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SUMMARY
Cell type-specific transcriptional differences between brain tissues from donors with Alzheimer’s disease
(AD) and unaffected controls have been well documented, but few studies have rigorously interrogated
the regulatory mechanisms responsible for these alterations. We performed single nucleus multiomics
(snRNA-seq plus snATAC-seq) on 105,332 nuclei isolated from cortical tissues from 7 AD and 8 unaf-
fected donors to identify candidate cis-regulatory elements (CREs) involved in AD-associated transcrip-
tional changes. We detected 319,861 significant correlations, or links, between gene expression and cell
type-specific transposase accessible regions enriched for active CREs. Among these, 40,831 were unique
to AD tissues. Validation experiments confirmed the activity of many regions, including several
candidate regulators of APP expression. We identified ZEB1 and MAFB as candidate transcription
factors playing important roles in AD-specific gene regulation in neurons and microglia, respectively. Mi-
croglia links were globally enriched for heritability of AD risk and previously identified active regulatory
regions.
INTRODUCTION

Identification of genetic contributors to Alzheimer’s disease (AD)

has provided critical insights into potential disease mechanisms.

Rare, protein-altering variants in APP, PSEN1, or PSEN2 cause

early-onset, autosomal-dominant AD,1 and genome-wide asso-

ciation studies (GWASs) have identified common variants for

late-onset AD that increase disease risk to varying degrees.2–6

However, the majority of GWAS variants are in non-coding

regions of the genome andmany presumably affect gene regula-

tion. Linkage disequilibrium makes identification of the causal

variant difficult, particularly for putative regulatory regions where

conservation and deleteriousness estimates may not be as infor-

mative. Associating common and rare regulatory variants with

affected genes is also challenging.7–9 In addition, disease-asso-

ciated variants often function only in specific cell types, further

complicating interpretation of their effects.10,11 Thus, deter-

mining which genes are contributing to disease requires assess-

ments in specific cell types.
This is an open access article under the CC BY-N
Recent advances in single cell technologies have allowed

profiling of gene expression12–18 and chromatin accessi-

bility,10 either separately or in parallel from the same sam-

ples.19,20 Although studies have examined the cell type-spe-

cific transcriptional and epigenetic differences between

tissues from brain donors with AD and unaffected controls,

few have rigorously interrogated the regulatory mechanisms

responsible for these alterations.11,21 Integrating single nu-

cleus RNA-seq (snRNA-seq) and single nucleus assay for

transposase-accessible chromatin sequencing (snATAC-seq)

data allow the identification of potential cis-regulatory

elements (CREs) by correlating chromatin accessibility with

nearby gene expression. Here, we simultaneously measure

both gene expression and chromatin accessibility in the

same nuclei to identify cell type-specific regulatory regions

and their target genes in dorsolateral prefrontal cortex

(DLPFC) tissues from both AD and unaffected donors. In addi-

tion, we assessed regulatory mechanisms unique to nuclei

from donors with AD.
Cell Genomics 3, 100263, March 8, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Cellular diversity of DLPFC from Alzheimer’s disease and unaffected donors revealed by single cell multiomics

(A) Experimental design.

(B) Uniform manifold approximation and projection (UMAP) visualization of the weighted nearest neighbor (WNN) clustering of single nuclei colored by cell type

and cluster assignment.

(C) Total number of cells in each subcluster and the proportion of cells from each individual (red, AD donors; blue, unaffected donors) in the subcluster.

(D) Row-normalized gene expression of scREAD cell type markers.

(E) Chromatin accessibility across cell types for cell type marker genes (indicated below).

(F) Correlation of pseudo-bulked cell type-specific expression profiles between individuals. Colors indicating cell type are consistent throughout the figure.
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RESULTS

Cellular diversity within the human dorsolateral
prefrontal cortex
We used the 10x Genomics Multiome technology to perform

snATAC-seq and snRNA-seq on nuclei isolated from human

postmortem DLPFC tissues from seven individuals diagnosed

with AD (mean age 78 years, Braak stages 4–6) and eight sex-

matched unaffected control donors (mean age 63 years)

(Table S1; Figure 1A). This assay allows direct mapping of both

gene expression and chromatin accessibility within the same

nuclei without the need to computationally infer cell type identi-

fication during cross-modality integration. After removing low

quality nuclei and doublets (STAR Methods), we retained a total

of 105,332 nuclei with an average of 7,022 nuclei per donor

(range 1,410–11,723). We detected a median of 2,659 genes

and 11,647 ATAC fragments per cell. We performed normaliza-

tion and dimensionality reduction for snRNA-seq and snATAC-

seq data using Seurat22 and Signac,23 respectively. We used

weighted nearest neighbor (WNN) analysis to determine a joint
2 Cell Genomics 3, 100263, March 8, 2023
representation of expression and accessibility and identified 36

distinct clusters composed of eight major cell types and their

associated subclusters (Figures 1B, S1A, and S1B). Consistent

with previous snRNA-seq datasets,12,13,15,19 we identified all ex-

pected cell types in the brain with similar relative abundances

across AD and control donors (Figures 1B, 1C, and S1C). Peri-

cytes and endothelial cell clusters contained <500 nuclei and

were excluded from further analyses. Cluster annotations were

supported by both gene expression and promoter accessibility

of well-established cell type marker genes (Figures 1D and 1E).

There were strong correlations in global gene expression across

donors within each cell type and between excitatory/inhibitory

neurons (Figure 1F). The only cell type to display variable corre-

lation values across donors was microglia, a cell type known to

be dysregulated in AD. In addition, we identified distinct subpop-

ulations within each major cell type with the exception of oligo-

dendrocyte precursor cells (OPCs), pericytes, and endothelial

cells (Figure S2). These subtype annotations were consistent

with those from prior studies,14,22,24 and distributions were

similar across AD and control donors, with the exception of
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Figure 2. Cell type-specific transcriptome dysregulation in Alzheimer’s DLPFC

(A) MAST log2(fold change [FC]) of all up- and downregulated genes in AD for each cell type.

(B) Number of shared DEGs between cell types in both directions (upper triangle, upregulated in AD; lower triangle, downregulated in AD).

(C) Normalized expression of the top DEG in the indicated cell types (log2[FC] > 1).

(D) Overlap of DEGs with agreement on cell type and direction with Morabito et al.19 and Mathys et al.12

(E) Heatmap showing the odds ratio of the top enrichR GO terms for up and downregulated DEGs within each cell type (*adjusted p < 0.01).
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microglia subpopulations and two inhibitory neuron subtypes

(Inh_1 and Inh_2; Figure S2).

Cell type-specific transcriptome changes in Alzheimer’s
DLPFC
Within each cell type, we identified differentially expressed

genes (DEGs) between AD and control tissues. A total of 911

DEGs were identified after considering sex and age as covari-

ates (Figure 2A; Table S3). Although significant sex-specific dif-

ferences in gene expression between AD and controls have been

shown previously,24 because of our smaller sample size we did

not detect such changes. Although the majority of DEGs were

cell type specific, 141 were identified across multiple cell types

(Figure 2B). Of these DEGs, 62 were also identified as differen-

tially up- or downregulated in the same cell type in both Mathys

et al.12 andMorabito et al.,19 including PTPRG (up in ADMic) and

GRIA2 (down in AD Ast) (Figures 2C and 2D). PTPRG encodes a

protein tyrosine phosphatase associated with inflammation25

and AD disease risk (rs7609954).26 GRIA2 encodes the gluta-

mate receptor 2 (GluR2) subunit that reduces calcium channel

permeability and may protect against excitotoxicity.27 A recent

meta-analysis28 of three snRNA studies12,13,18 found 41 DEGs

that were shared across these three studies, only 7 of which

were discordant in direction. We also identified 17 of them,

including GRM3 (down in AD Ast) and SLC38A2 (up in AD Oli)

involved in glutamate signaling and RNF149 (up in AD Mic) en-

coding an E3 ubiquitin ligase. Most DEGs were upregulated in

AD and were enriched for cell type-specific Gene Ontology

(GO) terms related to PDGFR beta signaling in microglia,

apoptosis in astrocytes, and Notch and BDNF signaling in oligo-

dendrocytes (Figure 2E; Table S4). In contrast, most DEGs

downregulated in AD were in neurons and showed enrichment
in GO terms related to regulation of tau activity (HSP90AB1,

HSP90AA1) and calcium channel activity (CALM2, CALM3) (Fig-

ure 2E; Table S4). Example DEGs include MDGA2 whose over-

expression results in reduced excitatory synapse density,29

GPR158which is an osteocalcin receptor associated with cogni-

tion30 and SAMD4A whose expression is correlated with AD-

associated neuropathology and cognitive status (https://agora.

adknowledgeportal.org). SAMD4A, along with several other

DEGs (NRXN1, LUZP2, RBMS3, ARHGAP15, ARHGAP24,

LRP1B, and ATP1B3), was also newly identified as AD associ-

ated in a recent genome-wide association neural network

analysis of AD family history in the UK Biobank.31

Identification of candidate CREs
Previous single cell studies have characterized altered gene

expression in AD brain tissues and cell types,12–14,17,19 and we

observed signals consistent with those studies. Additionally,

we sought to leverage single cell multiomics data to identify

cell type- and disease-specific CREs and their target genes by

correlating gene expression with chromatin accessibility across

all nuclei in the dataset. The Cell Ranger ARC (v2.0) analysis

pipeline produces these correlations as ‘‘feature linkages’’

(STAR Methods). A feature linkage, or link, is defined as a signif-

icant correlation between accessibility of an ATAC peak and the

expression of a gene32 (Figure 3A). We restricted this correlation

analysis to consider only peaks within 500 kb of each transcrip-

tion start site (TSS), a generous search space, as previous

studies have found the majority of enhancers are within 50–100

kb of their target genes,33 but chosen to allow the identification

of longer range interactions that can have high impact.34 We first

took the union of ATAC peaks identified in each cell type and re-

tained only those present inR2%of cells in at least one cell type
Cell Genomics 3, 100263, March 8, 2023 3
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Figure 3. Identification of candidate CREs

(A) Schematic of gene-peak association (top). Heatmap of row-normalized accessibility and expression for the most correlated peak-gene link for each gene

(bottom). Columns are pseudo-bulked on cell type and disease status.

(B) Distributions of the number of linked peaks per gene (left) and the number of linked genes per peak (right) for AD (red) and control (blue) samples.

