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Abstract

Air pollution levels across the globe continue to rise despite government regulations. The increase in global air pollution levels drives
detrimental human health effects, including 7 million premature deaths every year. Many of these deaths are attributable to
increased incidence of respiratory infections. Considering the COVID-19 pandemic, an unprecedented public health crisis that has
claimed the lives of over 6.5 million people globally, respiratory infections as a driver of human mortality is a pressing concern.
Therefore, it is more important than ever to understand the relationship between air pollution and respiratory infections so that
public health measures can be implemented to ameliorate further morbidity and mortality. This article aims to review the current
epidemiologic and basic science research on interactions between air pollution exposure and respiratory infections. The first section
will present epidemiologic studies organized by pathogen, followed by a review of basic science research investigating the
mechanisms of infection, and then conclude with a discussion of areas that require future investigation.
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Ambient levels of criteria air pollutants continue to rise despite
regulations by organizations like the United States

Environmental Protection Agency (EPA) (EPA, 2022) and the

European Environment Agency (EEA, 2022). According to the
World Health Organization (WHO), 9 out of 10 individuals cur-

rently live in areas with ambient air pollution that exceeds the
current local regulations (WHO, 2022). These elevated air pollu-

tion levels have important health consequences and continue to
be a significant global public health concern. Air pollution is

associated with more than 7 million premature deaths globally
every year (IQAir, 2020; WHO, 2022). Beyond mortality, air pollu-

tion exposure can exacerbate chronic cardiopulmonary diseases,

and can increase susceptibility to respiratory infections (WHO,
2022). As air pollution levels continue to rise despite global regu-

lations on air quality, human morbidity and mortality are also
expected to increase. Therefore, concurrent with efforts to

improve air quality, research is required to better understand
mechanisms driving adverse health effects from air pollution

exposure that can be the focus of intervention strategies. The
recent COVID-19 pandemic has again brought attention to respi-

ratory infections, particularly the association and mechanisms
between air pollution and enhanced infection risk/severity.

Associations between air pollution exposure and enhanced respi-

ratory infection severity have been well established in population
and laboratory mechanistic studies. The earliest observation was

in 1937 where an autopsy study noted evidence of alveolar

carbon pigmentation, consistent with air pollution exposure, in

individuals who died from pneumonia (Haythorn and Meller,

1938). Consistent with this observation, studies from the Great
Smog of London event in 1952 demonstrated a direct correlation

between increased ambient particulate matter (PM) and the inci-

dence of pneumonia with an 80% increase in mortality when

compared with the previous year and approximately 3500–4000

additional deaths in the 5 years following the event (Bell et al.,

2004; Greater London Authority, 2002). Similar associations are
being observed with the COVID-19 pandemic (Aggarwal et al.,

2021; Bashir et al., 2020; Bianconi et al., 2020; Bilal et al., 2020;

Bowe et al., 2021; Chakrabarty et al., 2021; Coker et al., 2020; Cole

et al., 2020; De Angelis et al., 2021; Dragone et al., 2021; Fang et al.,

2021; Fattorini and Regoli, 2020; Fiasca et al., 2020; Hendryx and
Luo, 2020; Jiang et al., 2020; Konstantinoudis et al., 2021; Lembo

et al., 2021; Liang et al., 2020; Lin et al., 2020; Liu et al., 2021), sug-

gesting broad implications of air pollution exposure and respira-

tory infections. Now, more than ever, it is important to

understand both the epidemiologic and mechanistic relation-

ships between air pollution and respiratory infection to amelio-
rate future morbidity and mortality from respiratory infections.

This article will aim to provide a review of the literature

regarding air pollution and pulmonary infections. The first sec-

tion will highlight recent epidemiologic research, primarily focus-

ing on the impact of the criteria air pollutants (O3, CO, PM2.5, NO2,

SO2, and Pb) on pneumonia. Studies will be classified by pathogen
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and will focuse on data related to bacterial, fungal, and viral
infections. We will provide a comprehensive review of both epide-
miological and laboratory studies as well as an overview of the
current mechanisms by which air pollution affects the immune
response critical for clearing infections. This article will also high-
light the emerging studies of criteria air pollutants and the inci-
dence of SARS-CoV-2 infection, the respiratory virus responsible
for the current COVID-19 pandemic. Lastly, we will attempt to
identify areas that require further investigation on mechanisms
driving susceptibility and severity of respiratory infections from
air pollution.

