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Abstract Explainable artificial intelligence aims to interpret how machine learning models make

decisions, and many model explainers have been developed in the computer vision field. However,

understanding of the applicability of these model explainers to biological data is still lacking. In this

study, we comprehensively evaluated multiple explainers by interpreting pre-trained models for pre-

dicting tissue types from transcriptomic data and by identifying the top contributing genes from

each sample with the greatest impacts on model prediction. To improve the reproducibility and

interpretability of results generated by model explainers, we proposed a series of optimization

strategies for each explainer on two different model architectures of multilayer perceptron

(MLP) and convolutional neural network (CNN). We observed three groups of explainer and

model architecture combinations with high reproducibility. Group II, which contains three model

explainers on aggregated MLP models, identified top contributing genes in different tissues that

exhibited tissue-specific manifestation and were potential cancer biomarkers. In summary, our work

provides novel insights and guidance for exploring biological mechanisms using explainable

machine learning models.
Introduction

In recent years, many tools based on machine learning models
have been developed and applied to biological studies, most of

which are developed for predictions. For example, AlphaFold
was developed to predict protein 3D structure from amino acid
sequences [1], P-NET was used to predict cancer treatment-

resistance state from molecular data [2], and CEFCIG can
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predict cell identity regulators from histone markers [3]. Addi-
tionally, machine learning models can predict different biolog-
ical features from one single data type, depending on which

feature is paired with the input data when training the model.
For instance, a variety of models have been developed to pre-
dict ncRNA [4], nucleosome [5], and chromatin accessibility/

activity/state [6–9] from genome sequences.
Although these tools have been greatly successful in various

biological topics, biologists are still curious about how a

machine learning model makes a decision and which features
of the input data play important roles in the model output.
To answer these questions, explainable artificial intelligence
(XAI) programs have recently emerged to enable the develop-

ment of models that can be understood by humans [10,11].
These XAI methods can also be applied to interpret machine
learning models obtained from biological data by quantifying

feature contributions to model prediction [12,13]. The twomost
popular approaches to estimate the contribution of each input
feature to the model output are: 1) perturbing the input data

and comparing outputs between the original and perturbated
inputs; and 2) using backpropagation to measure the impor-
tance of each feature in the input data [14–16]. The former is

intuitive but computationally expensive, especially when
exhaustively estimating all input features, and there is also
the risk of underestimating feature contribution [17]. By con-
trast, the latter can measure the contribution of all input fea-

tures in ‘‘one shot”. Consequently, many model explainers
based on backpropagation were proposed and developed in
the field of computer science and computer vision [18]. Benefit-

ing from these model explainers, computational biologists dis-
covered the syntax of transcription factor (TF) binding motifs
by interpreting models trained to predict chromatin accessibil-

ity [19,20]; and screened for cancer marker genes from models
of cancer type classification [21–23]. There is no doubt that
these explorations have showcased the potential of inter-

pretable models in discovering meaningful biological mecha-
nisms. However, the remaining problem is that results from
different model explainers are highly variable [21]. Since these
model explainers were not specifically designed for biological

data, it is critical to evaluate their applicability in biology. Cur-
rently, there is still a lack of comprehensive understanding of
these explainers in biological studies. To fill this gap, we opti-

mized and assessed the performance of different model explain-
ers and analyzed their biological relevance. To minimize the
impact of model performance on the assessment of explainers,

we tested explainers on well-trained models for predicting tissue
types and cancer/normal statuses from gene expression data. In
summary, this study provides comprehensive guide for apply-
ing interpretable machine learning to biological studies.

Results

Overview of model interpretability

In this study, we formulated a specific question to instantiate the
application of interpretable models to biological data. Can we
quantify the contribution of individual genes to tissue type
and disease status? Two steps were implemented. First, we built

neural network models and trained the models with transcrip-
tomes as input and tissue type and disease status of the tran-
scriptome sample as the prediction output. Models were built
based on two types of neural networks, convolutional neural
network (CNN) and multilayer perceptron (MLP), and model
architectures are detailed in the methods section. In general,

CNN is more complex than MLP. Next, we applied model
explainers to compute a quantitative score of each gene’s contri-
bution to the model’s prediction, which are named gene contri-

bution scores. We tested eight popular model explainers and
their variations commonly used in computer vision and assessed
and compared their applicability and performances on each pre-

trained model. These explainers are: gradients (Saliency), Input
x Gradient (InputXGradient), guided backpropagation
(GuidedBackprop), Integrated Gradients (IntegratedGradi-
ents), DeepLIFT (DeepLift), approximating SHAP values

using DeepLIFT (DeepLiftShap), Guided Grad-CAM
(GuidedGradCam), and Guided Grad-CAM++ (Guided-
GradCam++) (Table S1) [17,18,24–29]. Since GuidedGrad-

Cam and GuidedGradCam++ were developed for CNN
specifically, only the first six explainers were tested on MLP.

We used 27,417 RNA-seq samples from The Genotype-

Tissue Expression (GTEx) and The Cancer Genome Atlas
(TCGA) projects to train CNN or MLP-based models. These
samples were from 82 distinct normal and cancer tissues and

cell types (Table S2). After training, the prediction accuracy
of all models was comparable, with a median value of 97.2%
for CNN and 97.8% for MLP. The convolutional layers of
the CNN models require that, as input data, gene expression

values should be organized with a fixed gene order in a 2D
matrix. Therefore, we tested various gene orders for the
CNN-based models, e.g., sorting genes according to their

genomic coordinates [22]. Results indicated that gene order
did not affect model performance in terms of prediction accu-
racy. Although models were trained with all 82 different nor-

mal and cancer tissues, results from four normal tissues
(liver, lung, ovary, and pancreas) are reported here to illustrate
the applicability and performance of the eight explainers.

Direct use of explainers from computer vision resulted in poor

reproducibility

Randomness is often challenging in machine learning, which is

present in both model training and model interpretation
[30,31]. For this reason, we measured both intra-model and
inter-model reproducibility of each explainer. During the test-

ing, each explainer was applied to pre-trained models based on
CNN or MLP, respectively.

First, we tested intra-model reproducibility by applying an

explainer to the same pre-trained model 5 times (5 replicates
per model per explainer), and for each explainer, we checked
correlations of gene contribution scores as well as the pair-
wise overlap of the top 100 contributing genes between repli-

cates. We found that intra-model reproducibility, in terms of
Spearman’s correlation of gene contribution scores and over-
lap of the gene IDs among the top 100 contributing genes, is

low for most explainers on both CNN- and MLP-based mod-
els (results from normal liver samples are shown in Figure 1;
results from normal lung, ovary, and pancreas are shown Fig-

ure S1). The exception was GuidedGradCam++, which was
previously used to identify cancer marker genes [21].

