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Abstract The recent development of imaging and sequencing technologies enables systematic

advances in the clinical study of lung cancer. Meanwhile, the human mind is limited in effectively

handling and fully utilizing the accumulation of such enormous amounts of data. Machine learning-

based approaches play a critical role in integrating and analyzing these large and complex datasets,

which have extensively characterized lung cancer through the use of different perspectives from

these accrued data. In this review, we provide an overview of machine learning-based approaches

that strengthen the varying aspects of lung cancer diagnosis and therapy, including early detection,

auxiliary diagnosis, prognosis prediction, and immunotherapy practice. Moreover, we highlight the

challenges and opportunities for future applications of machine learning in lung cancer.
Introduction

Lung cancer is one of the most frequently diagnosed cancers

and the leading cause of cancer deaths worldwide. About
2.20 million new patients are diagnosed with lung cancer each
year [1], and 75% of them die within five years of diagnosis [2].
High intra-tumor heterogeneity (ITH) and complexity of can-

cer cells giving rise to drug resistance make cancer treatment
more challenging [3]. Over the past decades, the continuous
evolution of technologies in cancer research has contributed
to many large collaborative cancer projects, which have gener-
ated numerous clinical, medical imaging, and sequencing data-

bases [4–6]. These databases facilitate researchers in
investigating comprehensive patterns of lung cancer from diag-
nosis, treatment, and responses to clinical outcomes [7]. In par-
ticular, current studies on -omics analysis, such as genomics,

transcriptomics, proteomics, and metabolomics, have
expanded our tools and capabilities for research. Cancer stud-
ies are undergoing a shift toward the integration of multiple

data types and mega sizes. However, using diverse and high-
dimensional data types for clinical tasks requires significant
time and expertise even with assistance from dimension reduc-

tion methods such as matrix and tensor factorizations [8–11],
and analyzing the exponentially growing cancer-associated
ciences /

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gpb.2022.11.003&domain=pdf
mailto:yuan.luo@northwestern.edu
https://doi.org/10.1016/j.gpb.2022.11.003
http://www.sciencedirect.com
https://doi.org/10.1016/j.gpb.2022.11.003
http://creativecommons.org/licenses/by/4.0/


Li Y et al /Machine Learning Applications in Lung Cancer 851
databases poses a major challenge to researchers. Therefore,
using machine learning (ML) models to automatically learn
the internal characteristics of different data types to assist

physicians’ decision-making has become increasingly
important.

ML is a subgroup of artificial intelligence (AI) that focuses

on making predictions by identifying patterns in data using
mathematical algorithms [12]. It has served as an assisting tool
in cancer phenotyping and therapy for decades [13–19], and

has been widely implemented in advanced approaches for early
detection, cancer type classification, signature extraction,
tumor microenvironment (TME) deconvolution, prognosis
prediction, and drug response evaluation [20–27]. Herein, we

present an overview of the main ML algorithms that have been
used to integrate complex biomedical data (e.g., imaging or
sequencing data) for different aspects of lung cancer (Figure 1;

Tables S1 and S2), and outline major challenges and opportu-
nities for future applications of ML in lung cancer clinical
research and practice. We hope that this review promotes a

better understanding of the roles and potentialities of ML in
this field.

Apply ML for early detection and auxiliary diagnosis

of lung cancer

ML on early detection and diagnosis using medical imaging

datasets

Early diagnosis is an important procedure for reducing deaths
related to lung cancer. Chest screening using low-dose com-
puted tomography (CT) is the primary approach for the

surveillance of people with increased lung cancer risk. To pro-
mote diagnostic efficiency, the computer-aided diagnosis
(CAD) system was developed to assist physicians in the inter-

pretation of medical imaging data [28,29], which has been
demonstrated as a useful second opinion for physicians [30].
The traditional feature-based CAD task can be broken into

three steps: nodule segmentation, feature extraction and selec-
tion, and clinical judgment inference (classification) (Figure 2).
Some approaches apply the measured texture features of spec-
ified nodules in CT images combined with the patient’s clinical

variables as input features to train an ML classifier, including
logistic regression (LR) [31–33] or linear discriminant analysis
(LDA) [34], for malignancy risk estimation. Typically, these

measurements include nodule size, nodule type, nodule loca-
tion, nodule count, nodule boundary, and emphysema infor-
mation in CT images, and the clinical variables include the

patient’s age, gender, specimen collection timing, family his-
tory of lung cancer, smoking exposure, and more. However,
these features are mostly subjective and arbitrarily defined,

and usually fail to achieve a complete and quantitative descrip-
tion of malignant nodule appearances.

With the development of deep learning (DL) algorithms,
especially convolutional neural networks (CNNs), more stud-

ies have been conducted to apply DL-based models in the
CAD system to improve its accuracy and reduce its false pos-
itive rate and execution time during lung tumor detection

(Table 1) [35,36]. Similar to feature-based CAD system, the
workflow of these models usually consists of three steps: nod-
ule detection and segmentation, nodule feature extraction, and

clinical judgment inference [37]. Compared with traditional
feature-based CAD systems, the DL-based CAD system can
automatically retrieve and extract intrinsic features of a suspi-
cious nodule [38,39], and can model the 3D shape of a nodule

(Figure 2). For example, Ciompi et al. [40] designed a model
based on OverFeat [41,42] by extracting three 2D-view-
feature vectors (axial, coronal, and sagittal) of the nodule from

CT scans. The recently integrated CNN models facilitate a glo-
bal and comprehensive inspection of nodules for feature char-
acterization from CT images. Buty et al. [37] designed a

complementary CNN model, where a spherical harmonic
model [43] for nodule segmentation was used to obtain the
shape descriptions (‘‘shape” feature) of the segmented nodule
and a deep convolutional neural network (DCNN)-based

model [41] to extract the texture and intensity features
(‘‘appearance” feature) of the nodule. The downstream classi-
fication relied on the combination of ‘‘shape” and ‘‘appear-

ance” features. Similarly, Venkadesh et al. [44] used an
ensemble model from two different models, 2D-ResNet50-
based [45] and 3D-Inception-V1 [46], to respectively extract

two features of a pulmonary nodule, and then concatenated
the two features as the input features for classification. A supe-
riority of the ensemble CNN model is that it can accurately

identify malignant nodules from different sizes of nodules
using the raw CT images. Benefiting from the features
extracted from state-of-the-art CNN models, clinical judgment
inference can be implemented through frequent ML tech-

niques, including LR, random forest (RF), support vector
machine (SVM), and neural networks (NNs). Notably, some
studies also employed CNN models for final clinical judgment

inference. Ardila et al. [47] proposed an end-to-end approach
to systematically model both localization and lung cancer risk
categorization tasks using the input CT data alone. Their

approach was based on a combination of three CNN models:
a Mask-RCNN [48] model for lung tissue segmentation, a
modified RetinaNet [49] model for cancer region of interest

