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SUMMARY

Neuromorphic computing is a promising computing paradigm toward building
next-generation artificial intelligencemachines, inwhich diverse types of synaptic
plasticity play an active role in information processing. Compared to long-term
plasticity (LTP) forming the foundation of learning and memory, short-term plas-
ticity (STP) is essential for critical computational functions. So far, the practical ap-
plications of LTP have been widely investigated, whereas the implementation of
STP in hardware is still elusive. Here, we review the development of STP by
bridging the physics in emerging devices and biological behaviors. We explore
the computational functions of various STP in biology and review their recent
progress. Finally, we discuss the main challenges of introducing STP into synaptic
devices and offer the potential approaches to utilize STP to enrich systems’ capa-
bilities. This review is expected to provide prospective ideas for implementing
STP in emerging devices and may promote the construction of high-level neuro-
morphic machines.

INTRODUCTION

Building intelligent machines have long been a vision, especially with the advent of the intelligent era. The

emergence of edge computing, big data, and other new technologies has significantly promoted the

development of the intelligent era, but the growing volume of data and the demand for real-time process-

ing of edge tasks pose a great challenge to conventional computers. The classical computing architecture

separates the data storage from the central processing unit, generating ‘‘walls’’ that prevent further opti-

mization of power consumption and computational speed, particularly in data-intensive tasks. The human

brain is compact and unique for cognitive tasks and computing in memory with power dissipation as low as

20 W, whereas the Fugaku supercomputer requires 28 MW. Therefore, simulating the information process-

ing of the human brain is an effective way to achieve high-speed and power-efficient data handling. The

highly efficient biological nervous system originates from the huge connection network between neurons

enabling the highly parallel processing ability of brain.1,2 As the fundamental unit for signal transmission

and regulation in the neural network,3 synapses are considered to play essential roles in the realization

of brain features, which are more than analog weights.4 It is noted that synapses are leaky memories which

possess different timescales and state parameters ruling their modifications.5,6 On the other hand, synap-

ses are also highly stochastic since the received spikes are transmitted in an uncertain manner.7 Basically,

the functional connections in neural networks are determined by the dynamic regulation of synaptic

plasticity.8

As a rule of thumb, synaptic plasticity can be simply divided into long-term plasticity (LTP)9–11 and short-

term plasticity (STP)6,12–14 according to the timescale. LTP refers to the "permanent" change in synaptic

connection strength, which is generally related to the formation of long-term memory underpinning the

learning and memory functions.15 On the contrary, STP denotes the temporary efficacy change (millisec-

onds to seconds) during calculation, possessing the time window in good agreement with many computing

tasks, such as speech recognition,16 information filter,17 workingmemory,18 and spatial orientation percep-

tion.19 Therefore, STP provides a neural basis to achieve higher cognitive functions in the brain. LTP has

been widely emulated both at device and system levels.20–24 In detail, the synaptic devices with LTP char-

acteristics are usually programmed into various weights to conduct vector-matrix multiplication in an array

structure, resulting in the significant acceleration of the computing process in artificial neural networks

(ANNs). In contrast, the implementation of STP remains limited in behavioral emulation at the device level,
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Figure 1. Functions of synaptic plasticity

Top panel: schematic diagram of the STP correspondence between biological and emerging artificial synapses, from the

basic mechanisms to system implementation. Bottom panel: the behavioral and functional differences between LTP and

STP in biological synapses.
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whereas the prototype at the system level is still unexplored. One of the key challenges is that the STP-

correlated mature computational model and network algorithms are lacking, which severely hinders the

system design.

