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Abstract

Recent technological and computational advances have made metagenomic assembly a viable approach to achieving high-resolution
views of complex microbial communities. In previous benchmarking, short-read (SR) metagenomic assemblers had the highest accuracy,
long-read (LR) assemblers generated the most contiguous sequences and hybrid (HY) assemblers balanced length and accuracy.
However, no assessments have specifically compared the performance of these assemblers on low-abundance species, which include
clinically relevant organisms in the gut. We generated semi-synthetic LR and SR datasets by spiking small and increasing amounts
of Escherichia coli isolate reads into fecal metagenomes and, using different assemblers, examined E. coli contigs and the presence of
antibiotic resistance genes (ARGs). For ARG assembly, although SR assemblers recovered more ARGs with high accuracy, even at low
coverages, LR assemblies allowed for the placement of ARGs within longer, E. coli-specific contigs, thus pinpointing their taxonomic
origin. HY assemblies identified resistance genes with high accuracy and had lower contiguity than LR assemblies. Each assembler
type’s strengths were maintained even when our isolate was spiked in with a competing strain, which fragmented and reduced the
accuracy of all assemblies. For strain characterization and determining gene context, LR assembly is optimal, while for base-accurate
gene identification, SR assemblers outperform other options. HY assembly offers contiguity and base accuracy, but requires generating
data on multiple platforms, and may suffer high misassembly rates when strain diversity exists. Our results highlight the trade-offs
associated with each approach for recovering low-abundance taxa, and that the optimal approach is goal-dependent.
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Introduction
Metagenomic assembly has enabled the discovery of novel phyla
and genera [1, 2]; identification of individual members in a micro-
biome, their functions and their genetic differences [3]; and detec-
tion of novel plasmids [4, 5] and antibiotic resistance mechanisms
[6–8]. However, accurate reconstruction of complete individual
genomes is challenging due to strain multiplicity, uneven read
coverage between taxa, and homologous repeat regions [9]. These
issues are particularly problematic for low-abundance species
(<1% relative abundance), including clinically relevant organ-
isms such as Escherichia coli [10, 11], which may contain antibi-
otic resistance genes (ARGs) located on mobile genetic elements

(MGEs) and flanked by repeat and homologous regions [12, 13].
Short reads (SRs), e.g. 100–150 bp Illumina reads, provide mini-
mal genomic context to allow assemblers to distinguish between
homologous regions [14]. Relative to SR data, long reads (LRs) can
overcome some of these issues by bridging repeat regions and
providing enough genomic context to distinguish between related
organisms [9, 15]. The minION sequencer from Oxford Nanopore
Technology (ONT) is highly portable and inexpensive. However,
ONT LRs are reported to have a higher base calling error rate than
Illumina SRs (5–15% compared to <0.6%, respectively) [16, 17],
which can result in assemblies with many indels, frameshifts and
incorrect gene annotations [18]. Hybrid (HY) assembly, bringing
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together both SR and LR data, can balance the strengths of each
data type by assembling contigs that are both long and accurate
[19]. However, generating data on multiple sequencing platforms
is unlikely to be cost-effective or feasible for many applications.
As such, there is a clear need to fully explore the trade-offs
associated with SR, LR and HY metagenomic assembly, including
base accuracy, contiguity and completeness.

Previous benchmarking efforts have assessed the overall
assembly quality of different metagenomic assemblers, as well
as their ability to recover strains and genes of interest, such
as ARGs [12, 13, 19–21]. Meyer et al. [20] used a synthetic
metagenome with over 400 strains, including many same-
species strains, and found that HY assemblers recovered high
genome fractions of the greatest number of strains, but with
a high number of misassemblies. Galata et al. [12], using a
human fecal metagenome, found that, although LR assembly was
associated with the greatest contiguity, SR and HY assemblies
contained ARGs that were not present in those of LRs, likely
due to erroneously generated indels. Brown et al. [13] found LR
assemblies of wastewater to contain the most MGEs and ARGs on
a contig, but, due to the high misassembly rate of LR assemblers,
deemed these results unreliable and concluded that HY co-
assembly of ARGs and MGEs was the most accurate. However,
both Galata et al. and Brown et al. had no definitive catalog of
ARG content for a given sample, so the calculation of sensitivity
and specificity was not possible. Brown et al. [13] additionally
compared misassembly rates for an in silico spiked-in isolate at
various abundances in environmental metagenomes and found
the HY assembly approach to produce the lowest misassembly
rates. The merits of utilizing each data type for the assembly of
low-abundance organisms and plasmids, which are of significant
interest and potential threat in many contexts, remain unclear.

