown parameters, ϕg = ϕg1, …, ϕgkg
⊤, for the gth baseline 

hazard. For example, one could adopt a form arising from some specific distribution such as 

the Weibull distribution: ℎ0g(t) = exp ϕg1 + ϕg2 ⋅ texp ϕg1 − 1. More flexible options include the 

piecewise constant baseline hazard defined as ℎ0g(t) = ∑j = 1
kg exp ϕgj I t(j) ⩽ t < t(j + 1) , with a 

user-defined set of breakpoints 0 = t(1) < ⋯ < t kg < t kg + 1 = ∞. Web Appendix H describes 

other possible flexible spline-based baseline hazard specifications.

Finally, one must choose a distribution for γ, the individual-specific frailties. These terms 

serve to capture additional within-subject correlation between T1 and T2 beyond covariate 

effects, and increase flexibility beyond the assumed baseline hazard specification and 

Markov or semi-Markov model structure (Xu et al., 2010). In this, the frailties play a 

role that is analogous to that of random effects in generalized linear mixed models. As 

discussed in Web Appendix B, inclusion of frailties also helps to characterize variability in 

individualized risk predictions. While in principle one could adopt any distribution for γ, 
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we focus on the common choice of γ ~ Gamma(e−σ, e−σ). This distribution has mean 1 

and variance eσ, and uniquely yields a closed form marginal likelihood, as shown in (4). 

This log-variance parameter σ can be interpreted as characterizing residual variability of the 

outcomes beyond the specified baseline hazard and transition model structure.

2.2 The Observed Data Likelihood

Now, let C denote the right-censoring time. The observable outcome data for the ith 

subject is then i = {Y1i, Δ1i, Y2i, Δ2i, Xi} where Y1i = min(Ci, T1i, T2i), Y2i = 

min(Ci, T2i), Δ1i = I Y 1i = T1i , and Δ2i = I Y 2i = T2i . We denote the corresponding observed 

outcome values as y1i, y2i, δ1i, and δ2i. Given specification of models (1), (2) and (3), let 

ϕ = ϕ1
⊤, ϕ2

⊤, ϕ3
⊤ ⊤ denote the k×1 vector of baseline hazard components, with k = k1 +k2 +k3, 

and β = β1
⊤, β2

⊤, β3
⊤ ⊤ the d × 1 vector of log-hazard ratios, with d = d1 + d2 + d3. Finally, let ψ 

= (β⊤, ϕ⊤, σ)⊤ denote the full set of d + k + 1 unknown parameters.

To develop the observed data likelihood, we assume independencies between: frailty 

and covariates, γ ╨ X; frailty and censoring time given covariates, γ ╨ C | X; 

and, censoring time and event times, given covariates and frailty, C ╨ T | (γ, X). 

Illustrating under semi-Markov specification, the ith likelihood contribution given γi 

is ℒ β, ϕ ∣ γi, Di = ℎ1
c y1i

δ1iℎ2
c y1i

1 − δ1i δ2iℎ3
c y2i − y1i

δ1iδ2iexp −H1
c y1i − H2

c y1i − δ1iH3
c y2i − y1i , 

where Hg
c(t) = ∫0

tℎg
c(s)ds. Finally, integrating out the gamma-distributed frailty, the ith 

marginal likelihood contribution takes the closed form

ℒ ψ ∣ Di = ℎ1 y1i
δ1iℎ2 y1i

1 − δ1i δ2iℎ3 y2i − y1i
δ1iδ2i 1 + eσ δ1iδ2i

× 1 + eσ H1 y1i + H2 y1i + H3 y2i − y1i
−exp( − σ) − δ1i − δ2i .

(4)

2.3 Penalization for Sparsity and Model Parsimony

Given an i.i.d sample of size n, let ℓ (ψ) = − n−1∑i = 1
n log ℒ ψ ∣ Di  denote the negative 

log-likelihood. Penalized likelihood estimation follows via the introduction of a penalty 

function Pλ(ψ), yielding a new objective function of the form Qλ(ψ) = ℓ(ψ) + Pλ(ψ).

Letting X = X1 = X2 = X3, the illness-death model’s hazards allow each Xj to potentially 

have three different coefficients: a cause-specific log-hazard ratio for the non-terminal event 

(β1j), a cause-specific log-hazard ratio for the terminal event (β2j), and a log-hazard ratio for 

the terminal event given the non-terminal event has occurred (β3j). We propose a structured 

Pλ(ψ) simultaneously targeting two properties: (i) sparsity, by identifying important non-

zero covariate effects, and (ii) parsimony, by identifying relationships between the effects of 

each covariate across the three submodels. We propose the general form

Pλ(ψ) = ∑
g = 1

3
∑
j = 1

dg

pλ1 βgj + ∑
g ≠ g′

∑
j = 1

dg

pλ2 βgj − βg′j . (5)

Reeder et al. Page 5

Biometrics. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The first component, regulated by λ1, induces sparsity by setting unimportant covariate 

effects to zero. The second component, regulated by λ2, induces parsimony by regularizing 

the cofficients of each covariate Xj towards being similar or shared across submodels.