(C) Total number of links per cell type for AD and control. Cell type of the link is assigned by the cell type in which the peak was called.

(D) ENCODE annotation of linked peaks by cell type.

(E) Shared (across cell types) and cell type-specific linked peaks that overlap H3K27ac of the corresponding cell type.

(F) Normalized expression of KANSL1 from AD and control samples in each cell type. Expression is significantly different in AD versus control for all cell types.

(G) Linkage plot for all links to KANSL1. Top: coverage plot of pseudo-bulked accessibility in excitatory neurons separated by status (red, AD; blue, control).

Bottom: significant AD and control peak-gene links. Arc height represents strength and direction of correlation. Arc color indicates if the link was identified in both

AD and control (common, gray) or control donors only (blue). A linked peak overlapping a single SNP is highlighted in gray.
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for a total of 189,925 peaks. Nearly half of all peaks overlapped

H3K27ac (46%) from the corresponding cell type, and 43%over-

lapped ENCODE (Encyclopedia of DNA Elements)35 distal

enhancer-like sequences. Using this peak set, links were then

calculated independently using gene expression data from either

AD or control nuclei allowing classification of links as AD-spe-

cific, control-specific, or common (STARMethods). We consider

the linked peaks to be candidate CREs. Given the gene expres-
4 Cell Genomics 3, 100263, March 8, 2023
sion changes observed in AD, we hypothesized that there would

be differential use of CREs between AD and control samples that

would be identified in this analysis as AD- or control-specific

links. Cell type specificity of each link was determined by the

cell type(s) in which the ATAC peak was identified. A total of

319,905 peak-gene links were found involving 15,471 linked

genes and 126,213 linked peaks with a minimum absolute corre-

lation value of 0.2 (Figure 3A; Table S5). The median distance
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between the linked peak and the TSS of the linked gene was

201,506 bp, and there was an inverse relationship between ab-

solute correlation value and distance to TSS (Figure S3A).

For most genes, we identified a similar number of links in both

AD (median = 12) and control samples (median = 13). However,

we found 1,294 genes that had only AD links and 1,596 that had

only control links (Figure S3B). We observed no significant bias

when comparing the number of links identified in either AD or

control for a given gene (Figure S3B). Most genes were linked

to multiple peaks across all cell types, with a median of 14 linked

peaks per gene. However, 16% of genes were linked with 40 or

more peaks (Figure 3B), and these genes were significantly

longer and more highly expressed than those with fewer links

(Figure S3C). This finding is likely due to links being called for

peaks within the gene body of longer genes as excluding these

peaks abolishes the difference in number of links (p = 0.12,

t test). Across the entire dataset, 17.8% of linked peaks are pre-

sent in the promoter or gene body of the target gene. Although

positively correlated links in gene bodies may often be merely

a consequence of target gene expression, we retained these

peaks in our analyses as enhancers are often located within

the introns of their target genes.

ATAC peaks often interacted with more than one gene. Nearly

70% (126,213) of the ATAC peaks analyzedwere linked to a gene

with an average of two genes linked to each peak and a range of

1–21 linked genes (Figure 3B). Almost a third (30.24%) of the

links were unique to a single cell type, while 21% were common

across all cell types (Figure 3C).We identified 40,831 AD-specific

links and 74,028 control-specific links with the majority of links

identified in both (205,046). We performed permutation analyses

and determined that this fraction of AD- and control-specific

links (0.36 of total links) was greater than expected by chance

(p = 0.027, Z test; Figure S3D). Target genes of cell type-specific

links identified in both AD and control samples were enriched in

expected pathways (Figure S3E). To evaluate whether linked

peaks associate with regulatory regions, we evaluated their

overlap with a curated set of candidate CREs identified by

ENCODE.35 We found that linked peaks were significantly en-

riched for proximal (odds ratio [OR] = 1.24, p = 2.4 3 10�15)

and distal (OR = 1.06, p = 3.063 10�9) enhancer-like sequences

and the proportion of overlap was similar across cell types (Fig-

ure 3D). As these annotations were not generated in our partic-

ular cell types and tissue, we also intersected these linked peaks

with regions of H3K27ac previously identified within cell types

isolated from prefrontal cortex tissues.11,36 We found that on

average, 57.5% of linked peaks overlap a H3K27ac peak from

the corresponding cell type and this increases to 79% for cell

type-specific linked peaks (Figure 3E). The majority (76.11%) of

linked peaks were positively correlated with gene expression,

as is expected given the association between open chromatin

and transcriptional activation,37–41 though negative correlations

may be indicative of repressor binding.37,40

We then asked if the differential gene expression we observed

could be mediated by candidate CREs. Nearly all (94%) the

DEGs identified between AD and control nuclei had a linked

peak in the same cell type where the gene was differentially ex-

pressed and 85% of these linked peaks overlapped H3K27ac in

the same cell type. In addition, we observed that some links to
differentially expressed genes were uniquely identified in either

AD or control datasets. For genes upregulated in AD, 72% of

their positively correlated links were AD specific, while for down-

regulated genes 62% were control specific. For example, BIN1

expression is significantly reduced in AD microglia compared

with controls and this reduced expression hampers proinflam-

matory microglial responses.42 We identified six control-specific

links and no AD-specific links for BIN1 in microglia. One of these

control-specific links was validated as a microglia-specific BIN1

enhancer in Nott et al.11 and harbors an AD-associated SNP

(rs733839). Together, these findings suggest that this CRE may

no longer be used in ADmicroglia, leading to lower BIN1 expres-

sion, though it remains possible that these observations could

also result from less sensitive detection with lower expression.

Another example is KANSL1, located in the MAPT locus, that

was downregulated in AD in all cell types (Figure 3F). Twenty-

eight of the 37 KANSL1 linked peaks are unique to control sam-

ples and the rest are common to both AD and control (Figure 3G).

One of these linked peaks found in the promoter overlaps an

expression quantitative trait locus (eQTL)43 (rs2532404) associ-

ated with progressive supranuclear palsy44 and was recently

shown via CRISPRi to regulate KANSL1 expression in induced

pluripotent stem cell (iPSC)-derived neurons.21 These results

are consistent with the hypothesis that other AD- and control-

specific regions contribute to the differential expression

observed in AD.

Identification of AD-specific peak-gene-TF trios
We next sought to identify transcription factors (TFs) that could

be driving the positive correlations between accessible peaks

and target genes. To further investigate the regulatory roles of

links, we identified peak-gene-TF ‘‘trios’’ in which (1) there was

a correlation between the linked peak and linked gene, (2) the

accessibility of a linked peak harboring a specific TF motif was

correlated with the expression of that TF, and (3) the expression

of the TF was correlated with the expression of the linked gene

(Figure 4A; STAR Methods). This approach is conceptually

similar to a recently described method called TRIPOD that

employs nonparametric models to identify peak-gene-TF asso-

ciations and fromwhich we adopted the term ‘‘trio.’’45 To identify

trios, we performed these additional correlation analyses (linked

peak:TF expression and TF expression:target gene expression)

separately using either AD or control datasets to enable identifi-

cation of TFs whose activities may be associated with disease.

AD- or control-specific trios were those uniquely identified in

the AD or control dataset, respectively. Cell type specificity

was defined on the basis of the cell type in which the linked

peak was identified. We restricted these analyses to links with

a correlation value >0.3 that were within 100 kb of the linked

gene’s TSS (115,107) and identified 60,120 peak-gene-TF trios

involving 17,149 unique peaks and 437 TFs (Table S6). Fewer

than 20% of the peaks in these trios are found in promoters,

with the majority present in intronic regions (Figure 4B). Trio

peaks were enriched for ENCODE distal (OR = 1.26, p = 2.2 3

10�16) and proximal (OR = 1.12, p = 5.9 3 10�7) enhancer-like

sequences. There was a median of 37 trios per TF. The TF

MEF2C was the most common trio participant, appearing in

nearly 5% of all trios. Although MEF2C was expressed in most
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Figure 4. Identification of AD-specific TF regulatory networks

(A) Strategy for defining peak-gene-TF trios. A linked peak containing a TF motif must be correlated with that TF and the expression of that TF must be correlated

with the linked gene for that peak to be considered a part of trio.

(B) Genome annotations for location of linked peaks within trios.

(C) Heatmap of column-normalized expression of genes within MEF2C trios by cell type.

(D) Normalized expression of MEF2C by cell type.

(E) Top enriched GO terms for genes within MEF2C trios from excitatory and inhibitory neurons (green, ‘‘neuron’’) and microglia (purple, ‘‘microglia’’).

(F) Heatmap of correlation values of AD and control-specific trios identified in microglia (left) and excitatory/inhibitory neurons (right) for TFs involved in at least

3 trios.

(G) Linkage plot for GABRA5. Top: coverage plot of pseudo-bulked accessibility in indicated cell types. Middle: coverage plot of ZEB1 ChIP-seq signal from

NeuN+ nuclei isolated from DLPFC tissue from two unaffected donors (1238 and 1242). Bottom: significant peak-gene links; green indicates overlap with ZEB1

motif. Arc height represents strength and direction of correlation. Track of ZEB1motifs (green) andH3K27ac peaks from neurons (black; Nott et al.11). Linked peak

of interest is highlighted in gray.

(H) ZEB1 motif from JASPAR 2022 (top). Normalized expression of ZEB1 and GABRA5 in excitatory/inhibitory neurons and microglia.
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cell types, expression of target genes in MEF2C trios were

distinct between cell types (Figures 4C and 4D). In microglia,

target genes were enriched in GO terms related to pattern recog-

nition receptor (PRR) signaling, while in neurons they were en-
6 Cell Genomics 3, 100263, March 8, 2023
riched in synaptic transmission in neurons (Figure 4E;

Table S7). PRRs consist of several receptor families including

Toll-like receptors that are critical for microglial activation.46 Of

the 911 DEGs, we found that 601 participated in a trio in the
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Figure 5. Validation of candidate CREs

(A) sLDSC results using 16GWAS traits as indicated with our linked peaks stratified by cell type and group (‘‘All’’ = all links, ‘‘Common’’ = links identified in both AD

and control data, ‘‘AD’’ = links specific to AD, ‘‘Control’’ = links specific to control). Heatmap indicates coefficient Z score from running sLDSC with each set of

links combined with the 97 baseline features. Feature-trait combinations with a Z score significantly larger than 0 (one-sided Z test with alpha = 0.05, p values

corrected within each trait using Benjamini-Hochberg method) are indicated with a numeric value reporting the enrichment score.