In this study, we focus on SR, LR and HY metagenomic assembly
of low-abundance E. coli in human fecal samples. E. coli was
selected due to its clinical relevance [11] and high prevalence,
present in the guts of >90% of humans, but at a typical relative
abundance of <1% [10, 11]. The E. coli genome is average size
compared to other bacterial species’ genomes, typically includes
a variety of plasmids, and shows remarkable diversity in strains—
even from the same fecal sample—with a relatively modest over-
lap in gene content [22, 23]. We computationally spiked reads
(LR and SR) of previously characterized E. coli isolates into fecal
metagenomes across a range of coverage levels, reflecting realistic
abundances in the human gut. To assess the effects of E. coli strain
diversity, we performed this analysis in multiple metagenomic
backgrounds with varying levels of pre-existing E. coli, as well as by
spiking in E. coli strain pairs. We compared assemblies to the com-
plete, closed assembly of the target E. coli genomes, and quantified
quality of their plasmid and ARG content. Our results reveal gen-
eral patterns in the utility of metagenomic assembly approaches
for low-abundance species, genes and their genomic context,
and highlight that optimal data generation for low-abundance
species and ARGs is dependent on desired research outcome. For
determining gene context, even in the presence of strain diversity,
LR assembly is optimal. SR assemblies provide the best base-to-
base accuracy for gene identification, and HY assemblies offer a
balance of contiguity and accuracy, but with high misassembly
rates in the presence of strain multiplicity and the associated
costs of generating data on multiple platforms.

Results
To assess the relative performance of SR, LR and HY assembly
to recover a low-abundance E. coli genome from a complex

metagenome, we created semi-synthetic LR and SR metagenomic
datasets with varying levels of spiked-in E. coli content. We
selected a human fecal metagenome, previously sequenced on
both Illumina and ONT platforms [12], that contained negligible
levels of E. coli (B1; Table S1). Next, we computationally spiked
in reads from one of three phylogenetically diverse, multidrug-
resistant E. coli, (isolates I1, I2 and I3) previously sequenced using
both ONT and Illumina technologies (Figure 1, Table 1, Table S2,
Methods). The three isolates had complete ONT and Illumina HY-
assembled genomes available, which we used to form the basis of
‘truth’ in our benchmarking experiments. Spike-in levels ranged
from approximately 0.2% (1x coverage in 3 Gb-sized sample) to
10% (50x coverage) relative abundance. HY assemblers received
these spike-in levels for each of the two data types.

Rather than performing an exhaustive comparison of all avail-
able metagenomic assembly tools, we sought to compare metage-
nomic assembly based on data type, and thus, chose represen-
tative, widely used assemblers for SR, LR and HY assembly. For
SR assembly, we used metaSPAdes [26], as well as MEGAHIT, a
less computationally intensive, single-node assembler [27]. For
LR assembly, we used metaFlye [28]. HY assembly can differ
depending on the order in which read types are utilized; either (i)
first building contigs using SRs, and then bridging these contigs
with LRs (HY-SL), or (ii) generating contigs with LRs and then
polishing these contigs to improve accuracy with SRs (HY-LS).
Thus, for HY assemblies, we used OPERA-MS (HY-SL) [19] as well
as metaFlye followed by Pilon [29] polishing (HY-LS).

HY assembly balanced contiguity and accuracy
in E. coli assemblies
We first assessed the impact of the spiked-in E. coli on overall
metagenome assembly metrics. As expected, the addition of the
E. coli spike-in had little impact on the overall assembly of the
B1 metagenome across all assembly approaches and spike-in
levels, including the overall contig N50, maximum contig length
and number of contigs (SI Figure S1a). Using metaQUAST [30]
(Methods), we next assessed how well each assembly captured the
spiked-in E. coli genome. As observed in previous work [12, 13], LR
and HY metagenomic assemblies were the most contiguous by
at least an order of magnitude at all coverage levels (Figure 2A).
In fact, at ≥20x coverage, HY and LR assemblers recovered the
entire (∼5 Mb) E. coli chromosome in as little as 1–4 contigs. SR
and HY-SL assemblies captured a greater proportion of the target
genome than LR assemblies at ≤5x coverage (Figure 2B), and also
offered higher base accuracy (Figure 2C). However, misassemblies
(i.e. relocations and translocations) were elevated for MEGAHIT as
well as for OPERA-MS (which uses MEGAHIT as its first assembly
step) (Figure 2D). LR assembly generated large contigs with few
misassemblies, but had relatively low accuracy and genome com-
pleteness, particularly at lower abundance. Polishing with short
reads (HY-LS) improved accuracy, but required at least 10x cover-
age of both SRs and LRs to reach levels similar to SR assemblers
(Figure 2C). OPERA-MS (HY-SL) had consistently higher identity
and genome completeness than HY-LS (Figure 2A and C), though
it generated more misassemblies across all coverages (Figure 2D).