(ROI) detection, and a full-volume model based on 3D-
inflated Inception-V1 [50,51] for malignancy risk prediction.
In addition to CT images, CNN-based models are also widely
used in histological imaging to help with lung cancer diagnosis.

Compared with CT imaging, histological imaging can provide
more biological information about cancer at the cellular level.
To this end, AbdulJabbar et al. [52] used the Micro-Net [53]

model to identify tissue boundaries followed by an SC-CNN
[54] model to segment individual cells from hematoxylin and
eosin (H&E)-stained and immunohistochemistry (IHC)

images. The segmented cells were then applied for cell type
classification to evaluate the proportions of each cell type in
the images. This model helps to identify the differential evolu-
tion and immune evasion mechanisms between lung adenocar-

cinoma (LUAD) and lung squamous cell carcinoma (LUSC)
with high resolution. Another study [55] utilized the
Inception-V3 network [51] to classify whether the tissue was

LUAD, LUSC, or normal from H&E-stained histopathology
whole-slide images. A highlight of this study is that the model
can also predict whether a given tissue has somatic mutations

in several lung cancer driver genes, including STK11, EGFR,
FAT1, SETBP1, KRAS, and TP53. Note that considering
the high complexity and large resources of the datasets, some

studies utilized transfer learning to improve their efficiency
and robustness when training new models [38,55].

Though these ML algorithms are already widely used in
CAD, the challenge is that only a limited number of the images
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Figure 2 Feature-based CAD and DL-based CAD systems

Differences in the development process of feature-based CAD systems and CNN-based CAD systems. Compared with feature-based CAD

systems, the DL-based CAD systems can automatically retrieve and extract intrinsic features of a suspicious nodule. CNN, convolutional

neural network; LR, logistic regression; SVM, support vector machine; RF, random forest.
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are labeled. Training a complex CNN model using a limited
number of training sets may result in overfitting. Recently,
generative adversarial network (GAN)-based models have

been used to improve the performance of discriminative classi-
fiers by generating pseudo images [56]. Chuquicusma et al. [57]
first employed a deep convolutional GAN (DCGAN) [58]

model to generate synthetic lung nodule CT scans. With their
work, more recent studies have integrated the GAN models
with other CNN models to address the overfitting problem

in lung cancer classification. Lin et al. [59] used a two-step
model — a DCGAN to generate synthetic lung cancer images
and an AlexNet [41] for lung cancer classification using both
original and synthetic datasets. Similar work was also done

by Ren and colleagues [60]. They also used DCGAN [58] for
data augmentation. To improve performance, they then
designed a regularization-enhanced transfer learning model

called VGG-DF for data discrimination to prevent overfitting
problems with pre-trained model auto-selection.

ML on early detection and diagnosis using -omics sequencing

datasets

Although periodic medical imaging tests are recommended for

high-risk populations, implementation has been complicated
3

Figure 1 Applications of ML model in lung cancer

We presented an overview of ML methodologies for different aspects of

cancer early detection based on sequencing technologies, data integrati

response and prognosis prediction, and immunotherapy studies. ML

HLA, human leukocyte antigen; CT, computed tomography; MALD

cfDNA, cell-free DNA; CAD, computer-aided diagnosis; CNV, copy n

Tumors; TIL, tumor-infiltrating lymphocyte.
by a high false discovery rate [61,62]. Therefore, there is a crit-
ical need for new techniques in early detection of lung cancers.
Recent sequencing technologies enable diverse methods for

early detection of lung cancer [63]. In the meantime, accurately
classifying lung cancer subtypes is crucial in guiding optimal
therapeutic decision-making. LUAD (� 45%) and LUSC

(� 25%) are the two most common subtypes of lung cancer
but are often treated similarly except for targeted therapy
[64]. However, studies have indicated that LUAD and LUSC

have drastically different biological signatures, and they have
suggested that LUAD and LUSC should be classified and trea-
ted as different cancers [65,66]. From a computational perspec-
tive, both early detection and subtype identification are part of

the classification task. Previous ML studies have shown the
efficiency and advancement of early detection and cancer type
classification in large pan-cancer sequencing datasets [67–75],

which may provide evidence for lung cancer diagnosis. It is
known that cancer cells are characterized by many genetic
variations, and the accumulation of these genetic variations

can be signatures that document the mutational patterns of
different cancer types [3,5,76,77]. For this reason, recent stud-
ies have concentrated on extracting better genomic signatures

as input features to boost the accuracy of their ML models.
For early detection, blood-based liquid biopsy, including
lung cancer therapies, including CAD from imaging datasets, lung

on and biomarker extraction from multi-omics datasets, treatment

, machine learning; IC50, half-maximal inhibitory concentration;

I, matrix-assisted laser desorption/ionization; DL, deep learning;

umber variation; RECIST, Response Evaluation Criteria in Solid



Table 1 Publications relevant to ML on early detection and diagnosis using imaging data

Publication Feature extraction Classification model Sample size Imaging data type Performance Validation method Feature selection/input Highlight/advantage Shortcoming

McWilliams et al. [31] NA LR 2961 CT images AUC (0.907–0.960) Hold-out Clinical risk factors + no e

characteristics on CT ima

Using the extracted feature as input, the

classifier can achieve high AUC in small

nodules (< 10 mm)