As shown in Figure 1, we also tested inter-model repro-

ducibility by applying each explainer to five different models
with comparable prediction accuracies (5 models per explai-



Figure 1 Performance of different model explainers without optimization

A. Spearman’s correlation of gene contribution scores (upper panel) and overlap in the top 100 contributing genes (lower panel) in liver

among replicates from the same pre-trained model, different pre-trained models with the same gene order, and different pre-trained

models with different gene orders on CNN-based models. B. Spearman’s correlation on gene contribution scores (upper panel) and

overlap in the top 100 contributing genes (lower panel) in liver among replicates from the same pre-trained model and different pre-trained

models on MLP-based models. CNN, convolutional neural network; MLP, multilayer perceptron; Saliency, gradients; InputXGradient,

Input x Gradient; GuidedBackprop, guided backpropagation; IntegratedGradients, Integrated Gradients; DeepLift, DeepLIFT;

DeepLiftShap, approximating SHAP values using DeepLIFT; GuidedGradCam, Guided Grad-CAM; GuidedGradCam++, Guided

Grad-CAM++.
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ner). These five models were trained using the same model
architecture and training data set but with slightly different

hyperparameters. For CNN models, we also tested the impact
of different input gene orders since CNN requires organizing
input genes in a 2D matrix. The inter-model reproducibility

of all explainers, including GuidedGradCam++, was signifi-
cantly lower than those of the intra-models. For CNN-based
models, even though the gene order had little impact on predic-

tion accuracy, it had a significant impact on the model repro-
ducibility, especially regarding the overlap of top contributing
genes. For MLP-based models, the reproducibility of intra-
model and inter-model tests were similar; however, both

Spearman’s correlation and overlap of the top 100 contribut-
ing genes were very low.

In summary, gene contribution scores vary greatly intra-

and inter-models for both CNN and MLP. These tests were
performed per explainer. We expect that reproducibility across
different explainers would be much worse. Therefore, model

explainers developed for computer vision may not be directly
applied to answering biological questions. Model interpretabil-
ity in computer vision aims to identify visual features consist-
ing of multiple similar pixels in an area, and variations within

the area have a limited impact on the outcome. However, inter-
preting biological data such as the transcriptomes requires
single-gene resolution since genes within an area were arbitrar-

ily placed together, therefore, the results are very sensitive to
random noise.
Optimization of model interpretability

Since it is not feasible to directly transfer model explainers
from computer vision to biology, we tested whether these
explainers can be optimized and adjusted for biological data.

First, we borrowed a de-noising strategy widely used in com-
puter vision, ‘‘SmoothGrad: removing noise by adding noise”
[32]. Instead of estimating gene contribution scores in a sample

in ‘‘one pass”, SmoothGrad calculates the contribution of a
gene by averaging contribution scores from multiple explana-
tion estimates per sample by adding random noise into the

expression data each pass. Unfortunately, the strategy of
SmoothGrad did not improve inter-model reproducibility.
On the contrary, it lowered the performance of all explainers

on both CNN and MLP except for Saliency on MLP and
GuidedBackprop on CNN (Figure 2A, Figure S2). For Sal-
iency on MLP, the improvement saturates when the number
of repeat estimates reaches 50, while the performance of

GuidedBackprop plateaued after 30 repeats. Next, we tested
whether repeating the explanation without adding random
noise into the expression data, which we defined as a simple

repeat, would be beneficial. Results of the simulation indicated
that repeats without adding noise significantly improved the
performance of all explainers on both CNN and MLP, except

for Saliency and GuidedGradCam++ on CNN (Figure 2B,
Figure S3). For most explainers, improvement saturated after
20 repeats for CNN and after 40 repeats for MLP.



Figure 2 Optimization of different model explainers

Spearman’s correlation of gene contribution scores in liver from CNN models (upper panels) and MLP (lower panels). A. Performance by

averaging contribution scores from multiple estimates per sample by adding random noise into the expression data each pass. B. Performance

from running the same model multiple times and averaging contribution scores without adding random noise (simple repeats). C. Performance

of repeated reference zero for CNN, and a number of references randomly selected from 2000 simulated reference universal for MLP models,

for three explainers that require reference samples. D. Performance of model aggregations. E. Spearman’s correlation on gene contribution

scores (upper panel) and overlap in the top 100 contributing genes (lower panel) among replicates from different pre-trained models with

different gene orders based on CNN-based models. The analyses were carried out with three different optimization strategies: without

optimization, with optimized conditions for each explainer but without model aggregation, and with optimized conditions for each explainer

and with model aggregation. F. Same as (E) but based on MLP-based models. w/o, without; w/, with.
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DeepLift, DeepLiftShap, and IntegratedGradients require
a reference baseline when estimating gene contribution scores,

where a reference is a synthetic, randomly generated transcrip-
tome. In computer vision, a black image (all-zero input) or
random pixel values are often used as references, and for motif

identification of regulatory elements, the scrambled genomic
sequence was demonstrated as good reference [17]. In this
study, we compared four types of references named reference
zero, normal, universal, and specific. Reference zero and

normal are equivalent to black image and random pixel
values, respectively. For reference universal and specific, we
estimated the mean (l) and standard deviation (r) of each

gene’s expression levels across samples and then randomly
generated a value based on a truncated normal distribution
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N (l, r). Reference universal uses samples from all 82 tissue
types, while reference specific uses samples from a specific
tissue type.

We tested the performance of these four kinds of references
individually as well as in combination, to evaluate whether
multiple references would improve reproducibility. First, for

individual references, simulation results showed that reference
zero is the best for CNN-based models, while universal is pre-
ferred for MLP-based models (Figure S4). The result is

consistent with all the three explainers that required references.
Next, we tested the impact of multiple references on repro-
ducibility. Since the effect of using multiple references with
zero is equivalent to that of simple repeat with single reference

zero, these two kinds of optimization, using multiple references
zero and simple repeat, cannot contribute to reproducibility
additively. Therefore, we compared reproducibility by comb-

ing simple repeat with multiple references as reference normal,
universal, or specific with the reproducibility by combing sim-
ple repeat with single reference zero (which is equivalent to

multiple references zero without simple repeat). Interestingly,
we found that reference zero still outperformed the other three
kinds of references on CNN-based models (Figure S5). Similar

as simple repeat, improvement saturates when the number of
references zero reaches 20 on CNN-based models, while the
number of references universal goes to 60 on MLP-based mod-
els (Figure 2C).