(B) Bar plot showing enrichment (±95% confidence interval [CI]) of links for previously nominated regulatory regions: active MPRA elements (blue), eQTLs where

target gene is same as linked gene (pink), and HiC loops linking region to same target gene (green). MPRA, massively parallel reporter assay; NPC, neural

precursor cells; ESC, embryonic stem cells.

(C) Boxplots showing statistically significant (*p < 0.05, ANOVAwith Fisher’s LSD) elements representing links tested in luciferase assays. Luciferase elements are

denoted by the linked gene for the nominated region.

(D) Boxplots showing comparison of rs12445022 with its corresponding reference element linked to JPH3 (*p < 0.05, ANOVA with Fisher’s LSD).

(legend continued on next page)
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same cell type in which differential expression was observed.

Ninety-six DEGs were in AD-specific trios (including MAPT,

APOE, and BIN1), while 89 were in control-specific trios

(PADI2/PAD2, PDE10A, and SNAP25). The presence of SNAP-

25 in cerebral spinal fluid is associated with amyloid pathology,47

and decreased expression in AD brain tissues has been

observed,48 consistent with the decreased expression we find

in AD astrocytes and neurons.

Within this set of trios, there was a small subset that were

specific to either AD or control groups (n = 2,718). Although

many of these were specific to a single cell type, 55% were

shared across two or more (Figure S4). All cell type-specific

trios overlapped H3K27ac peaks from their respective cell

types (Table S6). Within microglia trios, NR4A2 (Nurr1) was

identified most frequently in control-specific trios (Figure 4F).

NR4A2 can function as both an activator and repressor and

has been shown to repress inflammatory responses in micro-

glia through recruitment of the CoREST complex.49 Target

genes in NR4A2 trios are enriched in neutrophil degranulation

(OR = 9.01, q = 5.3 3 10�6) and include interleukin genes

IL1A and IL1B, as well as TGFB1. Similarly, MAFB was involved

in 24% of the AD-specific trios (Figure 4F) where it was linked

to the microglial marker gene CX3CR1 and genes involved in

microglial activation (TLR3, CD84, HAVCR2).50 In healthy mi-

croglia, MAFB inhibits inflammatory responses51 consistent

with our finding that target genes in AD-specific trios were en-

riched for negative regulation of myeloid leukocyte mediated

immunity (OR = 332, q = 0.0004).

Within neuron-specific trios, we identified KLF10 and ZEB1

most frequently in control- and AD-specific trios, respectively

(Figure 4F). In neurons, we identified ZEB1 in half of all AD-spe-

cific trios with target genes involved in regulating ion channel

signaling (ITPR1, CAMK2A, CACNB3, KCNH3, KCNQ5,

KCNT1). We found that one ZEB1 target gene encoding a

neuronal Ca2+ sensor, VSNL1, was downregulated in AD inhibi-

tory neurons consistent with previous studies, and this reduced

expression has been correlated with amyloid plaques and neuro-

fibrillary tangles.52 ZEB1 was never found in control-specific

trios. Given the frequency of ZEB1 participation in neuronal

AD-specific trios, we performed ZEB1 chromatin immunoprecip-

itation sequencing (ChIP-seq) in NeuN+ nuclei isolated from two

control donors (1238 and 1242). We found that 33% (55/167) of

neuronal ZEB1 trios are bound by ZEB1, and 25 of these are AD-

specific trios. The GABAA receptor ɑ5 subunit, encoded by GA-

BRA5, is one gene that we find likely to be regulated by ZEB1 in

AD (Figure 4G). a5GABAA receptors are associated with learning

and memory, consistent with highest expression of GABRA5 in

hippocampal neurons and association of reduced expression

with neurodevelopmental disorders.53 In our data, ZEB1 is ex-

pressed in both neurons andmicroglia; however,GABRA5 is pri-

marily expressed in excitatory neurons (Figure 4G, right). In

excitatory neurons, we identified a linked peak correlated with
(E) Top: normalized expression of APP in each cell type. Middle: coverage plot

common (gray) peak-gene links to APP tested in luciferase assays. Arc height re

increased expression of the luciferase reporter are highlighted in gray.

(F) Boxplots showing all tested luciferase elements representing APP-peak links.

ANOVA with Fisher’s LSD).
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GABRA5 expression that was marked with H3K27ac and con-

tained a ZEB1 motif. ChIP-seq data from two of our unaffected

donors confirmed ZEB1 binding at this site providing additional

evidence to suggest cis-regulatory activity of this region for

GABRA5.

Genetic variation at candidate CREs
We performed stratified linkage disequilibrium score (sLDSC)

regression54 to determine if our linked peaks were significantly

enriched for SNPs associated with complex brain-related traits

(Figure 5A; Table S8). Link categories are defined as ‘‘AD’’ or

‘‘control’’ if the links were only identified in the analysis of AD

or control samples, respectively. ‘‘Common’’ links were identi-

fied in both analyses, and ‘‘all’’ is the union of all linked peaks.

Although a peak with multiple links can be duplicated across

categories, fewer than a third of peaks with AD-specific links

also have control-specific links, emphasizing the specificity of

these linked peaks. Within each link category for each cell

type, the union of linked peaks was used for this analysis.

Cell type was assigned on the basis of the cell type(s) in which

the linked peak was identified. Consistent with previous

studies,55,56 linked peaks identified in microglia were signifi-

cantly enriched for heritability of AD across five different

studies2–6; however, this was not true for those microglial linked

peaks identified in control samples, suggesting that variants in

AD-specific linked peaks could have a greater contribution to

AD risk. Specificity of microglial linked peaks for AD heritability

is also supported by the lack of significant enrichment of these

links with risk variants from other brain-related traits,57–61 or

traits where other immune cells play important roles.62–64 In

contrast, linked peaks identified in other cell types were en-

riched for heritability of brain-related traits including autism

spectrum disorder (ASD), bipolar disorder (BD), and schizo-

phrenia (SZ) with AD-specific linked peaks largely excluded

from any significant enrichment in these traits. These findings

are consistent with previous studies in which candidate CREs

identified in excitatory and inhibitory neurons were significantly

associated with neuropsychiatric traits.11 As expected, we did

not identify significant enrichments with immune diseases or

with other phenotypic traits, such as body mass index (BMI)65

or height.66

Validation of candidate CREs
We compared the 319,905 links we identified to pre-existing,

large-scale functional genomic datasets and identified 67,541

links representing candidate CREs with orthogonal evidence of

regulatory activity. This evidence was provided by three data

types: (1) massively parallel reporter assay (MPRA),21,67–69 (2)

eQTL studies,43,70 and (3) HiC71 datasets. We found significant

enrichments of links across each of these datasets despite

several MPRAs being performed in cancer cell lines (Figure 5B).

The MPRA data provided evidence that linked peaks could
of accessibility in indicated cell types. Bottom: significant control (blue) and

presents strength and direction of correlation. Links that contained CREs that

Elements highlighted in gray are located within the APP gene body (*p < 0.05,
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stimulate transcription, but this assay is not capable of identi-

fying the target gene. In contrast, HiC data from NeuN+ nuclei

provided orthogonal validation of a linked peak’s target gene,

but no evidence of promoting transcriptional activity. We inter-

sected the results from these analyses and found that 1,542 of

the 60,473 links that displayed regulatory activity in one or

more MPRAs also identified the same target gene as the HiC

data. In addition, 617 linked peaks overlapped eQTLs and

were linked to the same gene providing both evidence of activity

and confirming the target gene.

For additional validation, we selected 51 neuronal links for

testing in a luciferase reporter assay (Table S9). We performed

these assays in the neuroepithelial-derived human embryonic

kidney 293 (HEK293 and 293FT) cell lines because of the

similar chromatin accessibility landscape to that found in brain

tissues.21 These cell lines are also technically tractable as they

are highly transfectable and allow efficient screening of re-

gions of interest. We did not select any AD-specific links for

validation, as we are using cell lines from a presumably unaf-

fected individual. Thirteen of these 51 links contained SNPs

associated with a brain-related trait (e.g. AD, epilepsy, neuro-

degeneration), and we tested both alleles of these SNPs

(Table S10). Twelve of the elements increased activity of the

luciferase reporter including regions linked to SNCA (ɑ-synu-
clein) and APP (amyloid precursor protein) (Figures 5C–5F).

Three of these active elements were involved in peak-gene-

TF trios (CCSER1-MEF2C, JPH3-RARB, and ADAMTS1-

SOX10). ChIP-seq analysis of NeuN+ nuclei confirmed that

MEF2C is bound at the peak linked to CCSER1, a gene asso-

ciated with autism72 (data not shown). Only one of the 15

variants tested abolished activity, rs12445022, a G/A substitu-

tion in a peak linked to JPH3 (p = 0.0003 by ANOVA with

Fisher’s least significant difference [LSD]) (Figure 5D). JPH3

encodes junctophilin-3, important for regulating neuronal

excitability.73 This JPH3 linked peak was highly correlated

(r = 0.64, q < 2.2 3 10�16) with JPH3 expression in both AD

and control samples in all cell types except microglia. The

linked peak is located 45,503 bp upstream of the JPH3 TSS

and was also linked to ZCCHC14-DT, although with a much

lower correlation (r = 0.36, q < 2.2 3 10�16). Repeat expan-

sions in JPH3 have been associated with a Huntington dis-

ease-like phenotype.74,75

Because of its importance in AD pathogenesis, we focused

our validation efforts particularly on the APP locus (Figure 5E)

where we tested 15 elements and identified three that increased

expression in the luciferase reporter assay (Figure 5F).APP is ex-

pressed across all cell types (Figure 5E, top panel), consistent

with the high promoter accessibility observed (Figure 5E, middle

panels). We also found one element negatively correlated with

APP expression that significantly reduced reporter activity; how-

ever, this assay was not designed to detect repressor activity (as

it employs a minimal promoter), thus further experiments would

be required to definitively assign a repressive function to this

element. Although we have validated several CREs in an unaf-

fected cell line, future work in patient-derived iPSCs would be

necessary to evaluate the activity of AD-specific elements iden-

tified in this study, with the caveat that this systemmay still have

limitations.
DISCUSSION

Single cell multiomics has allowed the generation of a rich source

of disease- and cell type-specific candidate CREs enriched in

variants associated with AD. Our study provides tangible ad-

vances by employing snRNA-seq and snATAC-seq in the same

cells. Other studies have generated snRNA-seq and snATAC-

seq separately and integrated them to identify CREs in AD19;

however, profiling gene expression and chromatin accessibility

simultaneously in the same nuclei allows greater confidence in

the correlations linking potential CREs to target genes. As

such, we identified five times as many new candidate CREs

than previously reported (319,905 links vs 56,552 gene-linked

cCREs).19 To our knowledge to date, only one other study of

another human neurodegenerative disease, Parkinson’s, used

the 10x Genomics Multiomics (ATAC+Gene Expression) tech-

nology76 and identified a similarly large number of peak-gene

links (193,732 compared with our 319,905). Our approach is

unique in that we identified peak-gene correlations indepen-

dently in control and AD datasets allowing us to identify 40,831

peak-gene links specific to AD.