LR and HY assembly generated more contiguous
plasmid assemblies
Plasmids frequently harbor ARGs and virulence factors, and can
readily move between organisms, posing a threat to public health.
They can also be a challenge to assemble given their often repet-
itive content. As such, we benchmarked the reconstruction of the
15 plasmids present across our three spike-in genomes on the B1
background using SR, LR and HY assembly.
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Figure 1. Semi-synthetic datasets for assessment of metagenomic assembly of low-abundance species. E. coli isolate reads were computationally added
to metagenomic sequencing reads from a human fecal sample at 1x–50x spike-in coverage. SR, LR and HY assemblers were used to assemble the
semi-synthetic datasets. We assessed the ability of each assembler to recover the ARGs within the well-characterized, spiked-in isolate.

Table 1. Information on isolates

Isolates Sequence type (ST)a Key AMR genes Similarity to I1b Similarity to I2b Similarity to I3b

I1 ST-38 blaNDM-5 (carbapenems) N/A 97.3% 99.7%
I2 ST-224 mcr (colistin) 97.3% N/A 97.3%
I3 ST-38 blaCTX-M-27 (ESBL) 99.7% 97.3% N/A

aSequence type identified using SRST2 [24]. bDetermined by ANI, calculated using FastANI [25].

Figure 2. LR and HY assemblers generated more contiguous assemblies of E. coli in metagenomes. Assembly statistics for each coverage level, averaged
across all three isolates individually spiked into the B1 background. (A) Percent of the E. coli genome present in the assembly, calculated by tabulating
contigs >500 bp with alignment identity >95% to the spiked-in isolate’s reference genome (default parameters from metaQUAST). (B) NGA50 of E. coli
isolate contigs in each assembly. Data are only shown at ≥3x coverage, where the sum of the reference contig alignments exceeded 50% of the reference
genome length. (C) Percent identity of the longest alignment within a single contig to the E. coli isolate genome. (D) Number of misassemblies (including
translocations and relocations) identified by metaQUAST. Error bars show +/- 1 S.D.

We found that the same trends in contiguity and identity at
low coverages observed for the whole E. coli genome also held
true for plasmids (SI Figure S2A and C): SR assemblies were more
fragmented, although accuracy was high. At low coverages, SR

assemblies had gaps where transposases (i.e. transposable ele-
ments often found repeated throughout a genome) were located
(Figure 3A and B; SI Figure S2A and B). OPERA-MS (HY-SL) had an
improved ability to bridge transposons as coverage increased, but
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Figure 3. metaFlye (with and without Pilon polishing) generated the most contiguous plasmid assemblies. Circular depictions of E. coli contigs in the
single 150 kb plasmid present in the I3 isolate, assembled from spike-ins into the B1 background. Areas of correct assembly (blue) and misassemblies
(red), as determined by metaQUAST, are shown for increasing spike-in coverages, ranging from 0x (innermost band) to 50x (outermost blue/red band).
The outermost yellow and purple band indicates locations of ARGs (purple) and transposons (yellow) in the isolate genome. Assemblies are shown for
(A) MEGAHIT (SR), (B) metaSPAdes (SR), (C) OPERA-MS (HY-SL), (D) metaFlye with Pilon polishing (HY-LS), (E) metaFlye (LR). Similar trends were seen
across all 15 plasmids (SI Figure S2).

still left more gaps in the plasmid sequence than HY-LS (Figure 3C
and D). All assemblers had comparable misassembly rates, mostly
from translocations (SI Figure S2D). For each assembler, the degree
of contiguity, misassembly and accuracy was consistent across
all 15 predicted plasmids, ranging in length from 1.45 to 148 kbp
(Table S2, SI Figure S2).

SR assembly captured more E. coli ARG sequence
at low coverages; HY and LR captured more
contiguous ARG sequences at all coverages
Given the importance of detecting ARGs in complex communities,
we next aimed to assess how well ARGs could be identified from
the different assemblies. We generated a ‘truth set’ of the 66–
75 ARGs present in each isolate, identified using Resistance Gene
Identifier [31] (RGI) (Methods). These genes were identified in each
assembled metagenome using BLASTn [32] with a query set of the
ARG sequences identified by RGI. ARGs from each metagenomic
assembly were categorized based on their completeness, identity,
and contiguity relative to the respective truth set (Figure 4).