Complementary metal-oxide-semiconductor (CMOS) devices were initially used to achieve the temporary

dynamic features in STP by exploiting their subthreshold characteristics.25–27 For example, C. Bartolozzi

et al. utilized diff-pair integrator synapse to reproduce the dynamics in STP, where the Vthr is introduced

to achieve the dynamic tuning of STP timescale.28 Although STP emulation can be realized with CMOS

devices, the artificial synapses suffer from severe challenges in energy- and power-efficiency since they

generally consist of several transistors and bulky capacitors. Moreover, to further control the temporal dy-

namics in such synaptic unit flexibly, complex bias circuits are required to adjust the working state of the

subthreshold circuit.29 Compared to the traditional CMOS devices, the emerging devices with novel phys-

ical mechanisms, e.g. ion-migration, electron trapping, ferroelectric polarization, and magnetic skyrmion

motion, show intriguing potential to emulate the dynamic behaviors of synapses in a single unit with

less area and energy consumption. Figure 1 schematically illustrates the correspondence between

emerging artificial synapses and biological synapses from the fundamental mechanisms to system
2 iScience 26, 106315, April 21, 2023
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applications. In biology, synaptic efficacy can be modulated by the interactions between Ca2+ and neuro-

transmitters, kinases, and so forth. In contrast, the conductance in artificial synapses can be controlled by

tuning the movement of ions or other physics, which simulates the modulation of synaptic efficacy. The hys-

teresis in the I�V curves together with the conductance increment under successive excitation indicates the

memory effect,30 while the spontaneous decay of conductance is consistent with the feature of short-term

property. Attributing to the intrinsic dynamics processes, such as the migration of metal ions, the changed

conductance simplifies the emulation of ion-induced STP in biological synapses. Devices based on

different physical mechanisms can be used as artificial synapses with distinctive features, forming the

basis for mimicking various advanced short-term synaptic behaviors, such as pair-pulse facilitation (PPF),

pair-pulse depression (PPD), and post-tetanic potentiation (PTP). These features could in turn enable

higher-order brain functions such as sound localization,31 associative learning,32 and working memory.33

Thus, implementing STP with the emerging mechanisms is the foundation for pursuing neuromorphic

computing with neuroscience principles, which needs further investigation.

This article reviews the current advances in the field of short-term artificial devices and their applications in

neuromorphic computing. First, an overview of the synaptic bio-kinetic process and physics for implement-

ing artificial synapses are presented. After that, recent advances in STP implementation using physical

devices are summarized from the perspective of emulating synaptic behaviors. Next, we overview the

realization of the STP system by using the emerging synaptic devices. Lastly, we discuss the challenges

in developing short-term devices and propose potential routes. We expect that this review could provide

fundamental guidance and inspiration for implementing STP in physics and system applications, thus

toward a high-order neuromorphic machine.

SHORT-TERM PLASTICITY PHYSICS IN BIOLOGICAL AND ARTIFICIAL DEVICES

In implementing short-term artificial synapses, it is essential to understand the internal correlation between

biological and physical dynamics. In this section, the biochemical dynamics of STP is first discussed,

followed by the introduction of some representative physical mechanisms in artificial devices which can

be used for short-term implementation.

Biological short-term mechanisms and models

Figure 2A shows the schematic of a biological synapse, in which the presynaptic neuron and postsynaptic

neuron are separated by a 20-40 nm gap known as synaptic cleft. Presynaptic nerve cells generally influence

the excitability of postsynaptic neuron by releasing neurotransmitters that are stored in the vesicle pools in

presynaptic terminals. When the presynaptic terminal receives stimuli, these transmitters are released

toward the postsynaptic terminals. The postsynaptic membrane contains a large number of neurotrans-

mitter receptors that could react to the released transmitters and mediate the postsynaptic response.34

It is noted that the release of transmitters is regulated by the calcium ions (Ca2+) in pre-synapses. The

detailed working flow is described later in discussion:

(i) Action potentials (APs) reaching the terminal of a presynaptic axon could open the voltage-gated

calcium channels (VGCCs) within an active zone;

(ii) The concentration of Ca2+ increases near the active zone, which in turn causes vesicles containing

neurotransmitters to fuse with the presynaptic cell membrane and release the transmitters into the

synaptic cleft;

(iii) The terminals of post-synaptic dendrites receive the transmitters and lead to transient postsynaptic

membrane potential.