Epidemiological findings of air pollution and
infection
Acute respiratory infections are one of the top 5 leading causes of
all-causes of global mortality (WHO, 2022). According to the
WHO, 17% of deaths from acute lower respiratory infections (ie,
pneumonia) are attributable to ambient air pollution (WHO,
2022). Pneumonia may be caused by several organisms including
viruses, bacteria, and fungi. A diagnosis of pneumonia is made
clinically by the examination of patient symptoms, a physical
exam, and radiographic evidence. Because of this, the causative
organism is often not identified. Several studies have defined
associations between pneumonia diagnosis and ambient air pol-
lutants concentrations. For example, increased PM2.5 concentra-
tions were associated with increased emergency department (ED)
visits and admissions for ‘pneumonia’ in New York state (Croft
et al., 2019). A similar study was conducted in Utah, where ele-
vated PM2.5 was associated with more ED visits, hospitalizations,
and mortality from pneumonia (Pirozzi et al., 2018). Similar obser-
vations have been defined in national studies. Dominici et al.
observed that an increase of PM2.5 by 10 lg/m3 was associated
with a 5.4% increase in the rate of respiratory tract infections
(Dominici et al., 2006). These associations are not unique to PM2.5

as they have been noted with other criteria air pollutants. For
example, for every 1 ppb increase in O3, there was a 0.41%
increase in admissions for pneumonia in the United States
(Medina-Ramon et al., 2006). There also have been multiple epide-
miological studies conducted in populations in Asia and Europe
where NO2, O3, and PM10 have been associated with increased
risk of diagnosis and hospital admission for pneumonia
(Ciencewicki and Jaspers, 2007; MacIntyre et al., 2014; Qiu et al.,
2021). These studies, as well as others (Croft et al., 2020;
MacIntyre et al., 2014; Zhang et al., 2019), clearly demonstrate
that changes in air pollution levels lead to a greater incidence of
morbidity and mortality from pneumonia.

Influenza and respiratory syncytial virus infections

Although pneumonia is a diagnosis that is nonspecific for a caus-
ative pathogen, epidemiological data support that changes in air
quality increase incidence of viral-specific respiratory infections
like influenza and respiratory syncytial virus (RSV). For example,
an increase of one standard deviation in the EPA’s air quality
index results in over 4000 additional hospitalizations for influ-
enza in the U.S. every year (Croft et al., 2020). When examining
the effects of specific criteria air pollutants, increases in PM2.5 in
New York City were associated with a 6% excess rate of
influenza-related ED visits (Croft et al., 2020). Similar trends have
been seen with other criteria air pollutants. In Brazil, China, and
Australia, increased O3 levels were associated with an increased
risk of influenza and ED visits (Ali et al., 2018; Martins et al., 2002;

Wong et al., 2009). Song et al. (2021) observed a correlation
between SO2, CO, NO2, PM2.5, and PM10 levels and influenza diag-
noses across China between 2004 and 2017. Similar trends have
been reported with RSV, a virus known to cause severe lower res-
piratory infections in young children. Among the criteria air pol-
lutants, increases in PM10, PM2.5, NO2, CO, and SO2 levels
correlated with RSV diagnosis and ED visits for RSV in Korea,
China, and Israel (Pompilio and Di Bonaventura, 2020; Croft et al.,
2019; Yitshak-Sade et al., 2017). Taken together, these data indi-
cate that changes in ambient levels of multiple criteria air pollu-
tants influence the incidence and severity of respiratory viral
infections.

Bacterial pneumonias

Unlike the incidence of viral pneumonia and/or respiratory virus
infections, the association between bacterial pneumonia and air
pollution levels has not been as extensively studied. However,
there are some sentinel studies suggesting similar associations.
For example, in China, levels of O3, PM10, NO2, and PM2.5, SO2 are
independently associated with an increased risk of infection and
admission for pneumonia secondary to Mycoplasma pneumoniae
(Bono et al., 2016; Chen et al., 2020; Zhang et al., 2019). Similarly, in
the United States, SO2 was associated with increased rates of
pneumococcal disease that spread to the bloodstream, caused by
the bacteria Streptococcus pneumoniae (Kim et al., 1996). The lack of
population studies associating air pollution with bacterial pneu-
monia is likely due to the clinical difficulty in identifying a causa-
tive organism. While diagnoses of viral infections often rely on
PCR testing that can be easily obtained via nasal swab or rapid
blood test, bacterial pneumonias are often diagnosed via culture
of respiratory sputum. Sputum samples are often difficult to col-
lect; as patients must either be able to expectorate productively
or undergo invasive sampling with bronchoscopy (BAL). Lastly,
diagnoses of the specific causative organism are done by assays
that are not high throughput and can sometimes take days to
obtain results. Despite these challenges, data reported thus far
indicate that air pollutants increase the incidence of bacterial
pneumonias.