At low abundance (1–5x), SR assembly outperformed LR
and HY assembly, reconstructing the greatest number of
ARGs with high sequence identity (Figure 4, SI Figure S3). At
higher coverage levels, LR assembly contained full-length ARGs,
although sequence identity often remained imperfect. This was
considerably improved with SR Pilon polishing (HY-LS). Notably,

ARGs were present in their entirety, or absent, using HY-LS and
LR assembly, while the HY-SL approach, which begins with SR
assembly followed by integration of LRs, also captured partial
genes and led to fewer fragmented genes than present in SR
assemblies.

HY and LR assemblers were most successful at
recovering low-abundance ARGs with enough
context to determine species specificity
To determine the degree to which contigs containing ARGs could
be correctly assigned to E. coli, we searched each contig (with >90%
of their length aligning to the chromosome with >90% identity)
containing a known chromosomally-encoded ARG against the
Refseq database [33]. All ARG-containing contigs were classified
as ‘E. coli-specific’ if the sole top hit was E. coli and were then eval-
uated for length and identity to the isolate (Figure 5; SI Figure S4).

Even at low coverages (≤5x), the HY and LR assemblies cap-
tured most (20–100%) chromosomal ARGs on E. coli-specific con-
tigs (Figure 5). Contig length and E. coli specificity increased with
spike-in coverage, and at coverage levels ≥10x, all ARGs were
present on E. coli-specific contigs in HY and LR assemblies. While
SR assembly was unable to achieve similar contiguity, the rela-
tively high accuracy allowed for most shorter contigs (capturing
70–84% of ARGs from ≥10x) to be species-specific at high coverage
levels.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad050#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad050#supplementary-data
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Figure 4. SR assemblers identified more E. coli isolate ARGs than LR and HY at coverages <5x. For each metagenomic assembly in the B1 background,
the completeness of ARGs present in the E. coli isolate sequence is shown, averaged across spike-in experiments using the I1, I2 and I3 isolates, which
contained 66, 70 and 75 ARGs, respectively. ARGs identified as ‘Strict’ or ‘Perfect’ hits using RGI are shown (Methods). (A) MEGAHIT; (B) metaSPAdes; (C)
OPERA-MS; (D) metaFlye with Pilon polishing; (E) metaFlye.

Figure 5. HY and LR assemblies contain long, species-specific contigs. Comparison of contig lengths for E. coli-specific versus non-E. coli-specific
chromosome contigs for the I3 isolate spiked into the B1 background. Each E. coli contig >1 kb that contained chromosomal ARGs from the I3 isolate
(>99% assembly length) is represented by a dot (blue = E. coli-specific; red = non-E. coli-specific). Contigs were considered species-specific if E. coli was
the only top BLAST hit when searched against the Refseq database. The red dashed line shows the length of the I3 isolate’s chromosome. Data shown
are for (A) MEGAHIT, (B) metaSPAdes, (C) OPERA-MS, (D) metaFlye with Pilon polishing, (E) metaFlye. Results for the I1 and I2 isolates spiked into the B1
background are shown in SI Figure S4.

E. coli strain diversity lowers the contiguity and
accuracy of isolate and ARG assemblies,
especially in HY assembly
While the above experiments were performed in a metagenomic
background lacking E. coli to prevent interference from back-
ground strains, it is well known that many species, including E. coli,
exist within communities containing multiple strains of varying
relatedness and gene content [10, 11, 34]. Since metagenomic

assemblers struggle with differentiating between different strains
[19, 35], we sought to benchmark how the results of each assembly
approach changed when resolving an isolate in the presence of
other strains. Thus, we repeated the above experiments using
two additional metagenomic backgrounds that contained native
E. coli at relative abundances within ranges seen in healthy cohorts
[36, 37], which we profiled at the strain level using StrainGE
[38]: Background 2 (B2; containing one strain at 0.5% relative
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abundance, or 2.5x coverage) and Background 3 (B3; containing
two strains at cumulatively 1.7% relative abundance or ∼8.5x
coverage) (Table S1). We estimated that the background E. coli
strains had an average nucleotide identity (ANI) of 96.8–97% to
the spiked-in isolates (Table S2, Methods). E. coli assemblies from
these backgrounds were compared to those from equivalent E. coli
spike-in levels in the B1 background with limited E. coli content.
Overall, the presence of pre-existing strains reduced the accuracy
of the spike-in genome assemblies, and increased fragmentation
and misassembly rates, especially in background B3 (SI Figure
S5B–D), which had the most background E. coli. We also observed
a greater proportion of the target E. coli isolate aligning to assem-
bled content at lower coverage levels, suggesting co-assembly
of target and background E. coli sequence, or the assembly of
both sequences on the same contig (SI Figure S5A). Similarly,
the number of ARGs identified was generally higher, but with
greater fragmentation and lower accuracy, due to co-assembly
with background strains harboring similar genes (SI Figure S6).