We identified many DEGs associated with calcium homeosta-

sis consistentwith thecalciumhypothesis ofADwhichpostulates

that a synergistic relationship between Ab accumulation and

Ca2+ levels promotes neurodegeneration.77 In AD neurons, we

found decreased expression of ryanodine receptor 3 (RYR3)

and inositol 1,4,5-trisphosphate receptor type 2 (ITPR2) that

both release internal stores of Ca2+ from the endoplasmic reticu-

lum.78We alsomeasured decreased expression of the Ca2+ sen-

sors calmodulin (CALM1,CALM2,CALM3) and VILIP-1 (VSNL1),

the latter which is associated with neuropathologic lesions.52,79

In contrast, two genes encoding calcium channel subunits (CAC-

NA1C and CACNA1B) were upregulated in AD neurons. In

addition, astrocytes also demonstrated decreased expression

of calneuron 1 (CALN1, a Ca2+ sensor similar to calmodulin),

glutamate receptor 2 subunit (GRIA2, limits Ca2+ permeability

of AMPA receptors), and glutamate receptor NMDA2C (GRIN2C,

a subunit of the NMDA receptors). Both AD neurons and astro-

cytes showeddecreasedexpressionof theglutamate transporter

GLT-1 (SLC1A2). We identified AD-specific links for all these

genes except GRIN2C. Altered expression of these calcium-

associated proteins is likely to exhibit complex and cell type-spe-

cific effectsmaking the resulting network effect on excitability un-

certain. However, one possibility is that this altered expression

could lead to increased sensitivity of neurons to glutamate and

thus neurotoxicity.78,80 Further study of the candidate regulatory

elements we identified for these genes would improve our under-

standing of how these genes become dysregulated in AD and the

emergent resulting effects.

Our study provides twomain advances in our understanding of

altered gene regulation in AD. First, by leveraging the AD- and

control-specific links identified here we constructed peak-

gene-TF trios to determine which TFs were particularly involved

in regulating AD-specific transcriptional programs. MAFB and

ZEB1 were found to be enriched in AD-specific trios in microglia

and neurons, respectively.MAFB has previously been implicated

in exercise-associated responses in the peripheral immune sys-

tem in AD81 and in regulation of the receptor VISTA in microglia,
Cell Genomics 3, 100263, March 8, 2023 9
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which is upregulated in AD.82 In this study, we identify a previ-

ously unknown role for ZEB1 in AD-specific transcriptional regu-

lation in neurons. Previously, ZEB1 was shown to play a critical

role in epithelial-mesenchymal transition in neural crest migra-

tion and glioblastoma83,84 and further investigation is necessary

to fully understand its role in AD. Second, we demonstrated

enhancer-like activity for 12 candidate CREs linked to neurode-

generation-associated genes APP, SNCA, PHF24, and

ADAMTS1. Amyloid precursor protein (APP) is the precursor to

the AD hallmark pathology Ab, and, while characteristic of

Lewy body diseases, a-synuclein (SNCA) aggregates are highly

prevalent in AD postmortem brains as well.85 PHF24 is a modu-

lator of GABAB receptor activity
86 andwas recently identified in a

study of AD resilience genes.87 ADAMTS1 has been implicated in

AD both biochemically88 and genetically.6 Our study lays the

groundwork for additional functional validation in future studies

to confirm these genes as targets of these CREs. Understanding

how these genes are regulated and by which TFs could provide

new therapeutic targets. In fact, a recent study89 identified TFs

contributing to disruption of gene regulatory networks in AD,

demonstrated their ability to predict AD cognitive phenotypes,

and used them to prioritize candidate drugs that could be repur-

posed for AD.

In summary, our study provides important new insights into

the contribution of CREs to AD including the roles of TFs ZEB1

and MAFB in neurons and microglia. These findings could pro-

vide additional insights for interpreting SNPs associated with

AD risk should they disrupt binding motifs for these TFs. Further-

more, these TFs could be therapeutic targets for manipulating

aberrant gene regulation in AD. Our study lays the groundwork

for future research to expand on the candidate- and literature-

based validation approaches taken here. High-throughput

CRISPRi screens are well suited to test the necessity and suffi-

ciency of regulatory elements for linked gene expression. Future

validation efforts will greatly contribute to advancing our under-

standing of the effects of non-coding variation on risk for AD.

Limitations of the study
One limitation of this study is that snATAC-seq data can contain

spurious signals, as well as bias from transcribed genes. This

limitation underscores the importance of evaluation via orthog-

onal methods, which we have provided using both published

and newly generated data. A second limitation is that our sample

size is small. This can be addressed in future studies by

increasing sample size; however, the shared signals we

observed with larger AD snRNA-seq studies emphasizes the

representative nature of our sample set, and that our total num-

ber of cells per biological sample is adequate. Finally, as with any

study from postmortem tissue, we are measuring by definition

the material that remains in a neurodegenerative disease, which

can confound interpretation. For this reason, we chose to eval-

uate DLPFC, which is preserved later into the disease course

of AD than tissues affected earlier such as entorhinal cortex

and hippocampus. Although this study is focused on identifying

CREs, there are other non-coding regulatory mechanisms that

could alter gene expression in AD including microRNAs (miR-

NAs),90 long non-coding RNAs (lncRNAs),91 transposable ele-

ments,92 etc., that are not assessed.
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72. Ruzzo, E.K., Pérez-Cano, L., Jung, J.-Y., Wang, L.K., Kashef-Haghighi,

D., Hartl, C., Singh, C., Xu, J., Hoekstra, J.N., Leventhal, O., et al.

(2019). Inherited and de novo genetic risk for autism impacts shared net-

works. Cell 178, 850–866.e26.

73. Garbino, A., van Oort, R.J., Dixit, S.S., Landstrom, A.P., Ackerman, M.J.,

and Wehrens, X.H.T. (2009). Molecular evolution of the junctophilin gene

family. Physiol. Genomics 37, 175–186.

74. Bourinaris, T., Athanasiou, A., Efthymiou, S., Wiethoff, S., Salpietro, V.,

and Houlden, H. (2021). Allelic and phenotypic heterogeneity in

Junctophillin-3 related neurodevelopmental and movement disorders.

Eur. J. Hum. Genet. 29, 1027–1031.

75. Schneider, S.A., Marshall, K.E., Xiao, J., and LeDoux, M.S. (2012). JPH3

repeat expansions cause a progressive akinetic-rigid syndrome with se-

vere dementia and putaminal rim in a five-generation african-American

family. Neurogenetics 13, 133–140.

76. Adams, L., Song, M.K., Tanaka, Y., and Kim, Y.-S. (2022). Single-nuclei

paired multiomic analysis of young, aged, and Parkinson’s disease hu-

man midbrain reveals age- and disease-associated glial changes and
their contribution to Parkinson’s disease. Preprint at medRxiv. https://

doi.org/10.1101/2022.01.18.22269350.

77. Alzheimer’s Association Calcium HypothesisWorkgroup (2017). Calcium

Hypothesis of Alzheimer’s disease and brain aging: a framework for inte-

grating new evidence into a comprehensive theory of pathogenesis. Alz-

heimers Dement. 13, 178–182.e17.

78. Cascella, R., and Cecchi, C. (2021). Calcium dyshomeostasis in Alz-

heimer’s disease pathogenesis. Int. J. Mol. Sci. 22, 4914.

79. Schnurra, I., Bernstein, H.-G., Riederer, P., and Braunewell, K.-H. (2001).

The neuronal calcium sensor protein VILIP-1 is associated with amyloid

plaques and extracellular tangles in Alzheimer’s disease and promotes

cell death and tau phosphorylation in vitro: a link between calcium sen-

sors and Alzheimer’s disease? Neurobiol. Dis. 8, 900–909.

80. Burgoyne, R.D., Helassa, N., McCue, H.V., and Haynes, L.P. (2019). Cal-

cium sensors in neuronal function and dysfunction. Cold Spring Harb.

Perspect. Biol. 11, a035154.

81. Chen, Y., Sun, Y., Luo, Z., Chen, X., Wang, Y., Qi, B., Lin, J., Lin, W.-W.,

Sun, C., Zhou, Y., et al. (2022). Exercise modifies the transcriptional reg-

ulatory features of monocytes in Alzheimer’s patients: a multi-omics inte-

gration analysis based on single cell technology. Front. Aging Neurosci.

14, 881488.

82. Borggrewe, M., Grit, C., Den Dunnen, W.F.A., Burm, S.M., Bajramovic,

J.J., Noelle, R.J., Eggen, B.J.L., and Laman, J.D. (2018). VISTA expres-

sion by microglia decreases during inflammation and is differentially

regulated in CNS diseases. Glia 66, 2645–2658.

83. Powell, D.R., Blasky, A.J., Britt, S.G., and Artinger, K.B. (2013). Riding the

crest of the wave: parallels between the neural crest and cancer in

epithelial-to-mesenchymal transition and migration. Wiley Interdiscip.

Rev. Syst. Biol. Med. 5, 511–522.

84. Stemmler, M.P., Eccles, R.L., Brabletz, S., and Brabletz, T. (2019). Non-

redundant functions of EMT transcription factors. Nat. Cell Biol. 21,

102–112.

85. Twohig, D., and Nielsen, H.M. (2019). a-synuclein in the pathophysiology

of Alzheimer’s disease. Mol. Neurodegener. 14, 23.