For each component, one could, in principle, consider any of a wide array of well-known 

penalties, such as the Lasso ℓ1 penalty (Tibshirani, 1996) or non-convex penalties like 

smoothly-clipped absolute deviation (SCAD) (Fan and Li, 2001):

pλ( |β | ) =
λ β , β ⩽ λ,
− β2 − 2ξλ β + λ2 / 2(ξ − 1) , λ < β ⩽ ξλ

(ξ + 1)λ2/2, β > ξλ,
, (6)

with ξ > 2 controlling the level of non-convexity. This penalty behaves like the Lasso near 

zero, but flattens out for larger values, reducing bias on truly non-zero estimates.

The motivation for this form of penalty is both clinical and statistical, and we emphasize 

that depending on the application, the fusion penalties between β1, β2 and/or β3 can 

be included or omitted from Pλ(ψ). Clinically, fusion penalties are valuable when there 

is subject matter knowledge indicating that covariates likely have similar effects in two 

or more submodels. For example, β2 and β3 both represent log-hazard ratios for the 

terminal event, with β2 representing cause-specific effects in the absence of the non-terminal 

event, and β3 representing effects conditional on the occurrence of the non-terminal event. 

Therefore, fusing β2 and β3 imposes a structure where covariate effects on the terminal 

event are similar whether or not the non-terminal event has occurred. Relatedly, β1 and 

β2 both represent cause-specific log-hazard ratios, for the non-terminal and terminal event 

respectively. Therefore, in settings where both non-terminal and terminal events represent 

negative health outcomes, like cancer progression and death, fusing these components 

induces each covariate to have similar or shared cause-specific hazard ratio estimates for 

the two events. In any case, well-chosen structured fusion penalties can be used to encode 

clinically meaningful subject matter knowledge into the estimation framework.

Statistically, fusion penalties may also be valuable when there is relatively little information 

on one of these submodels, and the goal is to impose structure and stabilize estimation. 

For example, in settings where the non-terminal event is rare relative to the terminal event, 

there will be more information available for estimating β2 relative to β1 or β3. Therefore, 

adding a fusion penalty between β2 and either β1 and/or β3 regularizes the more variable 

estimates of β1 and/or β3 towards the more precise estimates of β2, effectively borrowing 

information across submodels. As with all regularized estimation, this directly reflects a 

bias-variance trade off: imposing structure on covariate effects across hazards to reduce 

variance, or leaving effects unstructured across hazards to reduce bias.

3. Optimization

Practically, minimizing the objective function Qλ(ψ) with respect to ψ poses several 

interconnected challenges: the loss function ℓ is non-convex due to the marginalized random 

frailty; the penalty functions pλ may also be non-convex; and, the fusion penalty component 
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does not admit standard algorithms for general fused Lasso tailored to linear regression 

(Tibshirani and Taylor, 2011). Finally, the combination of penalties requires tuning a 

two-dimensional regularization parameter λ. In this section, we propose a comprehensive 

optimization routine to simultaneously and efficiently handle these challenges.

3.1 Proximal Gradient Descent with a Smoothed Fusion Penalty

Proximal gradient descent iteratively minimizes objective functions like Qλ defined as the 

sum of a differentiable loss function and a non-differentiable penalty. When Pλ(ψ) is the 

standard Lasso ℓ1-penalty λ∥β∥1, the algorithm reduces to standard gradient descent with an 

added soft-thresholding operation. To leverage this property, we combine two techniques to 

recast Qλ from a loss with a complex penalty into a loss with a simple Lasso penalty.

First we decompose each pλ in (5) into the sum of a smooth concave term and a simple 

ℓ1 penalty term, of the form pλ( |x | ) = pλ( |β | ) + λ |β|, where pλ is a Lipschitz-smooth concave 

function (Zhao et al., 2018). The goal is to treat the smooth component as part of the 

likelihood, leaving only a simpler ℓ1 penalty. This decomposition can be done to both the 

parameterwise penalties pλ1 and the fusion penalties pλ2, rewriting (5) as

Pλ(ψ) = ∑
g = 1

3
∑
j = 1

dg

pλ1 βgj + ∑
g ≠ g′

∑
j = 1

dg

pλ2 βgj − βg′j + λ1‖β‖1 + Ωλ2(ψ), (7)

where Ωλ2(ψ) = ∑g ≠ g′ ∑j = 1
dg λ2 βgj − βg′j  denotes the fusion ℓ1 penalty.

However, this fusion penalty Ωλ2(ψ) still complicates optimization, so next we use Nesterov 

smoothing to substitute it with a smoothed, differentiable surrogate (Chen et al., 2012). 

Defining Dλ2 as a contrast matrix such that Ωλ2(ψ) = Dλ2ψ 1, the surrogate is

Ωλ2, μ(ψ) = max
z ∞ ⩽ 1

z⊤Dλ2ψ − μ z 2
2/2 = z* ⊤Dλ2ψ − μ z* 2

2/2, (8)

where z* = S Dλ2ψ /μ  and S(x) is the vector-valued projection operation onto the unit box, 

defined at the jth element by [S(x)]j = sign(xj)max(1, |xj|) and μ > 0 is a user-chosen 

smoothness parameter. Smaller μ yields a tighter approximation, with the gap between 

penalty and surrogate bounded by Ωλ2(ψ) − μJ /2 ⩽ Ωλ2, μ(ψ) ⩽ Ωλ2(ψ), where J is the number 

of pairwise fusion terms. Web Appendix G details tuning methods for μ.