To explore how metagenomic assembly approaches handle
multiple strains more robustly, we generated semi-synthetic
metagenomes containing the target strain I1 spiked into the
metagenomic background B1, lacking native E. coli, with an
additional competing E. coli isolate strain spiked in at the same
abundance (Methods). We separately competed both I2 (97.3%
ANI to I1) and I3 (99.7% ANI to I1) as competing strains with the
I1 target to examine the impact of genetic similarity between the
spiked-in genomes (Table 1; Table S2).

While the 2-fold higher E. coli content increased the fraction
of the target genome aligning to assembled content, assemblies
from spike-ins containing two strains at equal abundances were
less accurate, more fragmented and incomplete (Figure 6A and
Ci–iii) due to the co-assembly of the two strains. The SR assemblies
did not disentangle homologous regions in most cases, resulting
in reduced base accuracy relative to the target genome, even at
high coverage. The reduction in identity was less pronounced for
LR and HY assemblies due to the additional genomic context pro-
vided by LRs (Figure 6A and Ciii). Co-assembly of the two strains
also resulted in considerably more misassemblies, especially for
LR and HY assemblies at higher coverages (Figure 6A, and Ciii).
Between the two SR assemblers considered here, MEGAHIT was
associated with a greater number of misassemblies than metaS-
PAdes, particularly at high coverages (≥10x).

Spiking in a more similar competing strain (I3) had a lesser
impact on the assembly of the target genome (I1) than a more
distantly related competing strain (I2) due to the higher base-to-
base similarity (Figure 6Bi–iv). For the I1–I3 spike-in, more of the
common core E. coli genome was co-assembled at intermediate
coverages without lowering accuracy for any assembler type. At
high coverages, all assemblies were fragmented but more contigu-
ous than the I1-I2 assemblies.

We also performed spike-ins using unequal ratios (1x target:
10x competing strain, or 10x target: 1x competing strain) for
both the I1–I2 and I1–I3 pairs (SI Figure S7). A 1:10 minority
competing strain caused only a slight change in metrics,
including a slight increase in the number of misassemblies
in the HY-SL assembly at intermediate coverages (SI Figure
S7A-C). Unsurprisingly, when the competing strain was spiked
in at 10-fold higher abundance than the target strain (SI Figure
S7E and G), we saw a much larger degradation of assembly
metrics compared to the degradation seen at other spike-in
ratios, including greatly increased fragmentation of the target
assembly. Recovery of minority strain I2 in a 1:10 spike-in with the
more distantly related strain I1 resulted in the most fragmented

and least accurate assemblies, highlighting the challenge of
recovering minority strains, particularly in the presence of
genomically divergent competing strains from the same species
(SI Figure S7G).

In scenarios where we observed increased fragmentation and
reduced accuracy of the E. coli assembly, we also observed a
degradation in our ability to recover ARGs, particularly when the
competing strain was less similar to the reference and spiked in at
a higher ratio (SI Figure S8). The SR assembly and the HY approach
starting with SR assembly (HY-SL) yielded more ARGs, but these
were fragmented and less accurate (SI Figure S8).

Discussion
In this study, we systematically evaluated the ability of sev-
eral approaches for metagenomic assembly to recover a target
organism (E. coli) across a range of coverage levels, including at
clinically relevant low abundances. We explored the impact of
utilizing SR and LR sequence data, different assemblers, as well
as the impact of competing strains from the same species on
assembly. Our results highlight trade-offs between accuracy and
contiguity, revealing that different approaches are better suited
to different use cases, and providing insight into the capabilities
and limitations of metagenomic assembly to characterize low-
abundance organisms.

For low-abundance (≤5x) organisms, the optimal assembly
approach depends on whether accuracy or genomic context is
valued most. SR assemblies had the highest accuracy but pro-
vided limited genomic context, resulting in fragmented assem-
blies which frequently could not be confidently linked to the host
species. Base accuracy was further reduced in the presence of
multiple competing strains. Though this work is not meant to
be an exhaustive assembler benchmarking, our comparison of
two SR assemblies revealed that overall, metaSPAdes performed
better than MEGAHIT, as its contigs contained less misassem-
blies. However, at high coverages (≥10x) and in the presence of a
competing strain, metaSPAdes assembled much less of the target
genome than MEGAHIT, perhaps because its algorithm assembled
a consensus sequence between strains [26].