86. Numakura, Y., Uemura, R., Tanaka, M., Izawa, T., Yamate, J., Kuramoto,

T., Kaneko, T., Mashimo, T., Yamamoto, T., Serikawa, T., et al. (2021).

PHF24 is expressed in the inhibitory interneurons in rats. Exp. Anim.

70, 137–143.

87. Telpoukhovskaia, M.A., Hadad, N., Gurdon, B., Dai, M., Ouellette, A.R.,

Neuner, S.M., Dunn, A.R., Hansen, S., Wu, Y., Dumitrescu, L., et al.

(2022). Conserved cell-type specific signature of resilience to Alz-

heimer’s disease nominates role for excitatory cortical neurons. Preprint

at bioRxiv. https://doi.org/10.1101/2022.04.12.487877.

88. Gurses, M.S., Ural, M.N., Gulec, M.A., Akyol, O., and Akyol, S. (2016).

Pathophysiological function of ADAMTS enzymes on molecular mecha-

nism of Alzheimer’s disease. Aging Dis. 7, 479–490.

89. Gupta, C., Xu, J., Jin, T., Khullar, S., Liu, X., Alatkar, S., Cheng, F., and

Wang, D. (2022). Single-cell network biology characterizes cell type

gene regulation for drug repurposing and phenotype prediction in Alz-

heimer’s disease. PLoS Comput. Biol. 18, e1010287.

90. O’Brien, J., Hayder, H., Zayed, Y., and Peng, C. (2018). Overview of

MicroRNA biogenesis, mechanisms of actions, and circulation. Front.

Endocrinol. 9, 402.

91. Statello, L., Guo, C.-J., Chen, L.-L., and Huarte, M. (2021). Gene regula-

tion by long non-coding RNAs and its biological functions. Nat. Rev. Mol.

Cell Biol. 22, 96–118.

92. Fueyo, R., Judd, J., Feschotte, C., and Wysocka, J. (2022). Roles of

transposable elements in the regulation of mammalian transcription.

Nat. Rev. Mol. Cell Biol. 23, 481–497.

93. Huber, W., Carey, V.J., Gentleman, R., Anders, S., Carlson, M., Carvalho,

B.S., Bravo, H.C., Davis, S., Gatto, L., Girke, T., et al. (2015). Orches-

trating high-throughput genomic analysis with Bioconductor. Nat.

Methods 12, 115–121.
Cell Genomics 3, 100263, March 8, 2023 13

http://refhub.elsevier.com/S2666-979X(23)00019-8/sref60
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref60
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref61
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref61
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref61
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref61
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref61
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref62
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref62
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref62
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref62
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref62
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref63
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref63
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref63
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref64
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref64
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref64
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref64
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref64
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref65
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref65
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref65
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref65
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref66
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref66
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref66
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref66
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref67
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref67
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref67
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref68
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref68
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref68
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref68
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref69
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref69
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref69
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref69
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref70
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref70
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref71
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref71
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref71
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref71
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref72
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref72
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref72
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref72
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref73
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref73
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref73
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref74
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref74
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref74
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref74
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref75
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref75
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref75
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref75
https://doi.org/10.1101/2022.01.18.22269350
https://doi.org/10.1101/2022.01.18.22269350
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref77
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref77
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref77
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref77
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref78
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref78
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref79
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref79
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref79
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref79
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref79
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref80
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref80
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref80
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref81
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref81
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref81
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref81
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref81
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref82
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref82
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref82
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref82
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref83
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref83
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref83
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref83
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref84
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref84
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref84
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref85
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref85
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref86
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref86
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref86
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref86
https://doi.org/10.1101/2022.04.12.487877
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref88
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref88
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref88
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref89
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref89
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref89
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref89
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref90
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref90
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref90
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref91
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref91
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref91
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref92
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref92
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref92
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref93
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref93
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref93
http://refhub.elsevier.com/S2666-979X(23)00019-8/sref93


Article
ll

OPEN ACCESS
94. Germain, P.-L., Lun, A., Meixide, C.G., Macnair, W., and Robinson, M.D.

(2022). Doublet identification in single-cell sequencing data using

scDblFinder. F1000Res. 10, 979.

95. Hafemeister, C., and Satija, R. (2019). Normalization and variance stabi-

lization of single-cell RNA-seq data using regularized negative binomial

regression. Genome Biol. 20, 296.

96. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Ba-

glaenko, Y., Brenner, M., Loh, P.R., and Raychaudhuri, S. (2019). Fast,

sensitive and accurate integration of single-cell data with Harmony.

Nat. Methods 16, 1289–1296.

97. Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K.,

Slichter, C.K., Miller, H.W., McElrath, M.J., Prlic, M., et al. (2015).

MAST: a flexible statistical framework for assessing transcriptional

changes and characterizing heterogeneity in single-cell RNA sequencing

data. Genome Biol. 16, 278.

98. Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark,

N.R., and Ma’ayan, A. (2013). Enrichr: interactive and collaborative

HTML5 gene list enrichment analysis tool. BMC Bioinf. 14, 128.

99. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein,

B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-

based analysis of ChIP-seq (MACS). Genome Biol. 9, R137.

100. Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal pat-

terns and correlations in multidimensional genomic data. Bioinformatics

32, 2847–2849.

101. Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentle-

man, R., Morgan, M.T., and Carey, V.J. (2013). Software for computing

and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118.

102. Lawrence, M., Gentleman, R., and Carey, V. (2009). rtracklayer: an R

package for interfacing with genome browsers. Bioinformatics 25,

1841–1842.

103. Yu, G., Wang, L.-G., and He, Q.-Y. (2015). ChIPseeker: an R/Bio-

conductor package for ChIP peak annotation, comparison and visualiza-

tion. Bioinformatics 31, 2382–2383.

104. Huang, X., and Huang, Y. (2021). Cellsnp-lite: an efficient tool for geno-

typing single cells. Bioinformatics 37, 4569–4571.

105. Huang, Y., McCarthy, D.J., and Stegle, O. (2019). Vireo: bayesian demul-

tiplexing of pooled single-cell RNA-seq data without genotype reference.

Genome Biol. 20, 273.

106. Zhu, Y., Wang, L., Yin, Y., and Yang, E. (2017). Systematic analysis of

gene expression patterns associated with postmortem interval in human

tissues. Sci. Rep. 7, 5435.

107. Bakken, T.E., Jorstad, N.L., Hu, Q., Lake, B.B., Tian, W., Kalmbach, B.E.,

Crow, M., Hodge, R.D., Krienen, F.M., Sorensen, S.A., et al. (2021).
14 Cell Genomics 3, 100263, March 8, 2023
Comparative cellular analysis of motor cortex in human, marmoset and

mouse. Nature 598, 111–119.

108. Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q.,

Wang, Z., Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al.

(2016). Enrichr: a comprehensive gene set enrichment analysis web

server 2016 update. Nucleic Acids Res. 44, W90–W97.

109. Xie, Z., Bailey, A., Kuleshov, M.V., Clarke, D.J.B., Evangelista, J.E., Jen-

kins, S.L., Lachmann, A., Wojciechowicz, M.L., Kropiwnicki, E., Jagod-

nik, K.M., et al. (2021). Gene set knowledge discovery with enrichr.

Curr. Protoc. 1, e90.

110. Castro-Mondragon, J.A., Riudavets-Puig, R., Rauluseviciute, I., Lemma,

R.B., Turchi, L., Blanc-Mathieu, R., Lucas, J., Boddie, P., Khan, A., Man-
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Rabbit anti-ZEB1 antibody Bethyl Cat#: A301-921A; RRID: AB_1524109

Rabbit polyclonal MEF2C antibody proteintech Cat#: 18290-1-AP; RRID: AB_2142849

DynabeadsTM M�280 Sheep Anti-Rabbit IgG ThermoFisher Scientific Cat#: 11203D; RRID: AB_2783009

Anti-NeuN Antibody, clone A60, Alexa

Fluor�488 conjugated

Millipore Sigma Cat#: MAB377X; RRID: AB_2149209

Recombinant Anti-Olig2 antibody [EPR2673] Abcam Cat#: ab109186; RRID: AB_10861310

Biological samples

Human brain tissue NIH NeuroBioBank https://neurobiobank.nih.gov

Human brain tissue Pritzker Neuropsychiatric

Disorders Research Consortium

https://pritzkerneuropsych.org/

www/about-us/scientific-approach/

brain-bank

Chemicals, peptides, and recombinant proteins

SPRI Select Reagent Fisher Scientific Cat#: NC0406407

Lipofectamine LTX with Plus Reagent ThermoFisher Scientific Cat#: 15338100

Protector RNAse inhibitor Millipore Sigma Cat#: 3335399001

Poly-L-ornithine solution Millipore Sigma Cat#: P4957-50ML

UltraPure 1M Tris-HCl, pH 8.0 Fisher Scientific Cat#: 15568-025

Calcium Chloride Solution Millipore Sigma Cat#: 21115-100ML

Magnesium Acetate Solution Millipore Sigma Cat#: 63052-100ML

DTT, 1M ThermoFisher Scientific Cat#: P2325

EDTA, 0.5M Millipore Sigma Cat#: 324506-100ML

Triton X-100 Millipore Sigma Cat#: T8787-100ML

OmniPur Sucrose Millipore Sigma Cat#: 8510-500GM

Bovine Serum Albumin Fraction V, protease-free Millipore Sigma Cat#: 3117332001

Tween 20 Millipore Sigma Cat#: P9416-50ML

NP-40 Fisher Scientific Cat#: 28324

Digitonin (5%) ThermoFisher Scientific Cat#: BN2006

PMSF Millipore Sigma Cat#: 10837091001

cOmplete protease inhibitor cocktail Millipore Sigma Cat#: 11697498001

Corning� 10X Phosphate-Buffered Saline (PBS),

pH 7.4 ± 0.1, Liquid without calcium and magnesium,

RNase-/DNase- and protease-free

Corning Cat#: 46-013-CM

Sodium Deoxycholate 10% BioWorld Cat#: 40430018-2

UltraPure SDS Solution, 10% ThermoFisher Scientific Cat#: 15553027

PierceTM 16% Formaldehyde (w/v), Methanol-free ThermoFisher Scientific Cat#: 28906