Together, (7) and (8) recast the objective function Qλ(ψ) as an ℓ1-penalized objective:

Qλ, μ(ψ) = ℓλ, μ (ψ) + λ1 β 1, (9)

where ℓλ, μ (ψ) = ℓ (ψ) + ∑g = 1
3 ∑j = 1

dg pλ1 βgj + ∑g ≠ g′ ∑j = 1
dg pλ2 βgj − βg′j + Ωλ2, μ(ψ). Towards 

optimizing (9), define the vector-valued soft thresholding operation Sλ(x) at the jth element 

by [Sλ(x)]j = sign(xj)max(0, |xj|−λ). Then the mth step of the iterative proximal gradient 

algorithm is ψ(m) Sλ1 ψ(m − 1) − r(m) ⋅ ∇ ℓλ, μ ψ(m − 1) , where r(m) is an adaptive step size 

determined by backtracking line search (see, e.g., ‘Algorithm 3’ of Wang et al., 2014). 
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Iterations continue until change in objective function |Qλ,μ(ψ(m))−Qλ,μ(ψ(m−1))| falls below 

a given threshold (e.g., 10−6 in this paper).

3.2 Tuning Regularization Parameters via Pathwise Grid Search

For non-convex penalized problems with a single regularization parameter λ, recent path-

following routines apply proximal gradient descent or coordinate descent over a decreasing 

sequence of regularization parameters (Wang et al., 2014; Zhao et al., 2018). At each 

new λ, these routines initialize at the solution of the prior λ. The result is a sequence 

of estimates across a range of penalization levels, also called a regularization path. Under 

certain conditions these ‘approximate path-following’ approaches yield high-quality local 

solutions with attractive theoretical properties, even when the loss and/or regularizer are 

non-convex. Heuristically, many non-convex objective functions are locally convex in the 

neighborhood of well-behaved optima, and so incrementally optimizing over a sequence of 

small changes to λ ensures that each local solution remains in the convex neighborhood of 

the solution under the previous λ.

Therefore, we develop a pathwise approach to the penalized illness-death model (9) with 

a search routine over a two-dimensional grid of the sparsity parameter λ1 and fusion 

parameter λ2 (Figure 1). This routine consists of an outer loop decrementing λ1 as in 

standard pathwise algorithms, and an inner loop comprising a branching pathwise search 

over increasing λ2 values. The resulting grid search of the model space slowly grows 

the number of non-zero coefficient estimates as λ1 decreases in the outer loop, and then 

explores how the resulting non-zero coefficients fuse as λ2 increases in the inner loop. 

Assuming sparsity of the regression coefficients, a straightforward choice to begin the 

pathwise regularization grid search routine is to set β = 0, and set the remaining parameters 

to the unadjusted MLE estimates fit without covariates. Optimization at each point initializes 

from the solution at the prior relevant step.

The grid should be as fine as computational costs allow; Wang et al. (2014) recommend that 

successive values of λ1 differ by no more than a factor of 0.9, and for λ2 we chose four 

grid points in simulations and seven for the data application. Final choice of (λ1, λ2) follows 

by minimizing a performance metric computed at each grid point, depicted by shading at 

each point in Figure 1. Metrics such as Bayesian Information Criterion (BIC) or Akaike 

Information Criterion (AIC) may be computed using model degrees of freedom estimated by 

the number of unique covariate estimates (Sennhenn-Reulen and Kneib, 2016).

4. Theoretical Results

In this section, we derive the statistical error rate for estimation of the true parameter vector 

ψ* in a gamma frailty illness-death model with non-convex penalty, encompassing high-

dimensional settings where d > n with sparsity level denoted ∥ψ*∥0 = s. This work builds 

on the framework of Loh and Wainwright (2015), extended to the additional complexities of 

parametric gamma-frailty illness-death models. We develop a set of sufficient conditions for 

this setting under which we prove the statistical rate, and verify that such conditions hold 

with high probability under several common model specifications.
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This statistical investigation focuses on the estimator

ψ = argmin
ψ 1 ⩽ R1

Qλ(ψ) = ℓ (ψ) + ∑
j = 1

d1

pλ β1j + ∑
g = 2

3
∑
j = 1

dg

pλ βgj − β1j . (10)

We note that while the general framework (5) allows a penalty on every element and 

pairwise difference of the regression parameter vectors β1, β2, and β3, the estimator based 

on (10) specifically penalizes β1 and its pairwise differences with β2 and β3. This facilitates 

the theoretical analysis while retaining the property that the elementwise differences 

between βg’s are sparse. Moreover, to accommodate the role of non-convexity the constraint 

∥ψ∥1 ⩽ R1 is imposed on the parameter space over which solutions are sought (Loh and 

Wainwright, 2015). See Assumption 2 below and its remark for detailed discussion.