The LR assembler (metaFlye) provided insight into genome
structure and species-specific context around genes of interest
at the expense of base accuracy. While the LR assembler did not
recover as much ARG content as the SR and HY assemblers at
low coverages, most of its ARGs could be traced back to the host
species. Non-E. coli-specific contigs contained homologous regions
without enough accuracy or genomic context to be solely linked
to E. coli.

In cases where both LR and SR data are available, HY assem-
blies, especially those from metaFlye with Pilon polishing, pro-
vided an exceptional balance of accuracy and contiguity. However,
it should be noted that OPERA-MS (HY-SL) produced assemblies
with a large number of misassemblies, especially in the presence
of a competing strain, which may render its ARG genomic context
unreliable. The misassemblies became an issue, especially at high
coverages (≥10x), where OPERA-MS contigs contained >200 more
misassemblies than that of all other assemblers. OPERA-MS’s
misassembly rate was especially prominent at higher coverages
in the multi-strain spike-in experiment, indicating it struggled at
disambiguating different strains. Brown et al. [13] found OPERA-
MS to have the lowest misassembly rate out of the assemblers we
tested, a discrepancy with our results which may be due to the
fact that we used stricter criteria to identify the reference genome
in the assemblies. Additionally, if metaSPAdes were to be used

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad050#supplementary-data
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Figure 6. For spike-ins with an equal abundance of two competing strains, assemblies were more fragmented and less accurate. Each column displays
metrics for a different combination of isolate(s) spiked into background B1. (A) Isolate I1 only; (B) isolates I1 and I2 (99.7% ANI) at equal abundance;
(C) isolates I1 and I3 (97% ANI) at equal abundance. Each row represents an assembly metric: (i) Percent isolate I1 assembled. The text on each graph
reflects the maximum percent of the I1 genome assembled at 50x coverage out of all assemblers to show how strain multiplicity reduces genome
completeness. (ii) Target E. coli (isolate I1) NGA50 (kb). (iii) Percent identity of the strain I1. (iv) The number of misassemblies in isolate I1’s assembly.
Bottom right panel: Text indicates OPERA-MS misassembly values out-of-bounds.

instead of MEGAHIT as the first step in OPERA-MS assemblies, the
HY-SL assembler may perform better.

While we do not anticipate considerable differences in assem-
bler performance across other bacterial species, we only consid-
ered E. coli for our spike-in experiments. Although not explored in
this paper, binning programs such as metaBAT [39] and CONCOCT
[40] could be used to recover metagenome-assembled genomes in
a scenario where the reference genome of a species of interest
within a metagenome is unknown. We anticipate that genome
assembly would be most affected by within-species strain diver-
sity within a sample, as well as localized identity with compo-
nents of other unrelated species’ genomes. When we measured
assemblies containing within-species strain diversity, we saw a
greater degradation of assembly metrics in the strain pair with
a lower pairwise ANI. However, if the competing strains had
an even lower ANI than those tested here, they may be diver-
gent enough for assemblies of each strain to be unaffected by
co-assembly.

Plasmids are often found at higher copy numbers than the
chromosome in bacterial species’ genomes. To mimic this real
world scenario, we opted to not normalize plasmid coverage in
our spike-in experiments. Thus, there was an overrepresentation
of plasmid reads in Illumina data and an underrepresentation
in ONT data for small (<5 kb) plasmids. Additionally, our set of

ARGs was limited to those seen in the isolates, and other sets of
ARGs may present new challenges to each assembly approach.
Alternative tools may potentially offer greater sensitivity for ARG
detection, which we did not consider here. k-mer-based methods
can identify ARGs directly from SRs when targets are known [41,
42] but provide no information about genomic context. Targeted
graph-based methods [43] may be useful for obtaining context
surrounding specific ARGs. Future studies comparing the sensi-
tivity of assembly and k-mer- and graph-based approaches would
be of interest.