BioUltra Glycine Millipore Sigma Cat#: 50046-250G

DAPI Solution (1 mg/mL) ThermoFisher Scientific Cat#: 62248

Lithium chloride solution Millipore Sigma Cat#: L7026-500ML

Sodium Bicarbonate Millipore Sigma Cat#: S5761-500G

Proteinase K Lucigen Cat#: MPRK092

RNase A Qiagen Cat#: 19101

Critical commercial assays

Nano-Glo Dual-Luciferase Reporter Assay System Promega Cat#: N1630

Global Diversity Array + NeuroBooster Illumina Cat#: 20031816

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chromium Next GEM Chip J 10X Genomics Cat#: PN-1000230

Chromium Next GEM Single Cell Multiome ATAC + Gene

Expression Reagent Bundle

10X Genomics Cat#: PN-1000283

Dual Index Kit TT Set A 10X Genomics Cat#: PN-1000215

DNeasy Blood and Tissue Kit Qiagen Cat#: 69506

Qubit dsDNA HS Assay Kit ThermoFisher Scientific Cat#: Q32854

Standard Sensitivity NGS Fragment Analysis Kit Advanced Analytical Cat#: DNF-473

Deposited data

Raw and analyzed data This paper GEO: GSE214637

Code https://doi.org/10.5281/

zenodo.7405971

https://github.com/aanderson54/

scMultiomics_AD

Experimental models: Cell lines

HEK293 ATCC Cat# CRL-1573, RRID:CVCL_0045

293FT ThermoFisher Scientific Cat#: R70007, RRID:CVCL_6911

Recombinant DNA

pGL4.23 [luc2/minP] Promega Cat#: E8411

pNL1.1.CMV[Nluc/CMV] Promega Cat#: N1091

Software and algorithms

Prism v9 Graph Pad https://www.graphpad.com/

scientific-software/prism/

BioConductor v1.30.16 Huber et al.93 https://www.bioconductor.org

scDblFinder v1.9.4 Germain et al.94 https://github.com/plger/

scDblFinder

Seurat v4.1.1 Hao et al.22 https://github.com/satijalab/

seurat

sctransform v0.3.3 Hafemeister and Satija95 https://github.com/satijalab/

sctransform

Harmony v0.1.0 Korsunsky et al.96 https://github.com/immunogenomics/

harmony

MAST v1.20.0 Finak et al.97 https://github.com/RGLab/MAST

R v4.1.1 CRAN https://cran.r-project.org

enrichR v3.0.0 Chen et al.98 https://github.com/wjawaid/

enrichR

MACS2 v2.2.71 Zhang et al.99 https://github.com/macs3-

project/MACS

Signac v1.6.0 Stuart et al.23 https://github.com/stuart-lab/

signac

ComplexHeatmap v2.10.0 Gu et al.100 https://github.com/jokergoo/

ComplexHeatmap

GenomicRanges v1.46.1 Lawrence et al.101 https://bioconductor.org/packages/

release/bioc/html/GenomicRanges.html

rtracklayer v1.54.0 Lawrence et al.102 https://bioconductor.org/packages/

release/bioc/html/rtracklayer.html

ChIPseeker v1.30.3 Yu et al.103 https://github.com/YuLab-SMU/

ChIPseeker

cellSNP 1.2.2 Huang and Huang104 https://github.com/hxj5/cellsnp-lite

vireo v0.5.6 Huang et al.105 https://github.com/single-cell-

genetics/vireo

sLDSC v1.0.1 Finucane et al.54 https://github.com/bulik/ldsc

ENCODE ChIP-seq pipeline2 ENCODE DCC https://github.com/ENCODE-DCC/

chip-seq-pipeline2

CellRanger arc 2.0.1 10X Genomics http://software.10xgenomics.com
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Lindsay

Rizzardi, Ph.D. (lrizzardi@hudsonalpha.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Single nuclei RNA-seq, single nuclei ATAC-seq, and ChIP-seq data have been deposited at GEO and are publicly available un-

der series accession number GSE214637.

d All original code generated during this study is publicly available at https://github.com/aanderson54/scMultiomics_AD and has

been deposited at Zenodo. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
HEK293 cells were obtained from ATCC (CRL-1573) and grown in DMEM (high glucose, L-glutamine, no sodium pyruvate)

(ThermoFisher Scientific Cat#11955-126), supplemented with 10% fetal bovine serum (FBS). 293FT cells were obtained

from ThermoFisher Scientific (Cat#R70007) and maintained in DMEM (high glucose, L-Glutamine, 100 mg/L Sodium Pyruvate)

(ThermoFisher Scientific Cat#11995081) supplemented with 10% FBS, 1% Glutamax (ThermoFisher Scientific Cat#35050061,

1% non-essential amino acids (NEAA) (ThermoFisher Scientific Cat#11140050), and 500 mg/mL Geneticin (G418 Sulfate)

(ThermoFisher Scientific Cat#10131-035). All cells were cultured at 37�C with 5% CO2.

Human brain tissues
Postmortem human brain biospecimens were obtained from the NIH Neurobiobank at the University of Miami and the Human Brain

and Spinal Fluid Resource Center (HBSFRC) and from collaborators from the Pritzker Neuropsychiatric Disorders Research Con-

sortium in the Department of Psychiatry and Human Behavior, University of California Irvine (UCI) as noted in Table S1. Flash-frozen

tissues were obtained from the dorsolateral prefrontal cortex (BA9/46) of seven donors diagnosed with Alzheimer’s (Braak stages 4–

6) and eight unaffected controls. AD donors were neuropathologically diagnosed according to CERAD criteria and Braak staging. All

AD donors had a clinical diagnosis of AD and evidence of both amyloid beta plaques and neurofibrillary tangles. Demographic infor-

mation for each donor is presented in Table S1. No statistical methods were used to pre-determine sample sizes, but our sample

sizes are similar to those reported in previous publications.18,19 Data collection and analyses were not performed blind to tissue

of origin.We did not pre-select samples based onAPOE genotype, but genotype informationwas generated for each sample through

TaqMan genotyping assays (see APOE genotyping).

METHOD DETAILS

Nuclei isolation from human brain tissues
Approximately 50–100 mg of frozen tissue per sample was homogenized in 4 mL of nuclei extraction buffer [0.32 M sucrose, 10 mM

Tris pH 7.4, 5 mMCaCl2, 3 mMMg acetate, 1 mMDTT, 0.1 mM EDTA, 0.1% Triton X-100, 0.2U/mL Protector RNAse inhibitor (Sigma

cat. 3335399001)] by douncing 30 times in a 40mL dounce homogenizer. Filter through 70 mmfilter and spin at 500 x g, 5min at 4�C in

a swinging bucket centrifuge. Resuspend nuclei in 500 mL nuclei extraction buffer and layer over 750 mL sucrose solution (1.8 M su-

crose, 10mMTris pH 7.4, 3mMMg acetate, 1mMDTT) in a 1.5mL tube. The samples were then centrifuged at >16,000 x g for 30min

at 4�C. After centrifugation, the supernatant was removed by aspiration and the nuclear pellet was resuspended in 125 mL PBS with

1% BSA and centrifuged 5 min at 500 x g at 4�C in a swinging bucket centrifuge. Permeabilization was performed according to 10X

Genomics protocol CG000375 Rev B: nuclei were resuspended in 100 mL lysis buffer (10 mM Tris-HCl pH 7.4.10 mM NaCl, 3 mM

MgCl2, 1% BSA, 0.01% Tween 20, 0.01% NP-40, 0.001% digitonin, 1 mM DTT, 1 U/mL Protector RNase inhibitor) and incubated

2min on ice. Nuclei were washed once and resuspended in 30 mL of 1X nuclei buffer with 1 mMDTT and 0.5 U/mL of Protector RNAse

inhibitor. Nuclei quality and concentrations were determined using the Countess II FL.

Single nucleus multiomics
Transposition, nuclei isolation, barcoding, and library preparation were performed according to the 10X Genomics Chromium Next

GEMSingle Cell Multiome protocol CG000338 Rev Ewith the following alterations. The initial set of eight samples were processed as

above (noted as ‘‘batch 1’’ in Table S1) and each sample was loaded across two lanes of theChromiumNext GEMChip J. Nuclei were
Cell Genomics 3, 100263, March 8, 2023 e3
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loaded according to manufacturer’s recommendations to target recovery of 10,000 nuclei per lane. The second batch of ten samples

were processed as above, but two samples were pooled per lane of the Chromium Next GEM Chip J (each pool is indicated by sub-

batch in Table S1). Each pool consisted of a male and female donor to facilitate assignment of each single cell back to the donor

based on genotype and chrY gene expression (see sample demultiplexing). For these samples, we pooled 20,000 nuclei from

each sample and the entire pool was processed according to themultiome protocol. Libraries were sequenced by HudsonAlpha Dis-

covery using Illumina NovaSeq S4 flowcells.

Sample demultiplexing
For lanes where amale and female sample were pooled together, reads were assigned to samples by genotyping cells. Variants were

called from the cellranger output bam file for each cell using cellsnp-lite.104 High-confidence SNPs from the 1000 Genome Project

were used as a reference panel to call variants. Cell genotypes were then split by individual using vireoSNP105 with the number of

donors set to two. Cells were labeled as donor_0, donor_1, unassigned, or doublet. Unassigned and doublet cells were removed.

Donor ID was assigned to the sample by observing the number of UMIs for genes on chrY. The donor ID with the higher mean counts

was assigned to the male sample (Table S11).