The selection of nodule

characteristics affects the

predictive performance of the

model

Riel et al. [32] NA LR 300 CT images AUC (0.706–0.932) Hold-out Clinical factors + nodule

characteristics on CT ima

The classifier can perform equivalently

as human observers for malignant and

benign classification

The performance heavily relies

on nodule size as the

discriminator, and is not robust

in small nodules

Kriegsmann et al. [34] NA LDA 326 MALDI Accuracy (0.991) Hold-out Mass spectra from ROIs o ALDI

image

The model maintains high accuracy on

FFPE biopsies

The performance relies on the

quality of the MALDI

stratification

Buty et al. [37] Spherical harmonics [44];

DCNN [41]

RF 1018 CT images Accuracy (0.793–0.824) 10-fold cross-validation CT imaging patches + ra logists’

binary nodule segmentatio

The model reaches higher predictive

accuracy by integrating shape and

appearance nodule imaging features

No benchmarking comparisons

were used in the study

Hussein et al. [38] 3D CNN-based multi-task model 3D CNN-based multi-task

model

1018 CT images Accuracy (0.9126) 10-fold cross-validation 3D CT volume feature The model achieves higher accuracy

than other benchmarked models

The ground truth scores defined

by radiologists for the

benchmark might be arbitrary

Khosravan et al. [39] 3D CNN-based multi-task model 3D CNN-based multi-task

model

6960 CT images Segmentation DSC (0.91);

classification accuracy (0.97)

10-fold cross-validation 3D CT volume feature The model integration of clustering and

sparsification algorithms helps to

accurately extract potential attentional

regions

Segmentation might fail if the

ROIs are outside the lung

regions

Ciompi et al. [40] OverFeat [42] SVM; RF 1729 CT images AUC (0.868) 10-fold cross-validation 3D CT volume feature, no le position

coordinate, and maximum ameter

This is the first study attempting to

classify whether the diagnosed nodule is

benign or malignant

The model requires specifying

the position and diameter of the

nodule as input, but many

nodules could not be located on

the CT images

Venkadesh et al. [44] 2D-ResNet50-based [45];

3D-Inception-V1 [46]

An ensemble model based

on two CNN models

16,429 CT images AUC (0.86–0.96) 10-fold cross-validation 3D CT volume feature an odule

coordinates

The model achieves higher AUC than

other benchmarked models

The model requires specifying

the position of the nodule, but

many nodules are unable to be

located on the CT images

Ardila et al. [47] Mask-RCNN [48];

RetinaNet [49];

3D-inflated Inception-V1 [50,51]

Mask-RCNN [48];

RetinaNet [49];

3D-inflated

Inception-V1 [50,51]

14,851 CT images AUC (0.944) Hold-out Patient’s current and prior available)

3D CT volume features

The model achieves higher AUC than

radiologists when samples do not have

prior CT images

The training cohort is from only

one dataset, although the sample

size is large

AbdulJabbar et al. [52] Micro-Net [53]; SC-CNN [54] An ensemble model based

on SC-CNN [54]

100 Histological images Accuracy (0.913) Hold-out Image features of H&E-st ed tumor

section histological slides

The model can annotate cell types at the

single-cell level using histological

images only

The annotation accuracy is

affected by the used reference

dataset

Coudray et al. [55] Multi-task CNN model based on

Inception-V3 [51]

Multi-task CNN model

based on Inception-V3

network [51]

1634 Histological images AUC (0.733–0.856) Hold-out Transformed 512 � 512-p tiles from

nonoverlapping ‘patches’ he whole-

slide images

The model can predict whether a given

tissue has somatic mutations in genes

STK11, EGFR, FAT1, SETBP1,

KRAS, and TP53

The accuracy of the gene

mutation prediction is not very

high

Lin et al. [59] DCGAN [58] + AlexNet [41] DCGAN [58] +

AlexNet [41]

22,489 CT images Accuracy (0.9986) Hold-out Initial + synthetic CT im s The model uses GAN to generate

synthetic lung cancer images to reduce

overfitting

No benchmarking comparisons

were used

Ren et al. [60] DCGAN [58] + VGG-DF DCGAN [58] +

VGG-DF

15,000 Histopathological images Accuracy (0.9984);

F1-score (99.84%)

Hold-out Initial + synthetic histopa logical

images

The model uses GAN to generate

synthetic lung cancer images and a

regularization-enhanced model to

reduce overfitting

The dimension of images by

generator (64 � 64) is not

sufficient for biomedical domain

Note: ML, machine learning; NA, not applicable; LR, logistic regression; AUC, area under the curve; CT, computed tomography; LDA, lin r discriminant analysis; MALDI, matrix-assisted laser

desorption/ionization; ROI, region of interest; FFPE, formalin-fixed paraffin-embedded; CNN, convolutional neural network; DSC, dice si ilarity coefficient; SVM, support vector machine; RF,

random forest; DCNN, deep convolutional neural network; SC-CNN, spatially constrained convolutional neural network; DCGAN, deep onvolutional generative adversarial network; RCNN,

Region-CNN; H&E, hematoxylin and eosin; 2D, two dimensional; 3D, three dimensional. Compared with hold-out, cross-validation is usuall more robust, and accounts for more variance between

possible splits in training, validation, and test data. However, cross-validation is more time consuming than using the simple holdout metho
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Figure 3 Omics analysis in lung cancer studies

Different sequencing techniques allow for the simultaneous measurement of multiple molecular features of a biological sample. To

improve efficiency and reduce overfitting, statistical and ML tools perform differential analysis or feature selection. Further ML models

concatenate the obtained omics features with clinical features as input for lung cancer diagnostic/prognostic prediction. DEG,

differentially expressed gene; RFE, recursive feature elimination; UAF, univariate association filtering.
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cell-free DNA (cfDNA) fragments, circulating tumor DNA
(ctDNA), microRNA (miRNA), methylation, exosomes, and
circulating tumor cells (CTCs), to explore potential circulating

tumor signatures is considered a reliable method [63] (Figure 3).
Integrating these liquid biopsy signatures, many discriminative
models (SVM, RF, and LR) have been used to detect tumors

with high discovery rates [78–81]. For lung cancer subtype
classification, somatic mutations, including single-nucleotide
variants (SNVs), insertions, and deletions, usually have specific
cancer type profiles [82]. Thus, studies have leveraged somatic

mutations as input features to train classifiers for LUAD–
LUSC classification [83]. Many of these mutations, especially
driver mutations, can change expression levels, which impact