The association between air pollution and tuberculosis (TB;
caused by infection from the bacteria Mycobacterium tuberculosis)
is particularly important in developing countries where TB infec-
tions contribute to millions of deaths annually (IQAir, 2020).
Many developing countries have both a high incidence of TB as
well as high levels of air pollutants. However, a large meta-
analysis by Popovic et al. (2019) found a correlation between TB
and air pollution levels across Asia, Europe, and North America.
Although this article demonstrated the strongest correlation
between TB outcomes and PM2.5, other studies have shown asso-
ciations with PM10, PM2.5, NO2, and SO2 (Hwang et al., 2014; Lai
et al., 2016). Interestingly, levels of criteria air pollutants are not
only associated with an increased risk of TB but also with an
increased risk of drug-resistant infection. In Shandong province,
China, 725 culture-positive cases of TB were examined and com-
pared with ambient levels of PM2.5, PM10, O3, and CO. PM2.5, PM10,
and CO were all associated with an increased incidence of
multidrug-resistant TB infection (Yao et al., 2019). However, the
biological mechanisms by which this occurs are still unknown.

Fungal pneumonias

Fungal pneumonias are rare when compared with bacterial and
viral pneumonia but have high morbidity and mortality com-
pared to these more common pneumonias. Air pollution can also
impact the severity of fungal pneumonias. Aspergillus, a fungi

4 | Air Pollution and Infection



readily found both indoors and outdoors on surfaces ranging
from soil to starchy foods, can cause pulmonary disease in
humans, the most severe of which is invasive aspergillosis (Liu
et al., 2018). In a study of a large Taiwanese database, Liu et al.
(2018) demonstrated an association between PM2.5 levels and
incidence of invasive aspergillosis, suggesting that air pollution
exposure may augment the severity of fungal pneumonias.
However, these fungal pneumonias often occur in patients who
are immunosuppressed. This includes individuals with HIV who
are at risk for severe respiratory infections from the fungus
Pneumocystis jirovecii (PJP). In HIV-positive patients with low CD4
counts, elevated ambient levels of NO2, SO2, PM10, and O3 are
associated with increased PJP hospital admission rates (Alvaro-
Meca et al., 2015; Djawe et al., 2013). Knowing that air pollution
can increase the severity of fungal infections in these susceptible
populations indicates that more studies are needed to under-
stand why this association occurs.

SARS-CoV-2 infection

The COVID-19 pandemic is one of the greatest public health cri-
ses of modern times and, according to the WHO, it has caused
more than 615 million infections and 65 million deaths across
the globe as of October 2022 (WHO, 2022). In an effort to stop the
spread of the virus, many countries implemented lockdown poli-
cies. As people were confined to their homes, most ambient levels
of criteria air pollutants were significantly reduced (Venter et al.,
2020). Regardless of this reduction in air pollutants, the incidence
and mortality of COVID-19 continued to correlate with air pollu-
tion levels (Wu et al., 2020). This association has been outlined in
Table 1. A nationwide cross-sectional study comparing county-
wide, long-term PM2.5 levels with mortality from COVID-19 con-
cluded that a 1-lg/m3 increase in PM2.5 was associated with an
8% increase in mortality (Liang et al., 2020). In the United
Kingdom, increased PM2.5 levels were associated with a 12%
increase in new COVID-19 cases (Travaglio et al., 2021). These
findings have been noted in other countries as well as with other
air pollutants (ie, NO2, O3, PM2.5, and PM10) (Cole et al., 2020;
Fattorini and Regoli, 2020). For example, in Wuhan China, levels
of PM (both PM2.5 and PM10) were temporally associated with
COVID-19 mortality (Yao et al., 2020a). Thus far, these
population-based studies demonstrate associations between air
pollutants and COVID-19 incidence and mortality; however, as
the pandemic continues and new SARS-CoV2 strains emerge,
more studies are required to assess whether these associations
will continue and how they are modified by new variants.
Additionally, the source of these pollutants (eg, industrial,
vehicles, and biomass) may vary among the different areas
examined and could potentially alter the pollutant and pathogen
interactions in these population studies.

Despite the strengths and number of studies reporting the
associations between air pollution and respiratory infections,
there are confounders for these datasets that can influence the
interpretation of the data. For instance, most of these studies
examine large and diverse populations that include patients
from a variety of different socioeconomic statuses, demo-
graphics, medical comorbidities, and housing and work condi-
tions. This population diversity can make statistical analysis
difficult; particularly when accounting for covariates that could
be effect modifiers. Additionally, most of the epidemiological
studies focus on specific susceptible populations, including the
elderly or children, thus raising the question of whether they are
broadly applicable to all age groups. A final consideration, as
noted above, is that diagnosis of pneumonia and specific

pathogens can be challenging due to misdiagnosis and inherent
difficulties in obtaining specimens for testing as well as different
assay methods. Despite these barriers, the available data support
strong associations between elevated air pollution exposure and
increased incidence and severity of pulmonary infections.