We start by listing assumptions used to derive the statistical rate of the estimator of ψ* 

based on (10). To unify outcome notation across all three submodels g = 1, 2, 3, let

Y gi =
Y 1i, g = 1, 2,
Y 2i − Y 1i, g = 3, and Δgi =

Δ1i, g = 1,
1 − Δ1i Δ2i, g = 2,

Δ1iΔ2i, g = 3,

where Ygi and Δgi are defined as in Section 2.2.

ASSUMPTION 1 (Bounded Data): There exists some administrative maximum time τY such 

that 0 < Y1 ⩽ Y2 ⩽ τY < ∞. Additionally, there exists some positive covariate bound τX 

such that τX ⩾ ∥X∥∞, where ∥X∥∞ = maxj=1, …, d|Xj|.

Assumption 1 ensures boundedness of the observed data. This assumption will invariably 

be satisfied in real world data applications, especially in time-to-event studies where person-

time is censored and there are practical limits on covariate values.

ASSUMPTION 2 (Bounded True Parameter): There exists a R2 > 0 such that ∥ψ*∥1 ⩽ R2.

Assumption 2 characterizes the overall length of the true parameter vector in terms of 

ℓ1-norm. Combined with the side constraint introduced in (10) and setting R = R1 + R2, this 

ensures by the triangle inequality that there is an overall bound ∥ψ − ψ*∥1 ⩽ R for each 

iterate and all stationary points of the optimization routine.

ASSUMPTION 3 (Bounded Minimum Population Hessian Eigenvalue): There exists a ρ > 0 

such that minψ : ψ − ψ* 2 ⩽ Rλmin ∑(ψ) ⩾ ρ, where λmin{Σ(ψ)} is the minimum eigenvalue of 

Σ(ψ) = E ∇2 ℓ (ψ) , the population Hessian matrix at ψ.

Assumption 3 characterizes the positive-definiteness of the expected Hessian matrix of the 

loss function as a function of ψ, and guarantees curvature of the population loss function in 

a neighborhood around the truth.

ASSUMPTION 4 (Baseline Hazard Function Sufficient Conditions): For g, r = 1, 2, 3, j = 1, …, 

kg, and l = 1, …, kr, and for all {ψ : ∥ψ – ψ*∥2 ⩽ R},
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a. H0g(t), ∂H0g(t)/∂ϕgj, and ∂2H0g(t)/(∂ϕgj∂ϕrl) are bounded functions on 0 ⩽ t ⩽ τ 
for any τ > 0.

b. Var Δgi ∂logℎ0g Y gi / ∂ϕgj  is finite.

c. Each log-hazard second derivative factorizes into the form 

∂2logℎ0g(t)/ ∂ϕgj ∂ϕrl = wjl
gr(ψ)zjl

gr(t), where wjl
gr(ψ) is only a function of ψ and zjl

gr(t)
is only a function of t. In addition, every Var Δgizjl

gr Y gi  is finite.

Assumption 4 outlines conditions regarding the baseline hazard functions in the illness-death 

model specification. Collectively, these conditions are imposed to control the maximum 

deviations of the gradient ∥∇ℓ(ψ*)∥∞, and Hessian ∥∇2ℓ(ψ) − Σ(ψ)∥max for all ψ over the 

ℓ2-ball ∥ψ − ψ*∥2 ⩽ R, where ∥ · ∥max is the matrix elementwise absolute maximum. 

Specifically, the gradient and Hessian of the empirical loss function ℓ may be unbounded, 

which complicates our analysis; under a Weibull specification, for example, several elements 

of the gradient ∇ℓ(ψ) involve the term logygi, which diverges approaching 0. As such, 

Assumptions 4b and 4c are used to control the unbounded quantities, while Assumption 4a 

bounds remaining terms. Note, these conditions are satisfied by commonly-used baseline 

hazard choices; Web Appendix E contains proofs for piecewise constant and Weibull 

specifications. Lastly, while the conditions in Assumption 4 are presented under a semi-

Markov model, analogous conditions can be expressed for a Markov model.

We now present the main theorem on the statistical rate of the estimator in (10). We take 

pλ to be the SCAD penalty defined in (6) to streamline the statement in terms of SCAD’s 

non-convexity parameter ξ, though the result holds for other penalty functions including the 

Lasso and minimax concave penalty (MCP) (Zhang, 2010), as described in Web Appendix 

C.

THEOREM 1: Under Assumptions 1, 2, and 3 and sparsity level s = ∥ψ*∥0, consider a 
gamma frailty illness-death model satisfying Assumption 4 with SCAD penalization as in 
(10). Suppose the SCAD non-convexity parameter ξ satisfies 3/{4(ξ − 1)} < ρ, where 
ρ is the population Hessian eigenvalue bound defined in Assumption 3. Then choosing 
λ = c log(dn)/n for sample size n, parameter dimensionality d, and sufficiently large constant 
c, any stationary point ψ of (10) will have a statistical rate that varies with s, n, and d as

ψ − ψ* 2 = OP( s log(dn)/n) .