We did not address differences in computational demands in
this study, since these have been well documented in previous
benchmarking studies [16, 20], and will not differ for the specific
use case of targeted genome assembly explored here. Neverthe-
less, we recognize that this will be an important additional consid-
eration, especially for high throughput analysis pipelines and in
resource-limited settings. Furthermore, we did not explicitly eval-
uate the cost–benefit analysis of different sequence generation
approaches, though it is likely cost-prohibitive to generate both SR
and LR sequence data routinely for metagenomic samples in most
settings. Our results quantify the additional insight provided by
LR sequencing, which may justify the additional cost, depending
on study-specific goals. Finally, we acknowledge that the ongo-
ing improvement in sequencing technologies and computational
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algorithms is likely to improve assembly metrics in the coming
years. Ongoing benchmarking efforts will be valuable to keep
track of these developments and to facilitate optimal choice of
data types and tools in the future.

Conclusions
Looking specifically at metagenomic assembly approaches for
low-abundance E. coli in human fecal samples, we found that SR
assemblies contained the most gene content, with the highest
accuracy, but were fragmented; LR assemblies generated longer
contigs with sufficient genomic context to link genes to species,
but had lower accuracy; and HY assemblies provided a balance
of intermediate accuracy and high contiguity. These findings will
guide the selection of an assembler approach for metagenomic
assembly in research and clinical settings.

Methods
Sequencing data used to construct
semi-synthetic metagenomes
For the metagenomic background in our spike-in experiments,
we used fecal samples previously sequenced using both ONT and
Illumina technologies [12, 19] (SI Table S1).

To use for spiking into these backgrounds, we sequenced three
E. coli genomes isolated from feces collected from US interna-
tional travelers returning from South East Asia in 2018, using
both Illumina and Oxford Nanopore technologies (SI Table S2)
[45]. Illumina sequencing was as described in Salamzade et al.,
while ONT sequencing was done using Oxford Nanopore library
construction protocol SQK-LSK109 on 600 ng of DNA, following the
manufacturer’s recommendations [45]. As stated Salamzade et al.,
‘samples were barcoded using the Native Barcoding Expansion 1-
12 kit to run in batches of between 1 and 4 samples per flow
cell on a GridIon’ [45]. These isolates were chosen due to their
varying numbers of plasmids, as well as their clinical relevance,
particularly due to their multidrug resistance and membership in
sequence types (STs) with global presence. ST38 was among the
top 20 extraintestinal global emerging pathogenic E. coli lineages,
and ST224 was identified as a high-risk ST with potential to
transmit from infected pets to humans [46].

Near-finished assemblies were generated for these three
isolates, incorporating both Illumina and Oxford Nanopore data
using Unicycler (v0.4.4) [47] with default parameters (SI Table S2).
Illumina reads were trimmed using TrimGalore (v0.5.0) (https://
github.com/FelixKrueger/TrimGalore), then subsampled to ∼100x
genome coverage. ONT reads went through the seQc Nan-
oTrim pipeline (https://github.com/broadinstitute/seQuoia/tree/
master/seQuoia/tasks) which used Porechop (v0.2.3_seqan2.1.1)
(https://github.com/rrwick/Porechop). Of the 15 total plasmids
predicted by OPERA-MS across these isolates, only one plasmid,
in GTEN_24, was not predicted to be circular. We chose to keep
all 15 plasmids in our truth set. Sequencing reads and assemblies
were deposited at NCBI (Table S2).

Assembly of semi-synthetic metagenomic
datasets
We generated semi-synthetic metagenomic datasets, including
reads from a metagenomic background together with different
amounts of E. coli isolate reads. Depending on the assembler
type, we created semi-synthetic datasets containing either Illu-
mina (SR), ONT (LR) or both (HY), from the fecal sample back-
ground and the isolate(s). A random subset of isolate reads was
drawn independently for each coverage level using Rasusa [48].

For benchmarking the HY assemblers (metaFlye with Pilon pol-
ishing and OPERA-MS), we created semi-synthetic metagenomes
with an equal spike-in coverage of Illumina and ONT reads.
For example, at 5x spike-in level, the assemblers were given 5x
Illumina data and 5x ONT data. Because only one data type was
used to construct the original assembly, the same amount of
data went into the original assembly, with the additional data
used only for polishing. For multi-strain spike-in experiments, we
generated semi-synthetic metagenomes containing the reference
and competing strains at ratios of 1:1, 1:10 and 10:1.

MEGAHIT (v1.2.9) assemblies were created using default
parameters. Illumina SRs used varied from 100 to 150 bp. metaS-
PAdes (v3.11.1) assemblies were generated using the spades.py
script in python (v2.7.1). The metagenomic mode was enabled
and one iteration was used for reading error correction. Default
assembly parameters were used. metaFlye (v2.9) assemblies were
generated using the parameters ‘-meta’, ‘-genome-size 10000000’,
and ‘-min-ovlp 1000’. The asm_raw_reads.cfg file from the Flye
developers was used for configuration. Pilon (v1.23) polishing with
Illumina data was done with default parameters, and a minimum
depth of 2 to correct single nucleotide errors and indels. OPERA-
MS (v0.9.0) assemblies were generated using default parameters.
MEGAHIT v1.0.4 was used as part of OPERA-MS.