Laboratory studies defining associations
between air pollution and respiratory
infections
Laboratory studies have been conducted to uncover the causal
relationships between air pollution and respiratory infections;
each with inherent strengths and weaknesses. These studies
have used a number of different study designs to investigate rela-
tionships. The first of these are in vivo human modeling. In these
studies, human volunteers are exposed to a low, controlled level
of the air pollutant and lung or nasal cells are harvested via bron-
choalveolar lavage, nasal lavage, or nasopharyngeal brushings.
After the cells have been isolated, they can be exposed to a
pathogen of interest. Effects have been defined in human alveo-
lar macrophages and respiratory epithelial cells using this
method. These methods have demonstrated mechanisms by
which air pollutants alter cellular responses to respiratory infec-
tion (Becker et al., 2002; Jaspers et al., 2005). However, this type of
study design does have limitations, including single pollutant
evaluation, examining cells outside of the microenvironment
that can influence biological responses, as well as eliminating
systemic immune responses to pathogen. To address some of
these concerns, investigators have also used rodent exposure
models. Rodent models have a number of benefits including
allowing for a broader range of exposure concentrations and
durations than in humans, and enabling direct infection with
pathogens, assessments over a variety of time points, and evalu-
ation of whole-organism responses including systemic transloca-
tion of infection. The major limitations of rodent models are that
they are generally performed on a single genetic strain that lacks
the genetic diversity of human populations. In addition, they
have different fractional deposition of pollutants throughout the
upper and lower airways than human models, rodent studies are
typically performed on young healthy mice without preexisting
respiratory disease, and until recently, most rodent studies were
performed on a single sex. In contrast, the majority of people
who suffer from pneumonia tend to have underlying medical
conditions such as chronic cardiac or lung diseases or are at the
extremes of age (eg, children or the elderly). This can lead to diffi-
culty in translating observations between rodent models and
humans, though they remain an important model for defining
causal relationships. A final study design is the use of in vitro
human cells. This typically involves the use of either a trans-
formed cell line or primary cells isolated from human volunteers
that are exposed in vitro to a combination of air pollutants and
pathogens. This method can facilitate mechanistic research on
how that cell type responds to a pollutant and pathogen but has
some of the same drawbacks as the cells used from in vivo
human exposure models.

Using these various study designs, several mechanisms have
been defined for how air pollution impacts respiratory infections.
This review focuses on 4 principal mechanisms including (1) aug-
mented inflammation within the lining of the respiratory tract
disrupting normal innate barrier defenses; (2) disruption of mac-
rophage pathogen clearance functions; (3) alterations in the
expression of cellular receptors used by pathogens to cause infec-
tion; and (4) modulation of the commensal bacteria in the lung
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Table 1. Epidemiological studies of air pollution and COVID-19 outcomes

Pollutant(s)
studied

Results Study location(s) Reference

PM2.5 and
PM10

PM2.5 and/or PM10 are positively
associated with COVID-19
mortality and/or case fatality.

Afghanistan, Bangladesh, Chile,
China, France, India,
Indonesia, Italy, Mexico,
Nepal, Netherlands, Pakistan,
Sri Lanka, United Kingdom,
United States

(Aggarwal et al., 2021; Bashir et al., 2020; Berg et al.,
2021; Bianconi et al., 2020; Borro et al., 2020;
Coker et al., 2020; Cole et al., 2020; De Angelis
et al., 2021; Fang et al., 2021; Gupta et al., 2021;
Hendryx and Luo, 2020; Hou et al., 2021; Jain
et al., 2021; Jiang and Xu, 2021; Kolluru et al.,
2021; Konstantinoudis et al., 2021; Liang et al.,
2020; Lopez-Feldman et al., 2021; Magazzino
et al., 2020; Mele and Magazzino, 2021; Meo
et al., 2021a, b, c; Sahoo, 2021; Valdes Salgado
et al., 2021; Yao et al., 2020a, b; Zhou et al., 2021)

PM2.5 and/or PM10 are positively
associated with COVID-19 inci-
dence.

Canada, Chile, China, India,
Italy, Netherlands, Saudi
Arabia, United Kingdom,
United States

(Bashir et al., 2020; Bianconi et al., 2020; Borro et al.,
2020; Cole et al., 2020; De Angelis et al., 2021;
Fang et al., 2021; Fattorini and Regoli, 2020;
Hadei et al., 2021; Hendryx and Luo, 2020; Jiang
et al., 2020; Kolluru et al., 2021; Li et al., 2020; Ma
et al., 2021; Meo et al., 2021a, b, c, d; Pei et al.,
2021; Pozzer et al., 2020; Stieb et al., 2020;
Travaglio et al., 2021; Valdes Salgado et al., 2021;
Xu et al., 2022; Zhang et al., 2021; Zhou et al.,
2021; Zhu et al., 2020; Zoran et al., 2020b)

PM2.5 and/or PM10 are positively
associated with COVID-19
prevalence.