Since the intra-model reproducibility was significantly
improved by repeating the explanation process multiple times
and averaging contribution scores from different estimates

(Figure 2B), we next tested the benefits of inter-model aggrega-
tion. We applied optimized parameters of each explainer on
CNN or MLP-based models (Table S1), estimated gene contri-

bution scores on each pre-trained model individually, and then
averaged inter-model results. Indeed, aggregating models sig-
nificantly increased reproducibility (Figure 2D, Figure S6).

Spearman’s correlations for DeepLift, DeepLiftShap, Inte-
gratedGradients, and Saliency reached nearly 1.0 on MLP.
In general, the reproducibility of all explainers was signifi-
cantly improved on both CNN and MLP-based models after

aggregating models (Figure 2D–F, Figure S7). Of note, the
model aggregation had the most significant impact and
improvement on the reproducibility of all explainers on

CNN-based models in terms of overlaps between the top 100
contributing genes (Figure 2E, lower panel). For most explain-
ers on MLP-based models, Spearman’s correlations on gene

contribution scores from model aggregation were higher than
0.9, and over 90% of the top 100 contributing genes over-
lapped between replicates on the same explainer (Figure 2F).

To summarize, gene contribution scores were highly repro-

ducible from the same explainer with optimized parameters.
Reproducibility of the top 100 contributing genes was better
on MLP-based models than those on CNN-based models.

One possible reason is that CNN-based models are much more
complex than MLP-based models and can be hard to be
interpreted.

Consistency across model explainers

So far, we’ve tested the performance within each explainer. To

test the consistency of gene contribution scores across different
explainers, we checked the overlap of the top 100 contributing
genes identified by different explainers with and without model
aggregation (Table S3). Within CNN or MLP models, model
aggregation did not only improve reproducibility within the

same explainer, but also across explainers. However, the top
100 contributing genes from CNN-based models with model
aggregation did not overlap with those from MLP-based mod-

els with or without model aggregation. Moreover, within
CNN-based models, the top 100 contributing genes with model
aggregation did not overlap with those without model

aggregation, which suggests that model aggregation resulted
in explainers identifying a completely different set of genes.
By contrast, top contributing genes from MLP-based models
were highly consistent with and without model aggregations.

We further explored why model aggregation had different
impacts on MLP and CNN. We first defined the top 100 con-
tributing genes from optimized parameters with model aggre-

gations as the baseline of comparison for each explainer.
Next, we compared the top 100 contributing genes from each
explainer without optimization to the baseline. It was found

that, without optimization on MLP-based models, top con-
tributing genes shared by two or more replicates had a higher
overlap with the baseline than that between top contributing

genes from individual replicates and the baseline (Figure S8).
However, this conclusion was not seen on CNN-based models.
This result suggests that the top contributing genes from differ-
ent MLP models are convergent, while those from different

CNN models are very divergent.
Intriguingly, the measurement of reproducibility high-

lighted three representative groups, each with different

explainers, model types (CNN or MLP), and aggregation sta-
tus (Figure 3). The three groups are group I: DeepLift,
DeepLiftShap, GuidedBackprop, InputXGradient, and Inte-

gratedGradients on CNN-based models with model aggrega-
tion; group II: DeepLift, DeepLiftShap, InputXGradient,
and IntegratedGradients on MLP-based models with model

aggregation; and group III: GuidedBackprop and Saliency
on MLP-based models with model aggregation. Next, we
delved into the top contributing genes identified by these three
groups.

Expression status of top contributing genes

It is important to understand the biological relevance of the

top contributing genes by different model architectures
(MLP vs. CNN) and different explainers. Since contribution
scores were derived from the input gene expression values,

we first calculated Spearman’s correlation between gene con-
tribution scores and expression levels (Figure S9). We
expected a high correlation for genes identified by
InputXGradient because gene expression level is a cofactor

in computing gene contribution scores by InputXGradient.
Indeed, we found weak correlations of all explainers in both
groups II and III except for InputXGradient. Conversely,

strong correlations were observed from 4 explainers in group
I: InputXGradient, IntegartedGradients, DeepLift, and
DeepLiftShap. However, it is puzzling that GuidedBackprop

from group I showed negative correlations for unknown
reasons.

Additionally, we checked overlaps between the top 100 con-

tributing genes and the top 100 expressed genes on both CNN-
and MLP-based models (Figure S10). In liver, nearly 50% of



Figure 3 Overlap of the top 100 contributing genes across explainers with and without model aggregation

Three representative groups (I, II, and III) are marked by black bars. Aggregation of CNN models or MLP models is shown as CNN-Agg

or MLP-Agg.
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the top contributing genes from group II overlapped with top
expressed genes, while the overlaps were less than 10% in

groups I and III (Figure 4A). Group II, as described above,
are DeepLift, DeepLiftShap, InputXGradient, and
IntegratedGradients on MLP-based models with model aggre-

gation. Strikingly, model aggregation eliminated the already
moderate overlaps in CNN-based models (group I). Another
noticeable finding for group I is that though Spearman’s cor-

relation between gene contribution scores and expression level
was very high, the majority of the top contributing genes were
not highly expressed.

Since different tissues have distinct phenotypes, we won-

dered whether the top contributing genes of different tissue
types exhibit distinct expression profiles. Heatmap of the top
contributing genes clearly demonstrated tissue-specific (TS)

manifestations for group II (represented by DeepLift on
MLP with model aggregation), and the patterns were much
weaker in both group I (represented by DeepLift on CNN with

model aggregation) and group III (represented by Saliency on
MLP with model aggregation) (Figure 4B). In addition, the
total number of genes from group III is much lower than that
of both groups I and II after removing redundant genes from
the top 100 contributing genes across tissues. This suggests

that the top 100 contributing genes were largely shared across
tissues in group III, which was validated by comparison across
tissue types in all explainers (Table S4). Among the three

groups, the top contributing genes in both groups I and II
are TS, while the top contributing genes in group III are highly
shared across tissues (Figure 4C).