gene function and interrupt cellular signaling processes [82].
As a result, different cancer types show different expression
levels of certain proteins [84,85]. Imposed by these unique

expression profiles of cancer type, ML models can leverage
RNA sequencing as input data to categorize the malignancy
(benign or malignant) and subtypes (LUAD or LUSC) of

patients [86–89]. Similarly, copy number variation (CNV) is
reported to be highly correlated with differential gene expres-
sion [90], and can be ubiquitously detected in cancer cells. As
such, CNVs can also be used to train ML models for cancer

type classification in lung cancer studies [81,91,92]. Note that
Daemen et al. [92] proposed a recurrent hidden Markov model
(HMM) for the identification of extended chromosomal

regions of altered copy numbers, which offers high accuracy
for classification. More recently, Jurmeister et al. [93] used
DNA methylation profiles as input features to determine if

the detected malignant nodule is primary lung cancer or the
metastasis of another cancer. Directly using all generated genes
as an input feature may result in overfitting [94]. Thus, many
studies used different computational approaches to select mul-
tiple cancer-associated genes to enhance their ML models
(Figure 3). Some studies used ML-based algorithms for feature

selection. For example, Liang et al. [80] and Whitney et al. [86]
employed the least absolute shrinkage and selection operator
(LASSO) method to select the optimal markers for model

training; Aliferis et al. [89] utilized recursive feature elimina-
tion (RFE) [95] and univariate association filtering (UAF)
models to select highly cancer-associated genes. In addition,
using unsupervised models for sample population subtype

clustering, and then identifying each cluster’s marker genes is
also seen in many studies [96,97]. Apart from ML-based mod-
els, some studies used statistical methods for feature selection.

Raman et al. [81] designed a copy number profile abnormality
(CPA) score to reinforce the CNV feature which is more
robust and less subject to variable sample quality than directly

using CNVs as the input feature. Daemen et al. [92] integrated
several statistical tests (ordinary fold changes, ordinary
t-statistics, SAM-statistics, and moderated t-statistics) to select

a robust differential expression gene set. Aside from these
single-measured signatures, some studies [81,86,88] combined
the -omics signatures with clinical signatures to achieve better
results. Using these tumor-type specific -omics signatures,

many algorithms, K-nearest neighbors (KNN), naive Bayes
(NB), SVM, decision tree (DT), LR, RF, LDA, gradient
boosting, and NN, have demonstrated their ability to accu-

rately detect and classify different lung cancer patterns
(Table 2). Note that to improve the accuracy of ML models,
Kobayashi et al. [83] added an element-wise input scaling for

the NN model, which allows the model to maintain its
accuracy with a small number of learnable parameters for
optimization.



Table 2 Publications relevant to ML on early detection and diagnosis using sequencing data

Publication ML method Sample size Sequencing data type Performance Validation method Feature selection Highlight/advantage Shortcoming

Mathios et al. [78] LR model with a LASSO penalty 799 cfDNA fragment AUC (0.98) 10-fold cross-validation cfDNA fragment features,

clinical risk factors, and CT imaging features

This study provides a framework for

combining cfDNA fragmentation profiles with

other markers for lung cancer detection

DNA variations in late-stage disease may

affect cfDNA detection

Lung-CLiP [79] 5-nearest neighbor; 3-nearest neighbor;

NB; LR; DT

160 cfDNA AUC (0.69–0.98) Leave-one-out cross-validation SNV + CNV features This study establishes an ML framework for

the early detection of lung cancers using

cfDNA

Sampling bias exists (most are smokers) in the

training dataset

Liang et al. [80] LR 296 ctDNA AUC (0.816) 10-fold cross-validation Nine DNA methylation markers This study establishes an ML framework for

the early detection of lung cancers using DNA

methylation markers

The selected features are comprised of only

nine methylation biomarkers, which poses a

limitation on assay performance

Raman et al. [81] RF; SVM; LR with ridge, elastic net;

LASSO regularization

843 cfDNA mAUC (0.896–0.936) Leave-one-out cross-validation Copy number profiling of cfDNA The model provides a framework for using

copy number profiling of cfDNA as a

biomarker in lung cancer detection

Feature selection methods can be used to

reduce overfitting and may have the potential

to achieve higher AUC

Kobayashi et al. [83] Diet Networks with EIS 954 Somatic mutation Accuracy (0.8) 5-fold cross-validation SNVs, insertions, and deletions across 1796

genes

The EIS helps to stabilize the training process

of Diet Networks

The interpretable hidden interpretations

obtained from EIS may vary between different

datasets

Whitney et al. [86] LR 299 RNA-seq of BECs AUC (0.81) 10-fold cross-validation Lung cancer-associated and clinical covariate

RNA markers

The model keeps sensitivity for small and

peripheral suspected lesions

The selected genes vary greatly under different

feature selection processes and parameters

Podolsky et al. [87] KNN; NB normal distribution of attributes;

NB distribution through histograms;

SVM; C4.5 DT

529 RNA-seq AUC (0.91) Hold-out RNA-seq This study systematically compares different

models of lung cancer subtype classification

across different datasets

Feature selection methods can be used to

reduce overfitting

Choi et al. [88] An ensemble model based on elastic net LR;

SVM; hierarchical LR

2285 RNA-seq of bronchial

brushing samples

AUC (0.74) 5-fold cross-validation RNA-seq of 1232 genes with clinical

covariates

The model integrates RNA-seq features and

clinical information to improve the accuracy

of risk prediction

Sample sizes in certain subgroups are small

and may cause unbalanced training

Aliferis et al. [89] Linear SVM; polynomial-kernel SVM; KNN; NN 203 RNA-seq AUC (0.8783–0.9980) 5-fold cross-validation RNA-seq of selected genes using RFE and

UAF

The study uses different gene selection

algorithms to improve the classification

accuracy

The selected genes vary greatly across different

training cohorts

Aliferis et al. [91] DT; KNN; linear SVM; polynomial-kernel SVM;