Italy (Petroni et al., 2020)

PM2.5 and/or PM10 levels are posi-
tively associated with
COVID-19 hospitalizations.

Malaysia, United States (Bowe et al., 2021; Mendy et al., 2021; Nor et al.,
2021)

PM2.5 and/or PM10 levels are posi-
tively associated with
COVID-19 epidemic growth
rate or transmission.

Italy, Spain, United States (Chakrabarty et al., 2021; Lolli et al., 2020; Saez
et al., 2020; Setti et al., 2020)

No significant association
between PM2.5 and/or PM10

and epidemic growth rate.

Japan (Azuma et al., 2020)

No significant association
between PM2.5 and COVID-19
mortality.

United States (Liang et al., 2020)

PM2.5 is negatively associated
with COVID-19 incidence.

Germany (Ogen, 2020)

NO2 NO2 is positively associated with
COVID-19 mortality and/or
case fatality.

France, Germany, India, Italy,
Netherlands, Spain, United
Kingdom, United States

(Bashir et al., 2020; Cole et al., 2020; Frontera et al.,
2020; Liang et al., 2020; Mele and Magazzino,
2021; Meo et al., 2021a; Ogen, 2020; Travaglio
et al., 2021)

NO2 is positively associated with
COVID-19 incidence.

China, Iran, Italy, United
Kingdom, United States

(Fattorini and Regoli, 2020; Fiasca et al., 2020; Jiang
et al., 2020; Li et al., 2020; Ma et al., 2021; Pozzer
et al., 2020; Sahoo, 2021) (Bashir et al., 2020;
Hadei et al., 2021; Meo et al., 2021a; Travaglio
et al., 2021; Zhang et al., 2021; Zhu et al., 2020)

NO2 is positively associated with
COVID-19 epidemic growth
rate.

Spain (Saez et al., 2020)

No significant association
between NO2 and COVID-19
mortality and/or case fatality.

China, United States (Adhikari and Yin, 2020; Hou et al., 2021)

No significant association
between NO2 and COVID-19
incidence.

Saudi Arabia (Adhikari and Yin, 2020; Meo et al., 2021d)

No significant association
between NO2 and COVID-19
prevalence.

Italy (Filippini et al., 2020)

No significant association
between NO2 and COVID-19
epidemic growth rate.

Japan (Azuma et al., 2020)

NO2 is negatively associated with
COVID-19 mortality.

Italy (De Angelis et al., 2021)

NO2 is negatively associated with
COVID-19 incidence.

Italy (De Angelis et al., 2021; Zoran et al., 2020a)

CO and CO2 CO and/or CO2 are positively
associated with COVID-19
mortality.

China, India, United Kingdom,
United States

(Kolluru et al., 2021; Mele and Magazzino, 2021;
Meo et al., 2021a, b, c)

(continued)
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leading to a favorable environment for pathogenic infections.
Below, we review the current laboratory findings of these 4 mech-
anisms of air pollution and their association with increased sus-
ceptibility and/or severity of respiratory infection. Additionally, a
graphical description of these proposed mechanisms can be
found in Figure 1.

Air pollution disruption of barrier functions

Inflammation of the respiratory tract can disrupt a number of
innate protective barriers that normally limit or prevent infection.
One of these barriers is the epithelial lining fluid (ELF), a protective
layer of fluid that physically traps pathogens and contains a num-
ber of resident immune cells and compounds important in host
defense and anti-oxidant responses including mucins, surfactant/
surfactant proteins, glutathione, uric acid, superoxide dismutase,
and ascorbate (Cross et al., 1994; Kelly, 2003; Kelly et al., 1996). A
number of air pollutants (PM2.5, O3, and NO2) have been shown to
induce oxidative stress and thereby decrease host defense
responses (Chauhan and Johnston, 2003; Ciencewicki and Jaspers,
2007; Dellinger et al., 2001; Kelly, 2003). This appears to result in
depletion of host defense and anti-oxidant components in ELF as
has been observed in samples isolated from human and rodent air-
spaces (Behndig et al., 2009; Kelly, 2003; Kelly and Tetley, 1997).
Depletion of ELF factors such as surfactant proteins, defensins,
and/or club cell secretory protein (CCSP) has also been noted in

models of air pollution to enhance susceptibility to respiratory

infections. For example, diesel exhaust and O3 exposure deplete

the lung of important host defense molecules including CCSP, sur-

factant protein A (SP-A), and surfactant protein D (SP-D), which

directly impact susceptibility to respiratory infection (Ciencewicki

et al., 2007; Gowdy et al., 2008). Another lung innate defense func-

tion altered by air pollution exposure is mucociliary clearance.