Metrics to assess metagenomic assembly
Each metagenomic assembly was assessed by metaQUAST, a tool
designed to evaluate noisy metagenomes, using default param-
eters with the isolate genome as the reference [30]. For E. coli
plasmid assembly metrics, each set of plasmids from each isolate
assembly was given to metaQUAST as a reference. For multi-strain
spike-in experiments, only the target isolate genome was given
to metaQUAST as a reference. Percentage of E. coli in background
assemblies was calculated using Kraken2 [44].

Identification of resistance genes
RGI (v5.1.0) was used together with the Comprehensive Antibiotic
Resistance Database (v3.1.4) to identify the truth set by searching
for ARGs within the I1, I2,and I3 reference assemblies, as well
as to search for assembled ARGs from this truth set within the
metagenomic assemblies [31]. The flags ‘—low-quality’ and ‘—
include_loose’ were used. However, only strict and perfect hits
were considered. The ARG sequence identified in each isolate by
RGI was put in a BLASTn [49] database and used to search for
ARGs in each metagenomic assembly and classify each ARG as
missing, partial, fragmented, full or perfect. ARGs were counted as
missing if they were <25% assembled and/or had <95% identity;
partial if 25–99.9% assembled; fragmented if 100% assembled
across contigs; full if 100% assembled end-to-end with 95–99.9%
identity; and perfect if 100% assembled end-to-end with 100%
identity. Perfect genes (genes assembled end-to-end with 100%
identity) were defined by BLASTn, which rounds percent identity
up to 100% for genes assembled with >99.5% ID. Therefore, our
classification of perfect genes may contain mismatches or indels.

RGI first uses Prodigal to identify Open Reading Frames (ORFs),
prior to identifying genes from the ORFs. For a small number of
genes (<3%) in each spike-in assembly, Prodigal did not correctly
identify the ORF corresponding to the ARG, so the ARG went
undetected or was truncated.

Determination of species specificity
For the subset of contigs within the metagenomic assemblies
that were >1 kb and contained isolate ARGs that were found
on the isolate chromosome but not the plasmid, we determined
the species specificity. We chose only contigs where chromosome

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad050#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad050#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad050#supplementary-data
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/broadinstitute/seQuoia/tree/master/seQuoia/tasks
https://github.com/broadinstitute/seQuoia/tree/master/seQuoia/tasks
https://github.com/rrwick/Porechop
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad050#supplementary-data
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ARGs were assembled over ≥99% in length with ≥95% identity. We
searched contigs against the Prokaryotic RefSeq NCBI database,
using BLASTn with the flags ‘-task megablast,’ ‘-perc_identity 65,’
‘max_target_seqs 100,’ ‘-word_size 20,’ ‘-reward 2’ and ‘-penalty
−3.’ Contigs where the top hit was to E. coli or any Shigella species
with at least 95% identity were considered E. coli-specific contigs.

Visualizations
Circular figures (Figure 3) were generated using Circos [50] using
a configuration file made by metaQUAST [30].

Key Points

• LR metagenomic assemblers produce long, contiguous
assemblies that allow us to consistently recover ARGs
that can be traced back to E. coli, even at <1% abundance.

• SR metagenomic assemblers recover low-abundance
species genomes with the highest accuracy and greatest
completeness but in fragmented pieces.

• HY metagenomic assemblers provide a balance of accu-
racy and contiguity.

• The presence of a more similar competing strain does
not affect the resulting assemblies as much as the pres-
ence of a distantly related strain.

Supplementary data
Supplementary data are available online at https://academic.oup.
com/bib.

Data availability
Isolate reads can be found with SRA accessions SRS4897057 (I1),
SRS4592135 (I2) and SRS4897068 (I3). Isolate assemblies can be
found in Genbank under accession numbers CP113486-CP113492
(I1), CP113493-CP113494 (I3) and CP116480-CP116488 (I2). Human
fecal sample metagenomic background reads can be found
with SRA accessions SRX10636832 (Illumina; B1), SRX10636834
(ONT; B2), ERR3201913 (Illumina; B2), ERR3201942 (ONT; B2),
ERR3201911 (Illumina; B3), and ERR3201949 (ONT; B3).
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