RBF-kernel SVM; NN

37 CNV measured by CGH Accuracy (0.892) Leave-one-out cross-validation Copy number of 80 selected genes based on

linear SVM

The study systematically compares different

models of lung cancer subtype classification

The sample size is small

Daemen et al. [92] HMM; weighted LS-SVM 89 CNV measured by CGH Accuracy (0.880–0.955) 10-fold cross-validation CNV measured by CGH The use of recurrent HMMs for CNV

detection provides high accuracy for cancer

classification

Benchmarked comparisons are needed to

demonstrate the superiority of using the

HMM model

Jurmeister et al. [93] NN; SVM; RF 972 DNA methylation Accuracy (0.878–0.964) 5-fold cross-validation Top 2000 variable CpG sites The study provides a framework for using

DNA methylation data to predict tumor

metastases

The model cannot accurately predict samples

with low tumor cellularity through

methylation data

Note: LASSO, least absolute shrinkage and selection operator; cfDNA, cell-free DNA; NB, naive Bayes; DT, decision tree; SNV, single-nucleotide variant; CNV, copy number variation; ctDNA,

circulating tumor DNA; mAUC, mean area under the curve; EIS, element-wise input scaling; BEC, bronchial epithelial cell; KNN, K-nearest neighbors; NN, neural network; RFE, recursive feature

elimination; UAF, univariate association filtering; CGH, comparative genomic hybridization; HMM, hidden Markov model; LS-SVM, least squares support vector machines; RNA-seq, RNA

sequencing. Compared with hold-out, cross-validation is usually more robust, and accounts for more variance between possible splits in training, validation, and test data. However, cross-validation is

more time consuming than using the simple holdout method.
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Apply ML to lung cancer treatment response and

survival prediction

Prognosis and therapy response prediction

Sophisticated ML models have acted as supplements for can-

cer intervention response evaluation and prediction [98,99],
and have demonstrated advances in optimizing therapy deci-
sions that improve chances of successful recovery (Figure 4;

Table 3) [100,101]. There are several metrics that are available
for evaluating cancer therapy response, including the Response
Evaluation Criteria in Solid Tumors (RECIST) [102]. The def-

inition of RECIST relies on imaging data, mainly CT and
magnetic resonance imaging (MRI), to determine how tumors
grow or shrink in patients [103]. To track the tumor volume
changes from CT images, Jiang et al. [104] designed an inte-

grated CNN model. Their CNN model used two deep net-
works based on a full-resolution residual network [105]
model by adding multiple residual streams of varying resolu-

tions, so that they could simultaneously combine features at
different resolutions for segmenting lung tumors. Using the
RECIST criterion, Qureshi [106] set up a RF model to predict

the RECIST level under EGFR tyrosine kinase inhibitor (TKI)
therapy given the patient’s mutation profile in gene EGFR. To
improve the prediction performance, the model integrated clin-

ical information, geometrical features, and energy features
obtained from a patient’s EGFR mutant drug complex as input
to train the classifiers. In a recent study, the authors defined a
different metric, tumor proportional scoring (TPS) calculated

as the percentage of tumor cells in digital pathology images,
to evaluate the lung cancer treatment response [107]. They
applied the Otsu threshold [108] with an auxiliary classifier

generative adversarial network (AC-GAN) model to identify
positive tumor cell regions (TC+) and negative tumor cell
regions (TC�). And they ultimately used the ratio between

the pixel count of the TC+ regions and the pixel count of all
detected tumor cell regions to evaluate the TPS number.
Figure 4 Diagram of ML applications in tr
Another study from Geeleher et al. [109] used half-maximal
inhibitory concentration (IC50) to evaluate drug response. In
their model, the authors applied a ridge regression model

[110] to estimate IC50 values for different cell lines in terms
of their whole-genome expression level. More recently, Quiros
et al. [111] established a phenotype representation learning

(PRL) through self-supervised learning and community detec-
tion for spatial clustering cell type annotation on histopatho-
logical images. Their clustering results can be further used

for tracking histological tumor growth patterns and identify-
ing tumor recurrence. Indeed, their model has also demon-
strated good performance in the LUAD and LUSC
classifications.
Survival prediction

Prognosis and survival prediction as a part of clinical oncology

is a tough but essential task for physicians, as knowing the
survival period can inform treatment decisions and benefit
patients in managing costs [112–114]. For most of the medical

history, predictions relied primarily on the physician’s
knowledge and experience based on prior patient histories
and medical records. However, studies have indicated that

physicians tend to execute poorly in predicting the prognosis
and survival expectancy, often over-predicting survival time
[115–117]. Statistical algorithms, such as the Cox
proportional-hazards model [118], have been implemented to

assist physicians’ prediction in many studies [119–122], but
they are not particularly accurate [12]. As a comparison, ML
has shown its potential to predict a patient’s prognosis and

survival in genomic, transcriptomic, proteomic, radiomic,
and other datasets (Figure 4; Table 3). Chen et al. [123] used
3-year survival as a threshold to split the patients into high-

risk (survival time < 36 months) and low-risk (survival
time > 36 months) groups, and then constructed a NN model
to binary predict the risk of a patient using his gene expression

data and clinical variables. In their model, they tested four
eatment response and survival prediction



Table 3 Publications relevant to ML on treatment response and survival prediction

Publication Feature extraction method Prediction model Sample size Data type Performance Validation method Feature selection/input Highlight/advantage Shortcoming

Jiang et al. [104] MRRN-based model MRRN-based model 1210 CT Images DSC (0.68–0.75) 5-fold cross-validation 3D image features The model can accurately track the

tumor volume changes from CT images

across multiple image resolutions

The model does not predict accurately

enough when the tumor size is small

Qureshi [106] NA RF; SVM; KNN; LDA;

CART

201 Molecular structure and

somatic mutations of

EGFR

Accuracy (0.975) 10-fold cross-validation 4 clinical features + 4 protein drug interaction

features + 5 geometrical features

The model integrates multiple features

for data training, and achieves better

performance than other benchmarked

models

Among the possible 594 EGFR

mutations available in the COSMIC

database, the model only considers the

most common 33 EGFR mutations for

model training

Kapil et al. [107] AC-GAN AC-GAN 270 Digital pathology images Lcc (0.94); Pcc (0.95);

MAE (8.03)