The proof of this theorem and detailed discussion are left to Web Appendix C. In particular, 

due to the complexities outlined in the discussion of Assumption 4, the proof relies on a 

weaker version of the so-called Restricted Strong Convexity condition than that of Loh and 

Wainwright (2015). Lastly, we note that by this result, consistency of the estimator ψ follows 

in the high-dimensional regime under scaling condition s log(dn)/n → 0.
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5. Simulation Studies

In this section, we present a series of simulation studies to investigate the performance of 

the proposed methods in terms of estimation error and selection of the covariate effects β, 

comparing various penalty specifications with ad hoc methods like forward selection.

5.1 Set-up and Data Generation

We consider eight simulation scenarios, each based on a true semi-Markov illness 

death model with gamma frailty variance eσ = 0.5. The eight scenarios arise as all 

combinations of two specifications for each of the baseline hazard functions, the overall 

covariate dimensionality and the values of the true regression parameters. The specifications 

under consideration are detailed in Web Table F.1, and summarized below. We repeated 

simulations under the given settings for three sample sizes: n = 300, 500, 1000.

The true baseline hazard specifications were piecewise constant with breakpoints at 5, 15, 

and 20, specified to yield particular marginal event rates for the non-terminal event. Under 

the ‘Low Non-Terminal Event Rate’ setting approximately 17% of subjects are observed to 

experience the non-terminal event, while under the ‘Moderate Non-Terminal Event Rate’ 

setting this number was 30%. Both specifications represent complex non-monotonic hazards 

not be well-approximated by Weibull parameterization, to examine the impact of such 

misspecification on regression parameter selection and estimation error.

We considered both low- and high-dimensional regimes under sparsity, with 25 and 350 

covariates respectively, having 10 true non-zero coefficients in each submodel ranging in 

magnitude from 0.2 to 1. Crucially, the high-dimensional setting always has more regression 

parameters than observations, as d = 350 × 3 = 1050 > n. Each simulated covariate vector 

Xi was a centered and unit-scaled multivariate normal, with AR(0.25) serial collinearity. To 

assess the performance of the fusion penalty, we lastly varied the extent of shared covariate 

effects. Under the ‘Shared Support’ specification, the support of the non-zero effects is the 

same across submodels, whereas under the ‘Partially Non-Overlapping Support’ structure 

the supports only partially overlap.

5.2 Analyses

Under each scenario, we generated 300 simulated datasets. Each dataset was then analyzed 

using both Lasso and SCAD-penalized models, each with and without additional fusion 

ℓ1-penalties linking all three hazards. Each analysis was performed using both Weibull and 

piecewise constant baseline hazard specifications. For the latter, we set kg = 3 and chose 

breakpoints at quantiles of the data, so they also did not overlap exactly with the true data 

generating mechanism. In all cases, penalized models were fit over a grid comprising 21 

values for λ1 in the high-dimensional setting and 29 in the low-dimensional setting, and 4 

values for λ2, leading to overall regularization grids of 21×4 = 84 and 29×4 = 116 points, 

respectively. At each grid point, the best estimate was selected from initializations at the 

previous step’s solution, and 5 additional randomized starting values.

From each fitted regularization grid, two models are reported. A model without fusion was 

chosen that minimizes the BIC over the subset path (λ1, 0), and a model possibly with 
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fusion was chosen which minimized BIC over the entire grid of values (λ1, λ2). Therefore, 

the model space with fusion encompasses the model space without fusion, so any differences 

between the reported estimates with and without fusion reflect improvements in the BIC due 

to the added fusion penalty. If fusion did not improve BIC, there would be no difference.

For comparison, we considered a forward selection procedure minimizing BIC by adding 

one covariate to one transition hazard at each step. Finally, we fit the ‘oracle’ MLE on the 

set of true non-zero coefficients, as well as the full MLE in the low-dimensional setting.

5.3 Results

To assess estimation performance, we examine ℓ2-error defined as β − β* 2 in Table 1. 

Across all settings, the estimation error of the regression coefficients was insensitive to 

the model baseline hazard specification, with comparable results for both Weibull and 

piecewise constant specifications. Therefore we present results for Weibull models, with 

piecewise specification results given in Web Appendix F. For both n = 500 and n = 1000, 

the combination of SCAD and fusion penalties outperforms all comparators, particularly 

in the high-dimensional regime. Forward selection and the unfused SCAD-penalized 

estimator generally yielded the next best results. Estimators with fusion penalization also 

performed better in the ‘Low Non-Terminal Event Rate’ setting, likely because fusion 

links estimates across submodels, allowing ‘borrowing’ of information about h1 and h3 

from h2 when the non-terminal event is rare. Fusion penalized estimators also performed 

comparably well even if the covariate supports of each submodel only partially overlapped, 

relative to complete overlap. However, Lasso penalized models did poorly relative to other 

comparators, which likely reflects elevated regularization-induced bias in the individual 

estimates.