Considering that the top contributing genes in groups I and
II were mostly TS, we are curious how the top contributing
genes are related to tissue specifically expressed genes (TS
genes). For this purpose, we identified TS genes across all 82

tissues and cell types, which were used in model training. It
was found that about 70% of the top contributing genes over-
lap with TS genes in group II in liver (Figure 4D). The frac-

tions vary across tissues (Figure S11A), since there are
different numbers of TS genes in each tissue type (Fig-
ure S11B). The percentages drop to less than 10% in both

groups I and III. Interestingly, model aggregation also signifi-
cantly reduced overlaps with TS genes in most explainers on
CNN-based models.



Figure 4 Biological relevance of the top 100 contributing genes

A. Overlaps between the top 100 contributing genes and the top 100 highest expressed genes in liver samples. Explainers that belong to

groups I, II, and III are marked by horizontal black bars. B. Expression profiles of the top 100 contributing genes in liver, lung, ovary, and

pancreas identified by DeepLift on CNN-based models with model aggregation (representative of group I), DeepLift on MLP-based

models with model aggregation (group II), and Saliency on MLP-based models with model aggregation (group III). C. Overlaps in the top

100 contributing genes among liver, lung, ovary, and pancreas identified by DeepLift on CNN-based models with model aggregation

(group I), DeepLift on MLP-based models with model aggregation (group II), and Saliency on MLP-based models with model

aggregation (group III). D. Overlaps between the top 100 contributing genes and TS genes in liver samples. E. Overlaps between the top

100 contributing genes and HK genes in liver samples. F. Percentages of TF-coding genes among the top 100 contributing genes in liver

samples (left panel) and ovary samples (right panel). Dashed lines indicate the overlap percentage by random chance. TS, tissue-specific;

HK, housekeeping; TF, transcription factor.
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In addition, we observed that many of the top contributing
genes (in group I particularly) are expressed at comparable
levels across tissues. We investigated the relationships between

the top contributing genes and housekeeping (HK) genes.
Results showed that about 10%�20% of top contributing
genes overlap with HK genes in group I, and the overlap

was also further reduced by model aggregation (Figure 4E,
Figure S12). Conversely, no overlap was found in both groups
II and III, except for the explainer InputXGradient.

Enrichment of top contributing genes in biological functions

To understand the biological functions of the top contributing

genes, we performed gene ontology (GO) enrichment analysis.
No enrichment was found on genes identified by all explainers
in group I. The enriched GO terms by genes from group II
were mostly unique for each tissue type and TS functions

(Table S5). For example, enriched GO terms in liver are molec-
ular functions related to lipoprotein and lipoprotein lipase
activities, while GO terms enriched in pancreas are associated

with the binding of oligosaccharides, peptidoglycan and so on.
Additionally, in group II, results among DeepLift, DeepLift-
Shap and IntegratedGradients are slightly more agreeable

compared to that from InputXGradient. For group III, we
expected similar GO terms enriched across tissue types since
top contributing genes from different tissues highly over-
lapped. This turned out to be the case. GO enrichment analysis
Figure 5 Top contributing genes in cancers

A. Percentages of the top 100 contributing genes which were differentially

the percentage of differentially expressed genes by random chance. B. Exp

only in cancer samples, only in normal samples, and in both normal and

models (shown as MLP-Agg, representative of group II, left panel) and

right panel). C. Heatmap of the 1179 shared top contributing genes from
showed that the top contributing genes in group III are
enriched in CCR7 chemokine receptor binding, neuropeptide
hormone activity, neuropeptide receptor binding, and DNA-

binding transcription activator activity across tissues. Next,
we checked how top contributing genes are related to TFs
and TF cofactors. We found about 20 genes overlapping with

TFs in group III, which is more than 2-fold enrichment than
by random chance (Figure 4F). By contrast, genes in group
II showed depletion of TFs in liver, but 1.5-fold enrichment

in ovary (Figure 4F, Figure S13). No enrichment or depletion
was found in group I, except for genes identified by
GuidedGradCam++. As for TF cofactors, there is low overlap
in all three groups (Figure S14).

Top contributing genes in cancers

Group II’s top contributing genes are TS with TS manifesta-

tions of expression values. Therefore, we asked how the
expression pattern of the top contributing genes changed from
normal to cancer tissues. We compared normal and cancer

samples of liver, lung, ovary, and pancreas from GTEx and
TCGA, and studied the expression differences of top con-
tributing genes. About 40%�80% of the top contributing

genes were differentially expressed genes between normal and
cancer tissues identified by DeepLift on MLP (group II), which
is about twice more than the random chance (Figure 5A). The
percentages ranged from 30% to 60% by Saliency on MLP
expressed between normal and cancer tissues. Dashed lines indicate

ression levels of the top 100 contributing genes which were observed

cancer samples, of genes identified by DeepLift on aggregated MLP

by Saliency on aggregated MLP models (representative of group III,

33 TCGA cancer types demonstrated tissue specificity.
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(group III), which is about 1.5-fold over random chance.
Group I was not included in this analysis since model aggrega-
tion eliminated many features in common from different

explainers on CNN-based models, and no biological enrich-
ments were found in the top contributing genes.

Interestingly, differentially expressed top contributing

genes are segregated into two distinct populations in group
II (Figure 5B, Figure S15). Specifically, the top contributing
genes specific to normal tissues are downregulated in cancer,

while those specific to cancer are upregulated in cancer. For
example, Glypican-3 (GPC3), a member of the heparan sulfate
proteoglycans family, is one of the top contributing genes in
liver cancer but not in normal liver. GPC3 is often observed

to be highly elevated in hepatocellular carcinoma and is a tar-
get for diagnosis and treatment of hepatocellular carcinoma
[33]. However, similar segregation was not found in group

III (Saliency on MLP-based models) because top contributing
genes from group III were mostly shared between normal and
cancer tissues. Together, the expression profiles suggest that

the top contributing genes in group II might be potential can-
cer biomarkers. We identified the top 100 contributing genes in
individual samples of all 33 different cancer types and named

those shared by two or more samples of the same cancer type
as shared top contributing genes. In total, 1179 genes were
identified as shared top contributing genes. As expected, these
shared top contributing genes are mostly TS (Figure 5C).