Joint snRNA-seq and snATAC-seq workflow
Low-quality cells were filtered on gene expression data (nFeatures >200, nFeatures <10,000, and mitochondrial percent <5) and

chromatin accessibility data (nucleosome signal <2 and TSS enrichment >2). PMI-associated genes106 were removed from the

RNA counts matrix. Peaks that were present in less than 10 cells were removed from the ATAC matrix. Functions within Seurat22

(v4.1.1, installed via Bioconductor v1.30.1693) were used for analysis. RNA counts were normalized with SCTransform95 with mito-

chondrial percent per cell regressed out. Principal component analysis (PCA) was performed on RNA, and UMAPwas run on the first

30 principal components (PCs). The optimum number of PCs was determined to be 30 PCs using an elbow plot. The ATAC counts

were normalized with term-frequency inverse-document-frequency (TFIDF). Dimension reduction was performed with singular value

decomposition (SVD) of the normalized ATAC matrix. The ATAC UMAP was created using the second through the 50th LSI compo-

nents. Doublet density was computed using computeDoubletDensity from scDblFinder94 where doublet score is the ratio of densities

of simulated doublets to the density in the data. Cells with a doublet score >3.5 were removed. Normalization and dimension reduc-

tion were performed again on the filtered set with the same parameters. Predicted cell types were determined for each cell using

Seurat SCT-normalized reference mapping. Gene expression data was mapped to SCT-normalized DLPFC data12 and annotated

with the cell types of the reference map. Cells with a predicted cell type score less than 0.95 were removed from the data. Batch

effects were corrected in RNA (theta = 1) and ATAC (theta = 2) with Harmony (v1.0.0)96 by removing the effect of sample.

WNN analysis of snRNA-seq and snATAC-seq
The weighted nearest neighbor (wnn) graph was determined with Seurat’s FindMultiModalNeighbors to represent a weighted com-

bination of both modalities. The first 30 dimensions of the harmony-corrected RNA reduction and the second through the 50th

dimensions from the harmony-corrected ATAC reduction were used to create the graph. The WNN UMAP was created using the

wknn (k = 20) (Figure S5).

Differential expression
Differentially expressed genes (DEGs) were determined for AD versus control for each cell type. Within each cell type, the gene

expression data was log-normalized with a scale factor of 13 105. Pericytes and Endothelial cells were not included in the analysis

because of small cell counts. Differential expression was assessed using MAST97 for genes present in at least 25% of either AD or

control cells. Age and sex were included as covariates in the MAST model. Genes with a Bonferroni-adjusted p value <0.01 and an

absolute log2(fold change) >0.25 were determined to be significant. DEGs between cell types were determined using MAST with age

and sex as covariates for genes present in at least 25% of cells. Genes with a Bonferroni adjusted p value <0.01 an absolute log2(fold

change) >0.5 were determined to be significant.

Annotation of cell subpopulations
Cell type subclusters were identified usingweighted snRNA and snATACmodalities. Expression data were normalizedwith SCTrans-

form, and chromatin accessibility data were normalized with TFIDF within each cell type. Normalized values were used to construct a

multimodal weighted nearest neighbor graph (k = 20). Clusters were identified using wknn and the SLM algorithm. The resolution (0.3,

0.2, 0.3, 0.3, 0.45) was adjusted for each cell type (Astro, Inh, Exc, Olig, Mic). Any clusters with <100 cells were excluded from DEG

analysis. Within each cell type, cluster DEGswere determined for each subcluster versus all other subclusters. DEGswere defined as

those with a Bonferroni adjusted p value <0.01 using MAST with age and sex as covariates. Only genes that were detected in at least

25% of cells in a subcluster were considered.

Neuronal subclusters were further annotated with Azimuth22 Human motor cortex107 clusters to identify known neuronal subpop-

ulations. For each neuronal subcluster, a subtype was assigned by the enrichment for upregulated subcluster DEGs in Azimuth gene

sets. Enrichment was performed using enrichR98,108,109 and the Azimuth Cell Types 2021 gene sets. The top subtype annotation was

assigned to a subcluster if the adjusted p value was <0.01.
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AD-specific subclusters and subtypes were determined by observing overrepresentation of cells isolated fromAD individuals. Sta-

tistically significant overrepresentation was evaluated with a Fisher exact test and adjusted p values.

Gene set enrichment
The R package enrichR98,108,109 was used for all gene set enrichment analyses. Sets of DEGs and peak-linked genes were used as

input to look for enrichment in GO Biological Process 2021, GO Molecular Function 2021, GO Cellular Component 2021, and KEGG

2021 databases. Terms with an adjusted p value less than 0.05 were considered to be enriched.

Feature linkage analysis
ATAC peaks were called independently for each cell type using MACS299 and Signac23 CallPeaks and the union of these peaks was

used in subsequent analyses retaining the cell type annotations. The peaks were then annotated with ChIPseeker103 and TxDb.Hsa-

piens.UCSC.hg38.knownGene where promoters were considered to be 1 kb upstream and 100 bp downstream of the TSS. Only

ATAC peaks that were present in at least 2% of cells in at least one cell type were included in the analyses. AD and control links

were identified separately via the cellranger-arc (v2.0.1) reanalyze function using the filtered cell type ATAC peaks and either AD

or control expression and accessibility data as input. The maximum interaction distance was restricted to 500 kb. Peak-peak links

were not used for downstream analysis. For feature linkage calculation, ATAC and gene expression counts were normalized inde-

pendently using depth-adaptive negative binomial normalization. To account for sparsity in the data, the normalized counts were

smoothed by taking the weighted sum of the 30 closest neighbors from the KNN graph. The cell weights are determined by using

a Gaussian kernel transformation of the euclidean distance. Feature linkage scores were calculated by taking the Pearson correlation

between the smoothed counts, while the significance of the correlation was determined using the Hotspot algorithm.32 Links with an

absolute correlation score <0.2 and linked to a gene with <200 UMIs were removed. Other packages used in these analyses were

GenomicRanges (v1.46.1)101 and ComplexHeatmap (v2.10.0).100

Permutation testing
We performed 100 sample permutations calling links. Sample sets for the permutations were determined by randomly selecting

seven or eight individuals regardless of disease status. Links were called with the same parameters as the true data. Links were inde-

pendently overlapped with links from all other permutations to get the proportion of links that were group-specific for each pair of

permutations. Group-specific links were defined as the links that were not shared between any two permutations. Given the distri-

bution of group-specific links across all permutation pairs, we tested if AD and control-specific links were an outlier for group-spec-

ificity using a Z-test.

Peak-gene-TF trios
Trios were called for a filtered set of links by removing those >100kb from a TSS and those with an absolute score <0.2. Motifs were

then called in each linked-peak using Signac AddMotifs and the JASPAR 2022110 CORE PFM. Peaks with >100 motifs were

additionally filtered from the link set. TF expression, linked gene expression, and linked peak accessibility matrices for trio correlation

were derived from the average counts within metacells. Metacells were determined usingWNN clusters for all AD cells and all control

cells separately. TF-peak scores are the Pearson correlation between peak accessibility and the expression of the TF whose motif

was called in the peak. TF-gene scores are the Pearson correlation between a gene and the TF whose motif was called in the linked

peak. Significant associations were defined as those with a p value <0.001. Significant trios were then defined as those with a sig-

nificant positive TF-peak correlation and a significant TF-gene correlation.

Partitioned heritability analysis
To evaluate whether linked peaks are enriched for common genetic variants that have been associated with AD or other traits by

GWAS, we performed stratified linkage disequilibrium (LD) score regression (sLDSC v1.0.1).60,111 sLDSC estimates the proportion

of genome-wide SNP-based heritability that can be attributed to SNPs within a given genomic feature by a regression model that

combines GWAS summary statistics with estimates of linkage disequilibrium from an ancestry-matched reference panel. Summary

statistics for AD were downloaded from.2–6 To estimate SNP heritability from AD GWAS summary statistics, we excluded the APOE

and MHC/HLA genomic regions. Additional GWAS summary statistics were downloaded for brain-related57–61,112 and other

traits.62–66 Each category (all, common, AD, control) corresponds to the analysis in which the peak-gene link was identified. Cell

type is assigned based on the cell type(s) in which the linked peak was identified. Peaks were resized to 1 kb and each set of unique

peaks with these categories was tested individually along with the full baseline model (baseline-LD model v2.2.) that included 97

categories capturing a broad set of genomic annotations. Note that a peak can have multiple links that fall in different categories.

GWAS summary statistics are available from the websites listed in Table S8. Additional files needed for the sLDSC analysis were

downloaded from https://alkesgroup.broadinstitute.org/LDSCORE/ following instructions at https://github.com/bulik/ldsc/wiki.
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APOE genotyping
To determine APOE status, TaqMan genotyping assays (cat#: 4371353) were used to genotype SNPs rs429358 and rs7412 (cat#:

4351379, C___3084793_20 and C___904973_10, respectively) following the manufacturer’s instructions. Genotyping calls were

made using QuantStudio software (v1.3) for all individuals in this study. APOE status is reported in Table S1.

Comparisons to external data sources
Cell type-specific H3K27ac peak calls were obtained from11 and converted to hg38 coordinates using the liftOver function from the R

package rtracklayer.102 GABA and GLU neuronal subtype H3K27ac fastqs from Kozlenkov et al.36 were downloaded from Synapse

(syn12033252) and processed as individual replicates using the AQUAS Transcription Factor andHistoneChIP-Seq processing pipe-

line113 (https://github.com/kundajelab/chipseq_pipeline). Peaks were called using the IDR naive overlapping method with a

threshold of 0.05 and the optimal peak sets were used. For each cell type, only peaks identified in at least 3 individuals were retained

for downstream analyses. ATAC-seq peaks from non-neuronal cell types were intersected with H3K27ac data from the correspond-

ing cell type obtained fromNott et al.11 Excitatory and inhibitory neuron ATAC-seq peaks were intersected with H3K27ac peaks iden-

tified from GLU (NeuN+/SOX6-) or GABA (NeuN+/SOX6+) neuronal nuclei36 and from neuronal (NeuN+) nuclei.11 MPRA data were

obtained from,21,67–69 eQTL data were obtained from,43,70 and neuronal HiC loop calls were obtained from.71

Plasmids
The pNL1.1.CMV [Nluc/CMV] (Cat# N1091) and pGL4.23 [luc2/minP] (Cat# E8411) vectors were obtained from Promega. Luciferase

elements were generated by selecting 467 bp of the nominated region using hg38 coordinates. Both the forward and reverse com-

plement sequences were ordered as gBlocks from Integrated DNA Technologies (IDT). Gibson assembly was performed by cloning

elements into the pGL4.23 [luc2/minP] vector digested with EcoRV. Element insertion was confirmed by Sanger sequencing

(MCLAB). Each element was individually prepped 3 times for a total of 6 individual plasmid preparations per nominated region.