To assess selection performance, Table 2 reports mean sign inconsistency, which counts the 

estimated regression coefficients that do not have the correct sign—exclusion of true non-

zero coefficients, inclusion of true zero coefficients, or estimates having the opposite sign 

of the true coefficient. Lower values indicate better overall model selection performance. 

Again performance was very similar between Weibull and piecewise constant specifications, 

so only Weibull results are presented in the main text. Additional simulation results, and 

separated results on false inclusions and exclusions are included in Web Appendix F.

For both n = 500 and n = 1000, the combination of SCAD and fusion penalties out-

performed comparators, while other methods’ performances varied across sample size and 

setting. Fusion penalized estimators exhibited notably better selection properties in the 

‘Shared Support’ setting, as fusion coerces a common block of non-zero covariates across 

submodels. Lasso penalized models tended to choose overly sparse models. With many of 

the true non-zero effects small in magnitude, regularization-induced bias may have rendered 

those terms indistinguishable from truly zero effects.

Lastly we summarize the results in the smallest sample setting of n = 300, which are 

detailed in Web Appendix F. This is a challenging setting because small samples exacerbate 

the non-convexity of the marginal illness-death likelihood, and when outcomes are rare 

some transition submodels have a small number of observed events. These complications 
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affect small-sample empirical performance of frailty-based illness-death models even in the 

absence of high-dimensional covariates. For example, in the setting with 25 covariates per 

transition, average estimation error of the full MLE is substantially larger for n = 300 than 

n = 500, and more sensitive to the non-terminal event rate (see Web Table F.4). Still, in this 

low-dimensional regime we again observe the combination of SCAD and fusion penalties 

reducing estimation error relative to comparators.

However, increasing dimensionality to 350 covariates per transition while keeping n = 

300 degraded performance of all methods, particularly when event rates were lowest. For 

example, in the ‘Low Non-Terminal Event Rate’ settings, the comparator forward selection 

algorithm failed for between 25 and 90 percent of simulations by adding so many covariates 

that optimization no longer converged. Penalized models also tended towards extremes, 

with SCAD-penalized models including many unnecessary covariate effects, while the Lasso 

models selecting few or no non-zero covariate effects. A key challenge is that likelihood-

based selection criteria like BIC can be distorted in small samples by non-convexity. In 

certain instances, the log-likelihood can become monotonic with respect to the frailty log-

variance σ, yielding artificial information criteria and leading to selected models that are 

either completely sparse (as with Lasso-penalized models) or completely saturated (as with 

SCAD-penalized and forward-selected models). These serious complications manifested 

only in the most difficult settings combining small samples, low-to-moderate event rates, 

and high dimensional covariates, but show that the challenges of very small-sample 

estimation with frailties is compounded by high-dimensional covariates.

6. Data Application: Preeclampsia (PE) and Delivery

The proposed methods are motivated by practical application to clinical settings where 

interest is in developing a risk model that jointly characterizes a non-terminal and terminal 

event. To this end, we consider modeling PE onset and the timing of delivery using the 

electronic health records of an urban, academic medical center in Boston, Massachusetts. 

We analyze 2127 singleton live births recorded in 2019 among individuals without pre-

existing hypertension who received the majority of their prenatal care and delivered at the 

academic medical center. Restricting to those without hypertension targets the modeling 

task, as PE superimposed on chronic hypertension has distinct clinical features compared 

to other forms of the disease (Jeyabalan, 2013). 189 (8.9%) individuals developed PE, with 

median diagnosis time of 37.9 weeks (Inter-Quartile Range [IQR] 35.0–39.0). The median 

time to delivery was 38.0 weeks (IQR 35.4–39.3) among those who developed PE and 39.4 

weeks (IQR 38.6–40.3) among those who did not. Note, because PE is only diagnosed after 

20 weeks of gestation, for modeling purposes this is used as the time origin, with T1 and T2 

defined as time from week 20 until PE onset and delivery, respectively.

We considered a set of 33 potential covariates, including demographics recorded at patient 

intake, baseline lab values annotated by the medical center with a binary indicator for 

abnormality, and maternal health history derived from ICD-10 diagnostic codes associated 

with delivery (summarized in Web Table A.1). We fit Markov illness-death models so 

that β2 and β3 are both interpretable on the gestational age timescale, under both Weibull 

and piecewise constant baseline hazards. We adopted SCAD penalties on each regression 
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coefficient, and an ℓ1 fusion penalty between β2 and β3 to induce a shared structure between 

coefficients for the timing of delivery in the absence of PE and timing of delivery given the 

onset of PE. We specified a grid of 55 values for λ1 and seven for λ2. As above, we selected 

the final penalized model minimizing BIC over the entire grid of (λ1, λ2) values, while the 

final SCAD-only penalized model minimizes BIC over the path (λ1, 0). Again, this means 

that differences between the models with and without fusion reflect improvements in BIC 

due to the fused penalty. For comparison, we also report the unpenalized MLE.