Respiratory cilia move debris and potential pathogens trapped in

mucus from the lower respiratory tract into the oropharynx where

they can be swallowed or expectorated. Not only do cilia have

reduced motion following air pollution exposure, but mucous

becomes less viscous, significantly decreasing mucociliary clear-

ance and increasing susceptibility to infection (Grose et al., 1980;

Pedersen, 1990; Saldiva et al., 1992; Xiao et al., 2013). Air pollutants

can also affect the integrity of the epithelial barrier. When exposed

to PM, the tight junctions of the alveolar epithelium are disrupted

by reactive oxygen-mediated destruction of zona occludens-1

(ZO-1) and occludin proteins (Caraballo et al., 2011; Wang et al.,

2012). Disruption of tight junctions impacts the integrity of the

alveolar-epithelial barrier, potentially facilitating the entry of

pathogens into the respiratory interstitium.

Air pollution alters macrophage functions

The second mechanism by which air pollution may lead to

increased susceptibility to respiratory infections is by causing

Table 1. (continued)

Pollutant(s)
studied

Results Study location(s) Reference

CO and/or CO2 are positively
associated with COVID-19 inci-
dence.

China, Italy, Saudi Arabia,
United Kingdom, United States

(Jiang et al., 2020; Kolluru et al., 2021; Li et al., 2017,
2020; Meo et al., 2021a, b; Pozzer et al., 2020; Zhu
et al., 2020)

CO and/or CO2 are negatively
associated with COVID-19
mortality.

China (Jiang and Xu, 2021)

O3 O3 is positively associated with
COVID-19 mortality.

India, Italy, United Kingdom,
United States

(Kolluru et al., 2021; Meo et al., 2021a, b, c;
Travaglio et al., 2021; Tripepi et al., 2021)

O3 is positively associated with
COVID-19 incidence.

China, India, Iran, Italy, Saudi
Arabia, United Kingdom,
United States

(Adhikari and Yin, 2020; Fattorini and Regoli,
2020; Hadei et al., 2021; Jiang et al., 2020; Kolluru
et al., 2021; Meo et al., 2021a, b, c, d; Tripepi et al.,
2021; Xu et al., 2022; Zhu et al., 2020; Zoran et al.,
2020a)

O3 is positively associated with
COVID-19 prevalence.

Italy (Petroni et al., 2020)

No significant association
between O3 and COVID-19
mortality and/or case fatality
rate.

China, United States (Adhikari and Yin, 2020; Hou et al., 2021; Liang
et al., 2020)

No significant association
between O3 and COVID-19
incidence.

China (Zhang et al., 2021)

O3 is negatively associated with
COVID-19 incidence.

Italy (Pozzer et al., 2020)

SO2 SO2 is positively associated with
COVID-19 mortality.

Netherlands, United States (Bashir et al., 2020; Cole et al., 2020)

SO2 is positively associated with
COVID-19 incidence.

China, United States (Bashir et al., 2020; Jiang et al., 2020; Ma et al., 2021)

No significant association
between SO2 and mortality
and/or case fatality rate.

China (Hou et al., 2021)

SO2 is negatively associated with
COVID-19 mortality.

China (Jiang and Xu, 2021)

SO2 is negatively associated with
COVID-19 incidence.

India (Sahoo, 2021)

NH3 NH3 is positively associated with
COVID-19 incidence.

Italy (Pozzer et al., 2020)

Original epidemiological studies found through searches of Google Scholar and PubMed were included. Review articles, articles examining only conglomerate
measures of air pollution, and articles in preprint at the time of search were excluded.
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macrophage dysfunction. Macrophage functions are critical to
pulmonary host defense. These include phagocytosing patho-
gens, facilitating antigen presentation, and pathogen destruction
via oxygen-dependent pathways. In addition, macrophages pro-
duce cyto/chemokines that recruit other important host-defense
immune cells (Becker et al., 2005). To identify pathogens, macro-
phages use pathogen-associated molecular patterns (PAMPs) on
microbes that are recognized by pattern recognition receptors
(PRRs) including toll-like receptors 2 and 4 (TLR2 and TLR4). Air
pollution can regulate the expression of PRRs as evidenced by the
downregulation of TLR4 in human alveolar macrophages
exposed to PM (Morrow, 1988). This impact on PRRs can then
decrease the ability of macrophages to recognize invading patho-
gens. In addition to having a decreased ability to recognize patho-
gens, macrophages have decreased motility, altered
phagocytosis, and augmented cytokine and chemokine produc-
tion following air pollutant exposure (Becker and Soukup, 1999;
Chauhan and Johnston, 2003; Kienast et al., 1996; Rylance et al.,
2015). Although the majority of research has shown that expo-
sure to air pollutants leads to decreased pathogen clearance by
macrophages, a recent study by Vose et al. (2021) reported that
exposure to wood smoke particles altered macrophage pheno-
types leading to increased clearance of influenza infection and
decreased markers of clinical severity. This suggests that differ-
ent types of lung macrophages or exposures may result in differ-
ent effects on respiratory infections. Despite this, macrophages
are a principal target of air pollutants impacting lung infection,
and more studies are needed to understand the underlying mech-
anisms.