Among these shared top contributing genes, we further studied
the known oncogenes and tumor suppressor genes in OncoKB
[34]. Heatmap analysis showed that some oncogenes and

tumor suppressor genes are shared by multiple cancer types,
such as SFRP2, while the others are specific to one or very
few cancers (Figure S16).
Discussion

The beauty of interpreting machine learning models is that it

converts the complex mathematical rules learned by neural
networks into biological rules and provides new insights into
biology. To facilitate the application of an interpretable

machine learning model, we established a series of optimiza-
tion steps and compared the biological relevance of different
model explainers. Since the tests in this study were based on

models that predict tissue types from transcriptomes, applica-
tions using other types of biological data or different model
architectures may require further investigations. In addition,

even though the current optimizations demonstrated good per-
formance on MLP-based models for a subset of explainers,
some important genes may still be missing from the top con-
tributing genes. For example, a machine learning model might

choose only one of two highly correlated genes to use for pre-
diction. Alternatively, the contribution of two highly corre-
lated genes might be diluted if the model chooses to use both

genes, and thus, the contribution here might not reflect biolog-
ical importance. These factors might partly explain the low
reproducibility of individual single models and why improve-

ment could be made by aggregation of models. Overall, we
believe this study will provide novel insights to optimize inter-
pretable machine learning in biological studies.

A recent paper pointed out five potential pitfalls of apply-

ing machine learning in genomics: 1) distributional differences;
2) dependent examples; 3) confounding; 4) leaky pre-
processing; and 5) unbalanced class [35]. These technical chal-
lenges of applying machine learning models to genomics data
are nontrivial and should be paid close attention to in addition

to the optimization strategies we laid out in this study.
Typically, complicated models are not easily interpretable

[36], which is also confirmed by the poor performance when

interpreting CNN-based models. In this study, the optimized
strategy significantly increased the interpretability on MLP-
based models for a subset of explainers, but not on CNN-

based models for any explainers. The aggregated CNN model
approach should perhaps be categorized into a new modeling
strategy, which is similar to the ‘‘averaging” of models. The
‘‘averaging” strategy indeed mitigated randomness to some

extent but didn’t show biological relevance. Therefore, even
if models of different architectures had comparable prediction
performances, it’s probably preferable to use models with rel-

atively simpler architectures for model interpretation.
The top contributing genes detected by explainers in

group II (DeepLift, DeepLiftShap, InputXGradient, and

IntegratedGradients on MLP-based models with model aggre-
gation) exhibited TS manifestation in both gene ontology and
expression profile, which is expected based on prior knowledge

about tissue specificity and cell identity [37–40]. Therefore,
explainers in group II are more suitable for biological study,
especially when exploring biological questions based on tran-
scriptomic data. In recent years, single-cell RNA-seq technol-

ogy has been widely applied to different tissue and diseases,
leading to the discovery of many well-defined sub-cell popula-
tions [41,42]. Although this study assessed model interpretabil-

ity on bulk RNA-seq transcriptomes, the optimization
strategies proposed here can also be applied to single-cell tran-
scriptomes to quantify individual gene contribution and iden-

tify important genes in each sub-population. It is expected that
interpretable machine learning models will also benefit under-
standing of tissue heterogeneity, disease mechanisms, and cel-

lular engineering at single-cell resolution.

Materials and methods

Human transcriptome collection and processing

A total of 27,417 RNA-seq samples were used in our study,
among which 17,329 and 10,088 samples were collected from
GTEx and TCGA, respectively [43]. These samples are from

47 distinct primary normal tissues and 2 cell lines (with prefix
GTEx_ in the tissue code) and 33 different primary tumors (with
prefix TCGA_ in the tissue code). Pre-processed TCGA and
GTEx RNA-seq gene expression level data were downloaded

from GTEx Portal (phs000424.v8.p2) and Recount2 database
[44], respectively. For TCGA data, only primary tumor samples
were included. Names of tissue types (normal or cancer)

remained the same as defined by TCGA and GTEx projects.
For each sample, the expression levels of 19,241 protein-
coding genes were normalized to log2 (TPM + 1), where TPM

denotes Transcript Per Million, and then used for analyses.

The architecture of CNN models

We used a five-layer CNN to build the CNN models, which
included three convolutional layers, one global average pool-
ing layer, and one fully connected layer sequentially. Each
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layer included 64, 128, 256, 256, and 82 channels, respectively.
The kernel sizes for the three convolutional layers were 5, 5,
and 3, respectively, and each convolutional layer was followed

by max-pooling with a kernel size of 2. Batch normalization
and rectified linear unit activation function [ReLU, which
can be presented as f(x) = max (0, x)] were applied immedi-

ately after max-pooling of each convolutional layer and global
average pooling layer.

As the input of the CNN model, normalized expression val-

ues of 19,241 protein-coding genes from a sample were trans-
formed into a 144 � 144 matrix, and zero padding was used
at the bottom of the matrix. The final fully connected layer
produced a vector of 82-probability-like scores, each corre-

sponding to one of the 82 tissue types (normal or cancer).

The architecture of MLP models

There was only one hidden layer in the MLP models with 128
units. Batch normalization and ReLU were applied immedi-
ately after the hidden layer. There were 19,241 variables in

the input layer, each corresponding to one of the 19,241 genes.
The output layer assigns a probability-like score for each of the
82 tissue types.

Model training

All samples in a tissue type were randomly partitioned at a 9:1
ratio, with 90% of samples used as training data and the

remaining 10% as testing data. In each epoch, up-sampling
was employed to avoid imbalance caused by different sample
sizes between tissue types. Adam optimizer on cross-entropy

loss was utilized to update the weights of the neural network.
After hyperparameter optimization, an initial learning rate of
0.0006 was used for CNN models, and 0.001 was used for

MLP models. A batch size of 256 was used for both CNN
and MLP. If there was no improvement for 5 sequential
epochs, the learning rate was reduced by 0.25. L2 regulariza-

tion was applied with a lambda score of 0.001. A fixed dropout
of 0.25 was applied before the output layer in the MLP models,
while a dropout of 0.25 was applied before the global average
pooling layer in the CNN models.

To optimize reproducibility in model explanation, we
selected 60 well-trained models with slightly different parame-
ters but of similar performances. In the CNN model, genes

were organized into 2D matrix with fixed orders as input. In
this study, gene orders in the CNN model were also experi-
mented. For testing of the same gene order, we selected 5 well

well-trained models with slightly different parameters but of
similar performances. To study different gene orders, we
selected 60 well-trained models with slightly different parame-

ters but of similar performances.

Model performance estimation

Five-fold cross-validation was used to estimate the model per-

formance for both MLP and CNN. Five groups of datasets
were prepared, and each included a training dataset and a test
dataset. Dataset preparation for each group was as follows.