Figure 2 compares the estimated regression coefficients between unpenalized and penalized 

models, for each baseline hazard specification. As in the simulation studies, there appears 

to be little difference in the selection properties or resulting regression estimates between 

models with Weibull and piecewise constant baseline hazard specifications. Across all 

specifications, the penalized estimates chosen by BIC are highly sparse relative to the 

unpenalized MLE. The inclusion of a fusion penalty linking the coefficients in h2 and h3 

further improved BIC, and fused several covariate effects for the timing of delivery before 

PE and given PE. Specifically, parity of 1 or more (meaning a history of at least one 

pregnancy lasting at least 20 weeks), and in the Weibull model, the presence of leiomyomas 

(benign gynecological tumors), are both estimated with shared coefficients on timing of 

delivery with and without PE. For comparison, models chosen by AIC are provided in Web 

Figure A.1, which include more covariates but are still sparse relative to the full model. 

Finally, we find that in this application, beyond the estimated regression coefficients frailties 

did not play a large role in characterizing additional dependence between preeclampsia and 

delivery timing, as the estimated frailty variance is very close to 0 in all estimates.

These results have strong clinical significance. In every specification and across all three 

hazards, the selected covariates are primarily maternal health history and behaviors, 

rather than demographics or baseline lab measurements. Many of the variables selected 

for the cause-specific hazard of PE—parity of 1 or more, BMI of at least 30, and pre-

existing diabetes—align with findings of recent meta-analyses of factors affecting PE risk 

(Giannakou et al., 2018). Further illustrating the interplay of risk factors with the outcomes, 

fusion penalized estimates show parity of 1 or more associated both with delayed timing of 

PE, and accelerated timing of delivery in the presence of PE. This correspond clinically with 

risk of milder late-onset PE for which delivery can occur quickly with fewer risks.

As introduced previously, care decisions for PE center two challenges: identifying those at 

high risk of PE, and timing delivery after PE onset to balance maternal and fetal health 

risks. Though our methodological focus is on regularized estimation and model selection, 

the resulting fitted illness-death models also generate prospective risk predictions to inform 

these individualized clinical care decisions (Putter et al., 2007). In Web Appendix B we 

present and discuss a set of four such risk profiles for sample patients using a Weibull model 

with fusion penalty. Specifically, from baseline the model can predict across time how likely 

an individual is to be in one of four categories: (i) still pregnant without PE, (ii) already 

delivered without PE, (iii) already delivered with PE, and (iv) still pregnant with PE. Such 

profiles directly address clinical needs by highlighting individuals’ overall risk of developing 

PE, while also characterizing the timing of PE and delivery.
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7. Discussion

Frailty-based illness-death models enable investigation of the complex interplay between 

baseline covariates and semi-competing time-to-event outcomes. Estimates directly illustrate 

the relationships between risk factors and the joint outcomes via hazard ratios across three 

submodels, while individualized risk predictions generate an entire prospective outcome 

trajectory to inform nuanced clinical care decisions.

The task of modeling risk of PE and timing of delivery illustrates the value, and the 

potential, for penalized illness-death modeling to inform clinical practice. While analysts 

typically default to including the same set of covariates in all three hazards, Figure 2 

illustrates that no covariate in any BIC-selected models has distinct, non-shared coefficients 

in all three hazards. Moreover, even in the setting of PE onset and delivery, where relatively 

few covariate effects appear to be shared across submodels, adding fusion regularization 

improved model fit metrics. We expect the impact of fusion would be even more pronounced 

in settings where the outcomes are more positively correlated, such as when the non-

terminal event is a negative health outcome and the terminal event is death. Because frailties 

also tend to characterize positive correlation of the outcomes, we might also expect larger 

estimated frailty variance in such settings. Analysts interested in considering non-frailty 

models might fit regularization paths with and without the frailty, and choose a final 

criterion-minimizing model from amongst both frailty and non-frailty candidates.

We also note that the statistical rate result of Theorem 1 uses the specific choice of penalty 

given in (10), however we would expect similar theoretical performance under the similar 

penalty introduced in (5). The advantage of implementing the formulation as in (5) is 

its interpretability for the analyst, by directly distinguishing between the role of λ1 in 

determining the global level of sparsity of the regression parameters, and the role of λ2 in 

determining the level of parsimony in the sharing of effects across hazards.

Though the current work focuses on penalization of the regression parameters β, the 

framework also admits penalization of the baseline hazard parameters to achieve similar 

goals of flexibility and structure. For example, under the Markov transition specification 

a penalty of the form ∑j = 1
k3 pλ3 ϕ2j − ϕ3j  could regularize the model towards having h02(t2) 

= h03(t2). Xu et al. (2010) call this the ‘restricted’ illness-death model corresponding to 

the baseline hazard of the terminal event being equal before and after the non-terminal 

event. Moreover, while we presently focus on fixed-dimensional parametric baseline hazard 

specifications, in principle the estimation algorithms presented here extend to penalized 

baseline models of growing dimensionality, such as splines with number of basis functions 

dependent on sample size. The theoretical properties of such an estimator would be an 

interesting avenue of future research. Future work might also explore these methods and 

theory under other frailty distributions besides the closed form-inducing gamma.