Immune response alterations following air pollution
exposure

Air pollution modifies cellular receptors used by pathogens to
cause infection. Diesel exhaust, NO2, and O3 have been shown to
increase the surface expression of intercellular adhesion mole-
cule 1 (ICAM-1) (Ciencewicki et al., 2007; Pathmanathan et al.,
2003; Spannhake et al., 2002; Takahashi et al., 1995). ICAM-1 is the
primary cellular attachment for a number of viruses, including
rhinovirus (Greve et al., 1989). Similarly, S. pneumoniae binds to

host epithelial cells via platelet-activating factor receptor (PAFR)
and exposure to PM10 has been shown to increase PAFR levels
and bacterial attachment (Mushtaq et al., 2011). Similarly, both
NO2 and PM2.5 have been shown to increase the expression of
angiotensin converting enzyme-2 (ACE-2) in the respiratory epi-
thelium, which is a cellular receptor for SARS-CoV-2 (Aztatzi-
Aguilar et al., 2015; Hamming et al., 2004; Hoffmann et al., 2020;
Lin et al., 2018; Paital and Agrawal, 2021). Despite this, a direct
causal relationship between air pollution and SARS-CoV-2 infec-
tion in laboratory models has yet to be demonstrated.

In addition to increasing the expression of cellular receptors
that pathogens use to gain access to cells, air pollutants can also
augment the immune response leading to greater lung inflam-
mation/injury which can perpetuate the systemic dissemination
of pathogens. For example, respiratory epithelial cells recognize
pathogens through a number of receptors, including toll-like
receptors. When rodents are exposed to diesel exhaust prior to
influenza infection, the preexposure to air pollution upregulated
pulmonary expression of toll-like receptor-3 (TLR3) and increased
airspace levels of IL-6, IFN-c, and TNF-a (Ciencewicki et al., 2007).
In most biological models of infection, an augmented immune
response is beneficial to the host defense response by promoting
pathogen clearance; however, in the context of air pollution, the
increased inflammation is mostly coupled with increased patho-
gen burden. However, it is unclear why this paradox following air
pollution exposure happens and few studies have addressed this.
It has been shown that this augmented inflammatory response
by air pollutants can lead to a disruption of the balance of pro-
teases/antiproteases, allowing for a direct increase in viral entry
into cells and/or host susceptibility (Kesic et al., 2012). However,
emerging literature has also reported that air pollution exposure
can modulate the adaptive immune responses by changing T cell
polarization (ie, decreased regulatory T cells and Th22 polariza-
tion, increased Th17 and/or Th2 skewing) which results in pro-
longed inflammation and pathogen load in the lung (Deiuliis
et al., 2012; Jaligama et al., 2018, 2017; Kumar et al., 2021; Li et al.,
2022). Whether these adaptive immune changes are driven by
increased pulmonary inflammation or direct effects on the adap-
tive immune response still remains unknown.

Figure 1. Molecular mechanisms by which air pollution increases susceptibility to respiratory infections. Pollutants that have been shown to increase
susceptibility or exacerbate pulmonary infections include PM, sulfur dioxide, diesel exhaust, ozone, and nitrogen dioxide. It is thought that inhalation
of these pollutants increases the amount of PAMPs, danger associated molecular patterns (DAMPs), and reactive oxygen species which can alter
function and responses of the resident lung cells including the alveolar macrophage and epithelial cells. (A) Known air pollution-induced alterations in
the alveolar macrophage include (1) decreased phagocytosis; (2) increased expression of PRRs; and increased production of proinflammatory cytokines.
(B) Known air pollution-induced alterations in epithelial cells include (1) increased cell death; (2) augmented inflammatory cyto/chemokine production;
(3) disruption of normal innate barrier defenses; (4) alterations in the expression of cellular receptors used by pathogens to cause infection; and (5)
modulation of the commensal bacteria in the lung leading to a favorable environment for pathogenic infections. These air pollution-induced changes
to the lung can lead to increased pathogen burden and mortality associated with infection. Created with BioRender.com.
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Air pollution disruption of the microbiome