First, we randomly split all samples in a tissue type into 5
parts. Each group used one of the 5 parts as a test dataset,
and the remaining four parts were combined into the training
dataset. The same hyperparameters were used to train models
based on the training dataset of each group separately. The
trained models were then used to estimate the test dataset of

the same group. Estimated results from five groups were com-
bined, and all metrics about performance were calculated
based on the combined results.

Model explanation

To estimate how much each gene contributes to the model pre-

diction, we used eight different model explainers and varia-
tions, which are DeepLift, DeepLiftShap, GuidedBackprop,
GuidedGradCam, GuidedGradCam++, InputXGradient,

IntegratedGradients, and Saliency. All these explainers were
implemented based on the Captum package (https://github.-
com/pytorch/captum). All explanations were based on well-
trained CNN and MLP models. In addition, dropout was

enabled to increase the diversity of model architecture, which
helps measure the impact of model variations and uncertainties
during the model explanation. As output, each explainer esti-

mated contribution scores for each of the 19,241 genes.

Reference preparation

In this study, we tested four kinds of references which are named
as zero, normal, universal, and specific. 1) For reference zero,
we assigned the expression level of each gene to 0. 2) For refer-
ence normal, the expression level of each gene was randomly

generated from a truncated normal distribution N (0, 1), and
all values were restricted between 0 and 1. 3) For reference
universal, the expression level of each gene was randomly

generated from a truncated normal distribution N (l, r), and
all values are restricted between 0 and r. Here, l and r were
calculated based on expression values of this gene across all

samples from all tissues, and r is the standard deviation. 4)
Reference specific was generated the same way as reference uni-
versal except that only samples of the same tissue types were

used. In the reference testing, 2000 different references were
generated for reference normal, universal, and specific sepa-
rately. For zero, we repeated the same reference 2000 times.

Simulation for an optimal number of pseudo-samples generated

for each sample

A simulation was performed on 5 different pre-trained models

as follows, using sample X as an example. Step 1: we generated
50 pseudo-samples based on sample X by randomly adding
noise to each gene’s expression level with normal distribution

N (0, 1). Step 2: we estimated gene contribution scores for
all genes in each pseudo-sample. To estimate gene contribution
scores based on n pseudo-samples, we randomly selected n

replicates out of 50, and the final gene contribution score for
a specific gene was calculated based on the mean of n scores.
Step 3: repeat steps (1) and (2) on 5 different pre-trained mod-
els, respectively. Step 4: for sample X, there will be 5 replicates

of gene contribution scores based on the same number of
pseudo-samples. For the 5 replicates based on n (n = 1,
2, . . ., 100) pseudo-samples, we calculated Spearman’s correla-

tion coefficient on gene contribution scores from any two repli-
cates, and this operation was carried out on all C5

2

combinations. Based on the aforementioned method, we

https://github.com/pytorch/captum
https://github.com/pytorch/captum
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obtained the relationship between a number of pseudo-samples
and the correlation coefficient on any two replicates.

Simulation for optimal repeat number on the same model

The simulation process was performed on 5 different pre-
trained models as follows, using sample X as an example.

Step 1: first, we estimated gene contribution scores for all genes
in sample X 50 times respectively, and there were 50 replicates
for sample X. To estimate gene contribution scores by n times

repeats, we randomly selected n replicates out of 50, and the
final gene contribution score for a specific gene was calculated
based on the mean of n scores. Step 2: repeat step (1) on 5 dif-

ferent pre-trained models, respectively. Step 3: for sample X,
there will be 5 replicates of gene contribution scores based
on the same repeat number. For the 5 replicates based on n
(n = 1, 2, . . ., 100) times of repeats, we calculated Spearman’s

correlation coefficient on gene contribution scores from any
two replicates, and this operation was carried out on all C5

2

combinations. Based on the aforementioned method, we

obtained the relationship between repeat number and correla-
tion coefficient on any two replicates.

Simulation for an optimal number of references

The simulation process was performed on 5 different pre-
trained models as follows, using sample X as an example.
Step 1: we estimated gene contribution scores for all genes in

sample X with 1, 2, 3, . . ., 100 reference samples, respectively,
and the reference samples were randomly selected from the
2000 background samples pool. Step 2: repeat step (1) on 5 dif-

ferent pre-trained models. Step 3: for sample X, there will be 5
replicates of gene contribution scores based on the same num-
ber of reference samples but different pre-trained models. For

the 5 replicates based on n (n = 1, 2, . . ., 100) reference sam-
ples, we calculated Spearman’s correlation coefficient on gene
contribution scores from any two replicates, and this operation

was carried out on all C5
2 combinations. Based on the afore-

mentioned method, we obtained the relationship between a
number of reference samples and the correlation coefficient
on any two replicates. For each type of reference, we repeated

the aforementioned simulation process individually.

Simulation for an optimal number of aggregated models

The simulation process was performed on 60 different pre-
trained models as follows, using sample X as an example.
Step 1: we estimated gene contribution scores for all genes in

sample X on each pre-trained model, respectively. Step 2: to
estimate gene contribution scores by aggregating n (n = 1, 2,
. . ., 20) models, we randomly selected n replicates out of 60,

and the final gene contribution score for a specific gene was
calculated based on the mean of n scores. Step 3: repeat step

(2) K times, where K ¼ max ð60
n
; 4Þ. Step 4: for sample X, there

will be K replicates of gene contribution scores based on the

same number of aggregated models. For these K replicates
based on n (n = 1, 2, . . ., 20) aggregated models, we calculated
Spearman’s correlation coefficient on gene contribution scores

from any two replicates, and this operation was carried out on
all CK

2 combinations. Based on the aforementioned method, we
obtained the relationship between repeat number and correla-
tion coefficient on any two replicates.
Gene classification

Tissue specifically expressed genes were identified by the tool
TissueEnrich with the group ‘‘Tissue-Enhanced” [45]. In each

tissue, the median expression level of each gene was calculated
across all samples, and HK genes are defined as genes with
TPM � 1 and less than 2-fold change on median expression

level among all tissue types [46].

Gene Ontology enrichment analysis

Genes of interest were extracted and imported into the gene
ontology online tool for GO enrichment analysis with the
options ‘‘molecular function” or ‘‘biological process” and
‘‘Homo sapiens” checked [47,48].