Finally, establishing the statistical rate of the proposed penalized estimator also enables 

future development of post-selection inferential tools such as confidence intervals for 

selected coefficients. Most importantly, this methodology enables future work modeling 
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semi-competing risks across a wide array of clinical domains, and leveraging data sources 

with high-dimensional covariates from electronic health records to genomic data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic depicting path-following grid search routine over (λ1, λ2). Each dot represents a 

(λ1, λ2) pair for which the penalized estimator is fitted, with darker shading corresponding 

to better model fit metric (e.g., AIC or BIC). The arrows illustrate the path of the search 

routine, with optimization at each grid point starting at the solution of the previous point. 

This figure appears in color in the electronic version of this article, and any mention of color 

refers to that version.
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Figure 2. 
Estimated coefficients, BIC-optimal SCAD-penalized estimators with and without ℓ1 fusion 

between h2 and h3, and MLE under Markov specification. Fused coefficients connected 

with a black line. Abbreviations: abnormal (Abn), white blood cell count (WBC), red blood 

cell count (RBC), red cell distribution width (RDW), mean corpuscular volume (MCV), 

gastroesophageal reflux disease (GERD). This figure appears in color in the electronic 

version of this article, and any mention of color refers to that version.

Reeder et al. Page 19

Biometrics. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reeder et al. Page 20

Table 1

Mean ℓ2 estimation error of β, Weibull baseline hazard specification. Maximum likelihood estimates only 

available for low-dimensional setting.

n = 500 Oracle MLE Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

 Shared Support

  Low-Dimension 0.75 1.34 1.48 2.06 1.35 1.49 0.97

  High-Dimension 0.76 — 3.10 2.77 2.37 2.21 1.20

 Partially Non-Overlapping Support

  Low-Dimension 0.73 1.30 1.33 1.87 1.26 1.61 1.13

  High-Dimension 0.74 — 3.47 2.49 2.34 2.28 1.45

Low Non-Terminal Event Rate

 Shared Support

  Low-Dimension 0.92 1.81 1.89 2.24 1.91 1.48 1.20

  High-Dimension 0.88 — 5.13 2.56 2.23 2.34 1.28

 Partially Non-Overlapping Support

  Low-Dimension 0.80 1.53 1.55 2.05 1.50 1.71 1.27

  High-Dimension 0.80 — 3.65 2.42 2.20 2.33 1.55

n = 1000 Oracle MLE Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

 Shared Support

  Low-Dimension 0.50 0.82 0.76 1.53 0.73 1.39 0.75

  High-Dimension 0.50 — 1.25 2.40 1.52 1.82 0.81

 Partially Non-Overlapping Support

  Low-Dimension 0.48 0.81 0.71 1.23 0.71 1.32 0.83

  High-Dimension 0.49 — 1.18 2.17 1.20 1.84 0.97

Low Non-Terminal Event Rate

 Shared Support

  Low-Dimension 0.57 0.95 1.31 2.05 1.15 1.37 0.83

  High-Dimension 0.58 — 1.86 2.39 2.10 1.80 0.90

 Partially Non-Overlapping Support

  Low-Dimension 0.52 0.88 0.85 1.52 0.84 1.43 0.96

  High-Dimension 0.52 — 1.42 2.22 1.80 1.94 1.06
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Table 2

Mean count of sign-inconsistent β estimates, Weibull baseline hazard specification. Sign inconsistency counts 

the number of estimated regression coefficients that do not have the correct sign—exclusion of true non-zero 

coefficients, inclusion of true zero coefficients, or estimates having the opposite sign of the true coefficient.

n = 500 Oracle Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

 Shared Support

  Low-Dimension 0.13 11.51 15.06 10.28 11.90 3.45

  High-Dimension 0.12 35.81 26.40 35.22 21.89 18.88

 Partially Non-Overlapping Support

  Low-Dimension 0.14 10.73 15.39 10.19 15.06 7.91

  High-Dimension 0.13 34.56 27.21 38.52 23.37 24.35

Low Non-Terminal Event Rate

 Shared Support

  Low-Dimension 0.30 16.23 19.33 17.16 12.77 5.45

  High-Dimension 0.29 39.50 26.08 24.94 23.39 14.42

 Partially Non-Overlapping Support

  Low-Dimension 0.24 12.70 17.11 12.42 16.33 9.47

  High-Dimension 0.21 36.20 26.08 29.51 24.53 22.89

n = 1000 Oracle Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

 Shared Support

  Low-Dimension 0.01 4.03 13.52 3.99 8.48 1.51

  High-Dimension 0.00 15.83 20.92 19.92 19.82 7.21

 Partially Non-Overlapping Support

  Low-Dimension 0.02 4.12 13.80 4.27 12.58 4.00

  High-Dimension 0.03 15.57 19.86 19.30 21.28 8.44

Low Non-TerminaEvent Rate

 Shared Support

  Low-Dimension 0.06 9.70 16.60 9.01 8.43 1.86

  High-Dimension 0.06 23.73 24.30 22.17 19.08 6.95

 Partially Non-Overlapping Support

  Low-Dimension 0.03 5.29 14.54 5.74 13.27 4.97

  High-Dimension 0.03 16.96 21.98 22.18 21.98 8.72
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