Hold-out PD-L1-stained tumor section histological

slides

The model achieves better performance

than other benchmarked, fully

supervised models

In the experiments, the use of PD-L1

staining for TPS evaluation may not be

accurate enough

Geeleher et al. [109] NA Ridge regression model 62 RNA-seq Accuracy (0.89) Leave-one-out cross-

validation

Removed low variable genes The model can accurately predict the

drug response using RNA-seq profiles

only

The training sample size is small

Chen et al. [123] Chi-square test + NN NN 440 RNA-seq Accuracy (0.83) Hold-out RNA-seq of 5 genes The model uses multiple laboratory

datasets for training to improve its

robustness

The model doesn’t consider

demographic and clinical features,

which may affect the prediction

LUADpp [125] Top genes with most

significant mutation

frequency difference

SVM 371 Somatic mutations Accuracy (0.81) 5-fold cross-validation Somatic mutation features in 85 genes The model can predict with high

accuracy with only seven gene mutation

features

Mutation frequency may be impacted

by the sampling bias across datasets;

LD may also affect the feature selection

Cho et al. [126] Information gain; Chi-

squared test; minimum

redundancy maximum

relevance; correlation

algorithm

NB; KNN; SVM; DT 471 Somatic mutations Accuracy (0.68–0.88) 5-fold cross-validation Somatic mutation features composed of 19

genes

To improve performance, the model

uses four different methods for feature

selection

The training cohort consists of only one

dataset

Yu et al. [128] Information gain ratio;

hierarchical clustering

RF 538 Multi-omics (histology,

pathology reports, RNA,

proteomics)

AUC (> 0.8) leave-one-out cross-

validation

15 gene set features The study uses an integrative omics-

pathology model to improve the

accuracy in predicting patients’

prognosis

Cox models may be overfitted in

multiple-dimension data

Asada et al. [130] Autoencoder +

Cox-PH + K-means +

ANOVA

SVM 364 Multi-omics (miRNA,

mRNA)

Accuracy (0.81) Hold-out 20 miRNAs + 25 mRNAs The study uses ML algorithms to

systematically model feature extraction

from multi-omics datasets

The model does not consider the impact

of clinical and demographic variances

in data training

Takahashi et al. [131] Autoencoder +

Cox-PH + K-means +

XGBoost/LightGBM

LR 483 Multi-omics (mRNA,

somatic mutation, CNV,

mythelation, RPPA)

AUC (0.43–0.99 under

different omics data)

Hold-out 12 mRNAs, 3 miRNAs, 3 methylations,

5 CNVs, 3 somatic mutations, and 3 RPPA

The study uses ML algorithms to

systematically model feature extraction

from multi-omics datasets

The datasets collected in this study

contain uncommon samples between

different omics datasets, which may

cause bias in model evaluation

Wiesweg et al. [136] Lasso regression SVM 122 RNA-seq Significant hazard ratio

differences

Hold-out 7 genes from feature selection model +

25 cell type-specific genes

The ML-based feature extraction model

performs better than using any single

immune marker for immunotherapy

response prediction

The metrics used in this study does not

perceptual intuition. Using accuracy or

AUC may be better

Trebeschi et al. [137] LR; RF LR; RF 262 CT imaging AUC (0.76–0.83) Hold-out 10 radiographic features The model can extract potential

predictive CT-derived radiomic

biomarkers to improve immunotherapy

response prediction

The predictive performance between

different cancer types is not robust

Saltz et al. [142] CAE [143] VGG16 [144] +

DeconvNet [145]

4612

(13 cancer types)

Histological images AUC (0.9544) Hold-out Image features of H&E-stained tumor section

histological slides

The model outperforms pathologists

and other benchmarked models

The predictive performance between

different cancer types is not robust

Note: MRRN, resolution residually connected network; CART, classification and regression trees; AC-GAN, auxiliary classifier generative adversarial networks; Lcc, Lin’s concordance coefficient; Pcc,

Pearson correlation coefficient; MAE, mean absolute error; TPS, tumor proportional scoring; LD, linkage disequilibrium; Cox-PH, Cox proportional-hazards; ANOVA, analysis of variance; miRNA,

microRNA; RPPA, reverse phase protein array; CAE, convolutional autoencoder; mRNA, messenger RNA; PD-L1, programmed cell death 1 ligand 1; COSMIC, the Catalogue Of Somatic Mutations

In Cancer; EGFR, epidermal growth factor receptor. Compared with hold-out, cross-validation is usually more robust, and accounts for more variance between possible splits in training, validation,

and test data. However, cross-validation is more time consuming than using the simple holdout method.
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microarray gene expression datasets and achieved an overall
accuracy of 83.0% with only five identified genes correlated
with survival time. Liu et al. [124] also utilized gene expression

data for a 3-year survival classification. Unlike Chen et al.
[123], the authors integrated three types of sequencing data —
RNA sequencing, DNA methylation, and DNA mutation —

to select a total of 22 genes to improve their model’s stability.
Meanwhile, LUADpp [125] and Cho et al. [126] used the
somatic mutations as input features to model a 3-year survival

risk classification. To select the genes associated with the high-
est significant mortality, Cho et al. [126] used chi-squared tests,
and LUADpp [125] used a published genome-wide rate com-
parison test [127] that was able to balance statistical power

and precision to compare gene mutation rates. Due to the
complexity of survival prediction, multi-omics tumor data
have been integrated for analysis in many studies. Compared

with single-omics data, the multi-omics data are more chal-
lenging to accurately extract the most significant genes for pre-
diction. To address the issue, several studies [128–131]

designed a similar workflow. They first constructed a matrix
representing the similarity between patients based on their
multi-omics data. Using the obtained matrix, they then

employed an unsupervised clustering model (usually autoen-
coder with K-means clustering) to categorize the patients into
two clusters. The two clusters were labeled ‘‘high-risk” and
‘‘low-risk” in terms of the different survival outcomes between

the two clusters in the Kaplan–Meier analysis. Following the
survival outcome differences, the genes associated with mortal-
ity were extracted using a statistical model [128,129] or an ML

model [130,131] for downstream analyses.