Annotation of TF and TF cofactors

All TFs and TF cofactors were downloaded from ani-

malTFDB [49]. In total, there were 1666 TFs and 1026 TF
cofactors.

Differentially expressed genes between normal and cancer

Mann–Whitney U test (two-sided) was used to compare gene
expression between normal and cancer tissues. Differentially

expressed genes should satisfy the following criteria: false dis-
covery rate (FDR) � 0.001 and fold change � 3.

Code availability

Scripts used to test model interpretability are based on Python
and are freely available at https://github.com/zhaopage/mo-

del_interpretability.

CRediT author statement

Yongbing Zhao: Conceptualization, Methodology, Software,
Formal analysis, Investigation, Writing - original draft, Writ-
ing - review & editing. Jinfeng Shao: Investigation, Writing -

review & editing. Yan W. Asmann: Funding acquisition, Inves-
tigation, Writing - review & editing. All authors have read and
approved the final manuscript.

Competing interests

The authors declare no competing interests.
Acknowledgments

The results here are in whole or part based upon data
generated by the TCGA research network: https://www.
cancer.gov/tcga. The data used for the analyses described in
this study were obtained from the GTEx portal as

https://github.com/zhaopage/model_interpretability
https://github.com/zhaopage/model_interpretability
https://www.cancer.gov/tcga
https://www.cancer.gov/tcga


910 Genomics Proteomics Bioinformatics 20 (2022) 899–911
phs000424.v8.p2. We would like to thank Edward Asmann,

Nancy L. Terry, National Institutes of Health (NIH) library
editing service for reviewing the manuscript.

Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.gpb.2022.07.003.

ORCID

ORCID 0000-0002-9917-7425 (Yongbing Zhao)

ORCID 0000-0001-7227-6776 (Jinfeng Shao)
ORCID 0000-0002-8896-2647 (Yan W. Asmann)

References

[1] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger

O, et al. Highly accurate protein structure prediction with

AlphaFold. Nature 2021;596:583–9.

[2] Elmarakeby HA, Hwang J, Arafeh R, Crowdis J, Gang S, Liu D,

et al. Biologically informed deep neural network for prostate

cancer discovery. Nature 2021;598:348–52.

[3] Xia B, Zhao D, Wang G, Zhang M, Lv J, Tomoiaga AS, et al.

Machine learning uncovers cell identity regulator by histone code.

Nat Commun 2020;11:2696.

[4] Chantsalnyam T, Lim DY, Tayara H, Chong KT. ncRDeep: non-

coding RNA classification with convolutional neural network.

Comput Biol Chem 2020;88:107364.

[5] Zhang J, Peng W, Wang L. LeNup: learning nucleosome

positioning from DNA sequences with improved convolutional

neural networks. Bioinformatics 2018;34:1705–12.

[6] Nair S, Kim DS, Perricone J, Kundaje A. Integrating regulatory

DNA sequence and gene expression to predict genome-wide

chromatin accessibility across cellular contexts. Bioinformatics

2019;35:i108–16.

[7] Kelley DR, Reshef YA, Bileschi M, Belanger D, McLean CY,

Snoek J. Sequential regulatory activity prediction across chromo-

somes with convolutional neural networks. Genome Res

2018;28:739–50.

[8] Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code

of the accessible genome with deep convolutional neural net-

works. Genome Res 2016;26:990–9.

[9] Avsec Z, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska

A, Taylor KR, et al. Effective gene expression prediction from

sequence by integrating long-range interactions. Nat Methods

2021;18:1196–203.

[10] Angelov PP, Soares EA, Jiang R, Arnold NI, Atkinson PM.

Explainable artificial intelligence: an analytical review. Wiley

Interdiscip Rev Data Min Knowl Disc 2021;11:e1424.

[11] Barredo Arrieta A, Dı́az-Rodrı́guez N, Del Ser J, Bennetot A,

Tabik S, Barbado A, et al. Explainable artificial intelligence

(XAI): concepts, taxonomies, opportunities and challenges toward

responsible AI. Inf Fusion 2020;58:82–115.

[12] Anguita-Ruiz A, Segura-Delgado A, Alcala R, Aguilera CM,

Alcala-Fdez J. eXplainable artificial intelligence (XAI) for the

identification of biologically relevant gene expression patterns in

longitudinal human studies, insights from obesity research. PLoS

Comput Biol 2020;16:e1007792.

[13] Alonso JM, Casalino G. Explainable artificial intelligence for

human-centric data analysis in virtual learning environments.

International Workshop on Higher Education Learning Method-

ologies and Technologies Online 2019:125–38.
[14] Talukder A, Barham C, Li X, Hu H. Interpretation of deep

learning in genomics and epigenomics. Brief Bioinform 2020;22:

bbaa177.

[15] Zhou J, Troyanskaya OG. Predicting effects of noncoding

variants with deep learning-based sequence model. Nat Methods

2015;12:931–4.

[16] Torng W, Altman RB. 3D deep convolutional neural networks for

amino acid environment similarity analysis. BMC Bioinformatics

2017;18:302.

[17] Shrikumar A, Greenside P, Kundaje A. Learning important

features through propagating activation differences. Int Conf

Mach Learn 2017:3145–53.

[18] Lundberg SM, Lee SI. A unified approach to interpreting model

predictions. Adv Neural Inf Process Syst 2017:4765–74.

[19] Avsec Z, Weilert M, Shrikumar A, Krueger S, Alexandari A,

Dalal K, et al. Base-resolution models of transcription-factor

binding reveal soft motif syntax. Nat Genet 2021;53:354–66.

[20] Kim DS, Risca VI, Reynolds DL, Chappell J, Rubin AJ, Jung N,

et al. The dynamic, combinatorial cis-regulatory lexicon of

epidermal differentiation. Nat Genet 2021;53:1564–76.

[21] Karim M, Cochez M, Beyan O, Decker S, Lange C. OncoNe-

tExplainer: explainable predictions of cancer types based on gene

expression data. arXiv 2019;1909.04169.

[22] Lyu B, Haque A. Deep learning based tumor type classification

using gene expression data. Proceedings of the 2018 ACM

International Conference on Bioinformatics, Computational Biol-

ogy, and Health Informatics 2018:89–96.

[23] Li Y, Kang K, Krahn JM, Croutwater N, Lee K, Umbach DM,

et al. A comprehensive genomic pan-cancer classification using the

cancer genome atlas gene expression data. BMC Genomics

2017;18:508.