Transfection
HEK293 and 293FT cells were plated at 70,000 cells/cm2 in a 24-well format. Before plating 293FT cells, culture plates were pre-

coated with poly-L-ornithine solution (Millipore Sigma Cat#P4957-50ML). The next day, cells were transfected with 1 mg of plasmid

DNA using Lipofectamine LTX with Plus Reagent (ThermoFisher Scientific Cat#15338-100) following the manufacturer’s recommen-

dations. Per transfection, 900 ng of luciferase element and 100 ng of pNL1.1.CMV [Nluc/CMV] were used. A transfection reaction of

900 ng pGL4.23 [luc2/minP] and 100 ng pNL1.1.CMV [Nluc/CMV] was used as a baseline control. Both vectors were also transfected

as background controls (100 ng) with pmaxGFP (900 ng, Lonza). Cell lysates were harvested by freezing at �80�C 48 h post-

transfection.

Luciferase assays
Luciferase assays were performed using the Nano-Glo Dual-Luciferase Reporter Assay System (Promega cat#: N1630) following the

manufacturer’s protocol. Cell lysis was performed on the 24 well plate and aliquoted across 4 wells of a white 96-well plate for 4 tech-

nical replicates per biological replicate. Assays were completed in quadruplicate. Firefly luminescence was first normalized across

the average plate luminescence and then normalized to the average control luminescence. For each biological replicate, the median

fold luminescence value was determined for the four technical replicates. Four biological replicates were compared to the pGL4.23

[luc2/minP]/pNL1.1.CMV [Nluc/CMV] control using an ordinary one-way ANOVA with Fisher’s LSD.

Chromatin preparation for sorted nuclei
Buffers required: Nuclei Extraction Buffer (NEB): 0.32 M Sucrose, 5 mM CaCl2, 3 mM Mg(Ac)2, 0.1 mM EDTA, 10 mM Tris-HCl,

0.1 mM PMSF, 0.1% Triton X-100, 1 mM DTT. Before use, add Roche cOmplete protease inhibitor cocktail according to manufac-

turer recommendation (Sigma 11697498001). Sucrose Cushion Buffer (SCB): 1.6 M Sucrose, 3 mMMg(Ac)2, 10 mM Tris-HCl, 1 mM

DTT. Interphase Buffer: 0.8 M Sucrose, 3 mMMg(Ac)2, 10mM Tris-HCl. Blocking buffer: 1x PBS, 1%BSA, 1mMEDTA. Pellet buffer:

add up to 200 mL 1 M CaCl2 to 10 mL SCB. RIPA: 1x PBS, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS.

Methods for extracting and sorting nuclei from postmortem brain are similar to previously published methods.114 Here, approxi-

mately 500 mg of tissue was placed into a chilled 40 mL Dounce homogenizer containing 5 mL of NEB on ice and allowed to partially

thaw to ease douncing (2-3 min). Extract nuclei by douncing with ‘‘tight’’ pestle 30-40 times until the tissue is homogenized. Transfer

to 15 mL conical tube on ice, wash glassware with 5 mL NEB and add to 15 mL tube. Fix chromatin by adding 625 mL of 16% form-

aldehyde (methanol free, Thermo 28,906) to a final concentration of 1% and rotate end-over-end at room temperature for 10min. Halt

fixation by adding 500 mL of 2.5 M Glycine and incubate another 5 min rotating at room temperature then place homogenate back on

ice. During fixation, prepare sucrose gradient in 2 ultracentrifuge buckets (Beckman Coulter cat: 344058) by layering 5 mL of Inter-

phase buffer atop 10 mL of SCB in each. Carefully layer nuclei homogenate atop sucrose gradient, balance with NEB, then ultracen-

trifuge at 24,000 rpm for 2 h using SW28 swinging bucket rotor (Beckman Coulter). Upon completion, inspect tubes for a visible pellet

of nuclei at the bottom of tube. Remove debris at interphase first by using a 25 mL graduated pipette, then continue removing the

remaining sucrose gradient being careful not to disturb the nuclei pellet. Carefully resuspend the pellet in 1 mL cold PBS and transfer

to a 15mL lo-bind tube containing 2mL PBS on ice. (Optional: if pellet appears to contain large debris then pass through 70 mmfilter).
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Wash ultracentrifuge tubes with 1 mL cold PBS and combine in 15mL tube to a final volume of 10mL, inverting to mix. Centrifuge the

nuclei at 1,000 x g for 10 min at 4�C to remove residual sucrose. Label nuclei by resuspending pellet in 5 mL blocking buffer with

NeuN-488 antibody (Millipore cat: MAB377X) andOLIG2 antibody (Abcam cat: ab109186) at 1:5,000 each. Incubate nuclei in staining

buffer with rotation for at least 1 h at 4�C. Spin nuclei 500 x g for 5min to pellet, remove supernatant, then resuspend in 5mL blocking

buffer with goat-anti-rabbit-647 (ThermoFisher cat: A-21245) at 1:5,000 and DAPI at 1:100,000. Incubate for at least 1 h at 4�C with

rotation. Remove stain by centrifuging 500 x g 5min at 4�C and resuspending in 3mL cold PBS. Hold on ice and proceed immediately

to sorting.

Nuclei were sorted using Sony MA900 with a 70 mm nozzle and pressure not exceeding pressure setting of 7. Gates were set

to capture those populations that were positive for 488 signal (NeuN+), positive for 647 signal (OLIG+), or negative for both

(NeuN-;OLIG-). The NeuN+ population was collected into 5 mL tubes held at 4�C and pooled into 15 mL lo-bind tubes on ice. Purity

of selected samples were typically >95%based on reanalysis of sorted samples. To concentrate nuclei for downstream analysis, add

approximately 2mL of pellet buffer per 10mL of sorted nuclei and rotated at 4�C for 15min. Centrifuge 500 x g for 10min at 4�C, after
which a pellet should be visible. Remove supernatant and carefully resuspend pelleted nuclei in at least 3 mL cold PBS. Centrifuge

500 x g for 5 min at 4�C.
To generate chromatin for ChIP-seq, resuspend pellet in cold RIPA plus protease inhibitor (Roche, cat: 11836153001) at approx-

imately 3 million nuclei per 250 mL. Transfer 250 mL of each sample to the Bioruptor tubes (Diagenode, cat: C30010016) and sonicate

tissue using a Bioruptor Pico (8 cycles; 30 s on/30 s off). Pool the sonicated chromatin into a 1.5 mL DNA lo-bind conical tube and

centrifuge 12,000 x g for 5 min at 4�C to remove any insoluble debris. Collect supernatant into a separate tube, add RIPA to final

volume equivalent to 500,000 nuclei per 100 mL, then dispense working aliquots into 1.5 mL tubes held on dry ice. Store at �80�C.

ChIP-seq protocol
ChIP-seq for ZEB1 was performed using chromatin from NeuN+ nuclei from DLPFC, occipital lobe, and frontal pole from two control

donors serving as biological replicates. ChIP-seq for MEF2C was performed on bulk DLPFC tissue from two control donors serving

as biological replicates. Protocols for ChIP-seq are similar to those for frozen tissue previously described by our lab115,116 and consis-

tent with techniques recommended by the ENCODE Consortium (www.encodeproject.org/documents). Briefly, 60 mL Dynabeads

(ThermoFisher, cat: 11203D) were washed with cold 1x PBS +5 mg/mL BSA then combined with 8 mL antibody targeting ZEB1

(Bethyl, cat: A301-921A) or MEF2C (proteintech, cat: 18290-1-AP) in a final volume of 200 mL and held at 4�C overnight with rotation.

Tubes of aliquoted chromatin are thawed on ice and bead/antibody complex is washed with PBS +5mg/mL BSA solution. Beads are

ultimately resuspended in 100 mL RIPA and brought to 200 mL with 100 mL chromatin aliquot. Incubate bead/antibody with chromatin

using rotation for 1 h at room temperature then move to 4�C for another hour. After incubation, bead complexes were washed five

times with a LiCl wash buffer (100 mM Tris at pH 7.5, 500 mM LiCl, 1%NP-40, 1% sodium deoxycholate) and wash with 1 mL of cold

TE (10 mM Tris-HCl at pH 7.5, 0.1 mMNa2EDTA). Chromatin was eluted from beads by incubating with intermittent shaking for 1 h at

65�C in IP elution buffer (1% SDS, 0.1 M NaHCO3), followed by incubating overnight at 65�C to reverse formaldehyde cross-links.

DNA was purified using DNeasy Blood and Tissue kit (Qiagen 69,506) and eluted in a final volume of 50 mL EB. Recovered DNA

was quantified using Qubit dsDNA HS Assay kit (Thermo Q32854). For input controls, one aliquot of each tissue was brought to

200 mL with RIPA and reverse-crosslinked overnight at 65�C. The following morning, samples were incubated an additional

30 min with 20 mL Proteinase K and 4 mL RNase A (Qiagen 19,101) and subsequently eluted for DNA using DNeasy Blood and Tissue

kit. The entirety of the remaining IP DNA (and approximately 250 ng Input control) was used to generate sequencing libraries. Libraries

were prepared by blunting and ligating ChIP DNA fragments to sequencing adapters for amplification with barcoded primers (30 s at

98�C; [10 s at 98�C, 30 s at 65�C, 30 s at 72�C] x 15 cycles; 5 min at 72�C). Libraries were quantified with Qubit dsDNA HS Assay kit

and visualized with Standard Sensitivity NGS Fragment Analysis Kit (Advanced Analytical DNF-473) and Fragment Analyzer 5200

(Agilent). Libraries were sequenced using Illumina NovaSeq flow cell with 100 bp single-end runs.

ChIP-seq analysis
Prior to analysis, reads were processed to remove optical duplicates with clumpify (BBMap v38.20; https://sourceforge.net/projects/

bbmap/) [dedupe = t optical = t dupedist = 2500] and remove adapter reads with Cutadapt (v1.16)117 [-a AGATCGGAAGAGC -m 40].

Input reads were capped at 40 million using Seqtk (v1.2; https://github.com/lh3/seqtk). Individual experiments were constructed

following ENCODE guidelines (https://www.encodeproject.org/about/experiment-guidelines/) and analyzed with the chip-seq-pipe-

line2 processing pipeline (https://github.com/ENCODE-DCC/chip-seq-pipeline2). All software within the package was run using the

default settings or those recommended by the authors for transcription factors. Final peaks were called using the IDR naive overlap-

pingmethodwith a threshold of 0.05. For ZEB1, IDR optimal peaks from the three cortical brain regions weremerged for downstream

analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

The quantitative and statistical analyses are described in the relevant sections of the method details or in the figure legends.
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