Apply ML to lung cancer immunotherapy

Immunotherapy response prediction

Immunotherapy has become increasingly important in recent
years. It enables a patient’s own immune system to fight can-
cer, in most cases, by stimulating T cells. Up to date, distinct

novel immunotherapy treatments are being tested for lung can-
cer, and a variety of them have become standard parts of
immunotherapy. Immune checkpoint inhibitors (ICIs), espe-

cially programmed cell death protein 1 (PD-1)/programmed
cell death protein ligand 1 (PD-L1) blockade therapy [132],
have been demonstrated to be valuable in the treatment of

patients with non-small cell lung cancer (NSCLC) [133,134].
However, immunotherapy is not yet as widely used as surgery,
chemotherapy, or radiation therapies. One interpretation is
that it does not work for all patients due to the uniqueness

of a patient’s tumor immune microenvironment (TIME).
Therefore, estimating whether a patient will respond to
immunotherapy is important for cancer treatment. Recently,

AI-based technologies have been developed to predict
immunotherapy responses based on immune sequencing signa-
tures and medical imaging signatures (Figure 4; Table 3) [135].

To predict the response to PD-1/PD-L1 blockade therapy,
Wiesweg et al. [136] utilized gene expression profiles of 7 signif-
icant genes extracted fromML models plus 25 cell type-specific
genes as input features to train an SVM classifier for RECIST

classification. Aside from sequencing data, features from CT
scans can also be used to assess the RECIST level of a patient.
Two recent studies [137,138] used radiomic biomarkers as well
as other imaging features of tumor lesions from contrast-
enhanced computed tomography (CE-CT) scans to train a
classifier, including LR and RF, for RECIST classification.
Tumor-infiltrating lymphocyte evaluation

The proportion of tumor-infiltrating lymphocytes (TILs) is

another important metric for immunotherapy response evalu-
ation. To this end, using transcriptomics data, DeepTIL [139]
optimized the cell deconvolution model CIBERSORT [140] to

automatically compute the abundance of the leucocyte subsets
(B cells, CD4+ T cells, CD8+ T cells, cd T cells, Mo-Ma-DC
cells, and granulocytes) within a tumor sample. A different

approach [141] utilized a total of 84 radiomic features from
the CE-CT scans, along with RNA sequencing of 20,530 genes
as biomarkers to train a linear elastic-net regression model to
predict the abundance of CD8+ T cells. Another study [142]

created a DL model to identify TILs in digitized H&E-
stained images (Table 3). The methodology consisted of two
unique CNN modules to evaluate TILs at different scales: a

lymphocyte infiltration classification CNN (lymphocyte
CNN) and a necrosis segmentation CNN (necrosis CNN).
The ‘‘lymphocyte CNN” aimed to categorize the input image

into with- and without-lymphocyte infiltration regions. It con-
sists of two steps: a convolutional autoencoder (CAE) [143] for
feature extraction, followed by a VGG 16-layer network [144]
for TIL region classification. The ‘‘necrosis CNN” aimed to

detect TILs within a necrosis region. They used the DeconvNet
[145] model for TIL segmentation in ‘‘necrosis CNN” as the
model has been shown to achieve high accuracy with several

benchmark imaging datasets.
Neoantigen prediction

In addition to immunotherapy response prediction, ML algo-
rithms have shed light on neoantigen prediction for
immunotherapy. Neoantigens are tumor-specific mutated pep-

tides generated by somatic mutations in tumor cells, which can
induce antitumor immune responses [146–148]. Recent work
has demonstrated that immunogenic neoantigens are benefit
to the development and optimization of neoantigen-targeted

immune therapies [149–152]. In accordance with neoantigen
studies in clinical trials, state-of-the-art ML approaches have
been implemented to identify neoantigens based on human

leukocyte antigen (HLA) class I and II processing and presen-
tation [153–157]. Using the identified somatic mutations, ML
models can estimate the binding affinity of the encoded

mutated peptides to the patient’s HLA alleles (peptide–HLA
binding affinity). The neoantigens can be further predicted
based on the estimated peptide–HLA binding affinity.

NetMHC [158,159] utilized a receptor–ligand dataset consist-
ing of 528 peptide–HLA binding interactions measured by
Buus et al. [160] to train a combination of several NNs for
neo-peptide affinity prediction. To make the prediction more

accurate, NetMHCpan [161,162] used a larger dataset consist-
ing of 37,384 unique peptide–HLA interactions covering 24
HLA-A alleles and 18 HLA-B alleles (26,503 and 10,881 for

the A and B alleles, respectively) to train their NN model. Both
tools have been implemented to study the neoantigen land-
scape in lung cancers [146,163–165].
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Challenges and future perspectives

Despite the widespread use of ML studies in lung cancer clin-
ical practice and research, there are still challenges to be

addressed. Here, we post some examples of recent ML algo-
rithms, especially the increasingly popular and important DL
algorithms of the past decade, to enlighten them on lung can-

cer therapy analyses, as well as the challenges for future lung
cancer studies.

Imaging data analysis

Learning how to effectively extract nuance from imaging data
is critical for clinical use. In the earlier ML-based CAD system,
feature extractions were typically based on the image intensity,

shape, and texture of a suspicious region along with other clin-
ical variables [166]. However, these approaches are arbitrarily
defined and may not retrieve the intrinsic features of a suspi-

cious nodule. To this end, a DL-based CAD system was devel-
oped leveraging CNN models to extract features directly from
raw imaging data with multilevel representations and hierar-

chical abstraction [167–169]. Contrary to previous methods,
features from a CNN model are not designed by humans,
and reflect the intrinsic features of the nodule in an objective
and comprehensive manner. Recently, the Vision Transformer

(ViT) has emerged as the current state-of-the-art in computer
vision [170,171]. In comparison to CNN, ViT outperformed
almost 4� in terms of computational efficiency and accuracy,

and was more robust when training on smaller datasets [172].
Although, to our knowledge, ViT models have not been imple-
mented in any lung cancer imaging studies, they have shown

their potential as a competitive alternative to CNN in imaging
data analysis.