[24] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional

networks: visualising image classification models and saliency

maps. arXiv 2013;1312.6034.

[25] Shrikumar A, Greenside P, Shcherbina A, Kundaje A. Not just a

black box: learning important features through propagating

activation differences. arXiv 2016;1605.01713.

[26] Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving

for simplicity: the all convolutional net. arXiv 2014;1412.6806.

[27] Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep

networks. Proc 34th Int Conf Mach Learn 2017;40:3319–28.

[28] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra

D. Grad-CAM: visual explanations from deep networks via

gradient-based localization. Proc IEEE Int Conf Comput Vis

2017;2017:618–26.

[29] Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN.

Grad-CAM++: generalized gradient-based visual explanations

for deep convolutional networks. IEEE Winter Conf Appl

Comput Vis 2018;2018:839–47.

[30] Hartley M, Olsson TSG. dtoolAI: reproducibility for deep

learning. Patterns (N Y) 2020;1:100073.

[31] Fan F, Xiong J, Li M, Wang G. On interpretability of artificial

neural networks: a survey. IEEE Trans Radiat Plasma Med Sci

2021;5:741–60.

[32] Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M.

Smoothgrad: removing noise by adding noise. arXiv

2017;1706.03825.

[33] Guo M, Zhang H, Zheng J, Liu Y. Glypican-3: a new target for

diagnosis and treatment of hepatocellular carcinoma. J Cancer

2020;11:2008–21.

[34] Chakravarty D, Gao J, Phillips S, Kundra R, Zhang H, Wang J,

et al. OncoKB: a precision oncology knowledge base. JCO Precis

Oncol 2017;1:1–16.

[35] Whalen S, Schreiber J, Noble WS, Pollard KS. Navigating the

pitfalls of applying machine learning in genomics. Nat Rev Genet

2021;23:169–81.

https://doi.org/10.1016/j.gpb.2022.07.003
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0005
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0005
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0005
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0010
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0010
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0010
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0015
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0015
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0015
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0020
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0020
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0020
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0025
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0025
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0025
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0030
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0030
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0030
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0030
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0035
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0035
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0035
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0035
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0040
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0040
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0040
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0045
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0045
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0045
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0045
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0050
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0050
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0050
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0055
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0055
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0055
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0055
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0060
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0060
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0060
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0060
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0060
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0070
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0070
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0070
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0075
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0075
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0075
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0080
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0080
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0080
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0085
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0085
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0085
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0090
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0090
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0095
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0095
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0095
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0100
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0100
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0100
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0110
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0110
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0110
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0110
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0115
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0115
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0115
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0115
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0120
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0120
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0120
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0120
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0125
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0125
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0125
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0135
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0135
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0140
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0140
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0140
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0140
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0145
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0145
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0145
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0145
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0150
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0150
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0155
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0155
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0155
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0165
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0165
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0165
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0170
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0170
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0170
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0175
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0175
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0175


Zhao Y et al / Explainable Machine Learning Models 911
[36] Carvalho DV, Pereira EM, Cardoso JS. Machine learning

interpretability: a survey on methods and metrics. Electronics

2019;8:832.

[37] Toyoda M, Hamatani T, Okada H, Matsumoto K, Saito H,

Umezawa A. Defining cell identity by comprehensive gene

expression profiling. Curr Med Chem 2010;17:3245–52.

[38] Ye Z, Sarkar CA. Towards a quantitative understanding of cell

identity. Trends Cell Biol 2018;28:1030–48.

[39] Sonawane AR, Platig J, Fagny M, Chen CY, Paulson JN, Lopes-

Ramos CM, et al. Understanding tissue-specific gene regulation.

Cell Rep 2017;21:1077–88.

[40] Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P,

Mardinoglu A, et al. Tissue-based map of the human proteome.

Science 2015;347:1260419.

[41] Morris SA. The evolving concept of cell identity in the single cell

era. Development 2019;146:dev169748.

[42] Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet

2019;20:257–72.
[43] GTEx Consortium. The Genotype-Tissue Expression (GTEx)

project. Nat Genet 2013;45:580–5.

[44] Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA,

Hansen KD, et al. Reproducible RNA-seq analysis using

recount2. Nat Biotechnol 2017;35:319–21.

[45] Jain A, Tuteja G. TissueEnrich: tissue-specific gene enrichment

analysis. Bioinformatics 2019;35:1966–7.

[46] Eisenberg E, Levanon EY. Human housekeeping genes, revisited.

Trends Genet 2013;29:569–74.

[47] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry

JM, et al. Gene Ontology: tool for the unification of biology. Nat

Genet 2000;25:25–9.

[48] The Gene Ontology Consortium. The Gene Ontology resource: 20

years and still GOing strong. Nucleic Acids Res 2019;47:D330–8.

[49] Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY.

AnimalTFDB 3.0: a comprehensive resource for annotation and

prediction of animal transcription factors. Nucleic Acids Res

2019;47:D33–8.

http://refhub.elsevier.com/S1672-0229(22)00087-0/h0180
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0180
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0180
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0185
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0185
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0185
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0190
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0190
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0195
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0195
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0195
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0200
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0200
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0200
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0205
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0205
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0210
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0210
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0215
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0215
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0220
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0220
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0220
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0225
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0225
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0230
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0230
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0235
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0235
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0235
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0240
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0240
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0245
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0245
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0245
http://refhub.elsevier.com/S1672-0229(22)00087-0/h0245

	Assessment and Optimization of Explainable Machine Learning Models Applied to Transcriptomic Data
	Introduction
	Results
	Overview of model interpretability
	Direct use of explainers from computer vision resulted in poor reproducibility
	Optimization of model interpretability
	Consistency across model explainers
	Expression status of top contributing genes
	Enrichment of top contributing genes in biological functions
	Top contributing genes in cancers

	Discussion
	Materials and methods
	Human transcriptome collection and processing
	The architecture of CNN models
	The architecture of MLP models
	Model training
	Model performance estimation
	Model explanation
	Reference preparation
	Simulation for an optimal number of pseudo-samples generated for each sample
	Simulation for optimal repeat number on the same model
	Simulation for an optimal number of references
	Simulation for an optimal number of aggregated models
	Gene classification
	Gene Ontology enrichment analysis
	Annotation of TF and TF cofactors
	Differentially expressed genes between normal and cancer

	Code availability
	CRediT author statement
	Competing interests
	Acknowledgments
	Supplementary material
	 ORCID
	References