The 4th mechanism of pollution-mediated respiratory infections
is an alteration of the microenvironment within the airways pro-
moting a more hospitable environment for pathogens to survive/
proliferate. An important aspect of this is the formation of bio-
film, which is clinically important due to its ability to confer anti-
biotic resistance (Hussey et al., 2017; Woo et al., 2018). When S.
pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa are
directly exposed to PM in vivo and in vitro, there is a significant
increase in both biofilm thickness and complexity (Hussey et al.,
2017; Li et al., 2017; Woo et al., 2018). Specifically, when
Pseudomonas was exposed to PM, the biofilm it established had
increased cellular adhesion to respiratory cells (Woo et al., 2018).
This increased adhesion allows for increased pathogen uptake
and/or entry and subsequent infection. In addition, when
Streptococcus bacteria is exposed to PM, the bacteria had a higher
rate of dissemination from the nasopharynx to the lungs, where
it may lead to pneumonia (Yadav et al., 2020). Additionally, fol-
lowing air pollution exposure, there is not only a change in the
16S rRNA in the lung, with bacterial diversity decreasing, but also
a significant increase in Proteobacteria in the lungs (Li et al., 2017).
This dysbiosis of the lung microbiome with a decrease in com-
mensal bacterial diversity as well as an increase in bacterial spe-
cies is known to be pathogenic (Li et al., 2017; Wang et al., 2019;
Yu et al., 2016).

Limitations
Though the laboratory research and mechanisms discussed
above support the epidemiological findings of pollution-
associated respiratory infections, there are still areas where fur-
ther investigations are warranted. Currently, most human and
rodent models used to evaluate the interaction of air pollution
and infection are from young and otherwise healthy subjects/
specimens. These healthy subjects are mostly used for both
financial reasons and safety concerns. In contradiction to these
commonly used models, most epidemiological findings report
that susceptible populations (children and >65 years of age) are
most at risk for air pollution-induced health effects.
Furthermore, many of these current controlled human labora-
tory studies that are performed rely on collecting cellular sam-
ples (ie, BAL) which are difficult and complicated to collect and
can confer an increased risk for complications. Due to these con-
straints, majority of the research models used for the study of
pollution-associated respiratory infections are relatively limited
in mechanism and may not accurately reflect the populations
that are most susceptible. Lastly, most laboratory studies only
examine a single air pollutant whereas epidemiological studies
include exposure to a wide array of environmental exposures.
Recent studies have reported that these exposures interact with
each other, affecting the immune response in a way that is diffi-
cult to replicate in a controlled setting (Hathaway et al., 2021;
Majumder et al., 2021a, b). Additionally, there may be interactions
with criteria air pollutants and unregulated air toxins (ie, ultra-
fine particles, acrolein, and biomass). Many of these unregulated
toxins have been implicated in pathogen susceptibility in labora-
tory studies (Brocke et al., 2022; Jaligama et al., 2017; Kumar et al.,
2021; Rebuli et al., 2019) but very few are considered in
population-based studies. Therefore, evaluating coexposures in
the context of susceptibility to infection may yield differential
results to the data that are already available. In conclusion,
although current data support pollution-mediated damage to

innate immune barriers, macrophages, and cellular receptors,

the research community has just begun to understand the mech-

anisms behind pollution-associated respiratory infections and

there is a need for more studies to better understand this interac-

tion.

Conclusion and future directions
As highlighted by the current COVID-19 pandemic, respiratory

infections are an important cause of human morbidity and mor-

tality and a significant public health threat. Addressing these

pandemic and future events will require a detailed understand-

ing of factors that regulate infection risk and severity.

Highlighted in this review, air pollution is an important factor

impacting respiratory infection risk and severity. This is sup-

ported both by population associations in epidemiologic studies

and causal mechanistic studies. Despite these observations, there

remain gaps in our understanding. Resolving these gaps will be

critical as the prevalence and severity of respiratory infections

are expected to increase air pollution levels, despite regulations

will continue to rise. Addressing this will require collaborations

between different environmental health disciplines that will

address interactions between respiratory infection and the envi-

ronment. In addition, more transdisciplinary research is needed

that leverages the strengths and weaknesses of population-based

research with basic mechanistic studies to identify novel mecha-

nisms by which air pollution alters respiratory infections, risk

factors for these effects, and intervention strategies that target

this risk. Ultimately, these measures would improve public

health and limit morbidity and mortality associated with respira-

tory infection.
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