Omics dataset analysis

DL is a subfield of ML, which uses programmable NNs to
make accurate decisions. It particularly shines when it comes
to complex problems such as image classification. In this study,

we reviewed the utility of DL models in imaging datasets.
Compared with imaging datasets, DL algorithms were less fre-
quent in lung cancer clinical studies using omics data. How-

ever, DL models have been extensively applied in other fields
of omics analysis. For example, the genomics data are contin-
uous sequences, thus recurrent neural network (RNN) models

[173] and CNN models [174] are good tools for the population
genetics analysis. Moreover, considering the input dimension
of the omics data is usually very high, to improve efficiency
and reduce overfitting, many studies have used autoencoders

or deep generative models for feature extraction and dimen-
sionality reduction [175]. In the meantime, self-supervised rep-
resentation learning models can overcome the curse of

dimensionality and integrate multi-omics data to combine
information about different aspects of the same tissue samples
[176]. Accompanied by the development of single-cell-based

[177] and spatial-based [178] technologies that have been
applied in molecular studies, numerous DL models are becom-
ing more popular for computationally intensive analysis. To

deal with the complexity of large genomics data, unsupervised
deep clustering tools have been built for population structure
identification [179] or cell population subtype annotation
[180–183]. In addition, to process the complex structure of
multi-omics data, graph neural network (GNN) models are

increasingly popular in dataset integration [184], biomedical
classification [185], prognosis prediction [186], and so on.
Though these studies have not been directly applied to lung

cancer clinical analysis, they are a good inspiration for using
DL tools to address complex lung cancer omics datasets.

Multi-view data and multi-database integration

It is common to access large amounts of imaging data, multi-
omics data, and clinical records from a single patient nowa-

days. Integrating these data provides a comprehensive insight
into the molecular functions of lung cancer studies. However,
these data types are typically obtained from different plat-
forms, so platform noise inevitably exists between these data

types. For example, imaging data analysis, especially radio-
mics, usually comes with the challenges of complicated data
normalization, data fusion, and data integration. To overcome

this limitation, multimodality medical segmentation networks
have been developed to jointly process multimodality medical
images [187]. Similarly, for sequencing data types, batch noise

also exists between different databases (i.e., batch effect).
Removing batch effects and integrating datasets from multiple
platforms together in a framework that allows us to further
analyze the mechanisms of cancer drug resistance and recur-

rence is important for cancer therapies. Though biomedical
studies have experimented and/or benchmarked integrative
tools [188–191], they are not comprehensive and discriminating

enough to address the choice of tools in the context of biolog-
ical questions of interest.

Model generalizability and robustness

In terms of this review, we find that the performance of an ML
algorithm usually varies across different datasets. One inter-

pretation might be the existence of a database batch effect that
we discussed earlier. However, the absence of generalizability
and robustness might be other factors that hurdle these ML
models in clinical studies. In addition, to reduce overfitting,

most studies used either statistical models or ML models to
select marker genes before classification. However, these mar-
ker genes are usually quite different between studies, indicating

that the identified marker genes lack generalizability and bio-
logical interpretability. To improve the generalizability and
robustness of a model, it is important to develop a better

understanding of robustness issues in different ML architec-
tures and bridge the gap in robustness techniques among dif-
ferent domains. For example, recent studies have applied

transfer learning to use a pre-trained model when training their
own datasets in lung cancer imaging data analysis [38,55,192],
and have improved the efficiency and robustness of their
CNN-based models. For sequencing datasets, transfer learning

has also been used in deep NNs to provide a generalizability
approach [193], which could be a good example of building a
general and robust model for lung cancer sequencing data

analysis. In addition, DL is a complex black-box model.
Understanding the mechanisms of a DL system in clinical
studies could help to build a standardized and unified DL

framework to improve its performance and robustness. The
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explainable AI (XAI) models have provided a tool for model-
specific and model-agnostic analysis [194,195]. These methods
can provide the explanations of a model at local and global

levels, which further helps the researchers to fine-tune hyper-
parameters from different models with high efficacy [196,197].

Metrics for performance evaluation

Studies usually focus on the development of algorithms for
clinical studies. However, metrics selection for performance

assessment of these algorithms is usually neglected, though it
usually plays an important component in ML systems [198].
Based on this review (Tables 1–3), accuracy and under the

curve (AUC) are the two most conventional metrics, whereas
these metrics do not always reflect the clinical needs and
should be translated into clinically explainable metrics. Com-
pared with accuracy, sensitivity or specificity might be more

associated with clinical needs under certain circumstances,
for example, patients at high risk of emergency department vis-
its [199].

Clinical decision-making

A recent study estimated that the overall costs for lung cancer

therapy would exceed $50,000 [200] for most patients, and that
the cost would be high for most families. Thus, accurate prog-
nosis prediction and decision-making will pave the way for
personalized treatment. Recent DL models have been used to

predict the effectiveness of a therapy/drug and optimize the
combination of different therapies/drugs [201,202]. However,
most existing DL models for clinical decision-making have dif-

ficulty in keeping up with knowledge evolution and/or
dynamic health care data change [203]. Currently, clinical deci-
sion support systems, including IBMWatson Health and Goo-

gle DeepMind Health, have been implemented in lung cancer
treatments in recent years [204,205]. Although the efficiency
of clinical work has improved with the help of these systems,

they are still far from perfect in terms of clinical trials, and cur-
rently cannot replace physicians at this stage [205].
Conclusion

AI grants us a different perspective on lung cancer research
and allows for exploring the implementation of decision sup-

port tools to facilitate precision oncology. In this review, we
surveyed the current advances of ML algorithms in various
areas of lung cancer therapy, including early detection, diagno-

sis decision, prognosis prediction, drug response evaluation,
and immunotherapy practice. To aid future ML development
in lung cancer therapies, we thoroughly summarized the data-
sets (Table S1), baseline methods (Table S2), and characteris-

tics of the methods (Tables 1–3). At last, we highlighted the
current challenges that need to be addressed, such as the cur-
rent lack of quantity and quality of medical data labels for

training, the importance of model robustness and biomedical
explanations for clinical use, the concern of the metrics used
for performance evaluation, and the need for data integration

and batch removal. As this review indicates, future lung cancer
therapies will include both imaging data and omics data, so an
ML clinical decision-making tool should be a multi-modal
system that considers both imaging data and omics data treat-
ment, and the integration of multiple data types. Finally, we
expect that these challenges could motivate further studies to

focus on lung cancer therapies.
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