The above processes only induce a transient synaptic response and do not lead to any permanent change

of the synaptic weights, which is therefore denoted as STP. We know that the kinetics of Ca2+ are abundant,

which form the basis for various manifestations of STP, as schematically shown in Figure 2B. Take the

excitatory synapse as an example, with a low neurotransmitter releasing probability, if the presynaptic

neuron is repeatedly stimulated, the excitatory postsynaptic current (EPSC) usually increases gradually

during this period. This excitatory behavior usually includes PPF and PTP. PPF is observed under two

presynaptic APs with short interval, as evidenced by an increase in the postsynaptic current induced by

the second action potential. During the first AP, Ca2+ flows in through VGCCs until the channels close. After

that, the residual Ca2+ remaining in the terminal is gradually pumped out, leading to the reduction of the
iScience 26, 106315, April 21, 2023 3



Figure 2. Biological synapse and STP behaviors

(A) Schematic of a biological synapse: spike input from presynaptic neuron causes the injection of Ca2+, resulting in the release of vesicles. These vesicles are

rapidly replenished by a readily releasable vesicle pool. Most vesicles are stored in a large reserve pool and can be utilized to refill the releasable pool.

Released transmitters are recovered by endocytic process into releasable and reserve pool.

(B) STP behaviors, including PPF, PPD, and PTP. PPF is proposed to originate from the accumulation of calcium ions in response to multiple presynaptic

stimuli, leading to increased vesicle release. PPD is associated with the depletion of vesicles, since the releasable pool cannot recover in time to cause a

decrease in neurotransmitter release under high-frequency stimulation. PTP might be influenced by the activation of protein kinases, which promotes

vesicle-membrane fusion and leads to longer timescale in response to tonic stimuli.

(C) Schematic diagram of STP response. PPF and PTP could strengthen the synaptic weights, while PPD inhibits the synaptic weights. PTP exhibits

experience-dependent behavior in comparison to PPF.
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transmitters and thus the decay of EPSC. When a second action potential arrives before the vanish of the

first EPSC, the releasing probability of transmitters is enhanced by the extra Ca2+, resulting in stronger

response and higher EPSC, which is defined as the PPF behavior.35 The PPF generally works within several

hundred milliseconds.36 In contrast to PPF, the generation of PTP usually requires tens or even hundreds of

repeated stimuli, which canmaintain for tens of seconds, with the retention timemuch longer than PPF (Fig-

ure 2C). PTP generally acts through enhanced vesicle fusion,37 in which the presynaptic activity induces the

residual calcium for a longer period of time.14 In addition to enhancement, the depression effect is also

commonly observed in synapses with a high probability of neurotransmitter release. Specifically, during

repeated activation, the postsynaptic amplitude of the electrical potential appears to decrease. In contrast

to PPF, paired-pulse depression (PPD) suppresses the postsynaptic response when a second stimulating

spike closely follows the first one.36 PPD can be clarified by multiple mechanisms, both pre and postsyn-

aptic mechanisms have been proposed, including presynaptic depletion of vesicles, inactivation of release

sites, inhibition or inactivation of calcium channels6,38 and desensitization or receptor saturation of

postsynaptic receptors.35

The electrophysiological phenomena associated with STP are commonly observed in experiments,

whereas its computational importance is often overlooked. To elucidate brain functions, it is

essential to understand the dynamical properties of neural systems and their roles in neural computa-

tions.39 With the development of theories such as statistical physics, nonlinear dynamics, and complex

systems, STP models are progressively improved in computational neurology. In the 1990s, Abbott

et al.40 and Tsodyks et al.41–43 proposed phenomenal models of STP, mimicking the postsynaptic current

generated by both PPF and PPD effects. All these models indicate that the dynamics of synaptic trans-

mission result in complex sets of regular and irregular regimes of network activity. In these models, the

factors including vesicle resources, Ca2+ concentration, and neurotransmitter release probability are

crucial to elicit postsynaptic neural activities. The simplified STP differential model is displayed as

follows14,41:

dx

dt
=

1 � x

tD
� uxd

�
t � tsp

�
(Equation 1)
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Figure 3. Physics for emerging short-term artificial synaptic devices

Short-term mechanisms are presented in six panels. The metastable state indicates the transition in the device under the applied stimulus. The dash lines

represent the physical processes of returning to the stable states upon removal of the stimuli. The timescale refers to the duration of the metastable state.

The dynamic response characterizes the metric change in the device under pulsed stimulation. For ionic- and electronic-based devices, the response can be

expressed by the change of the current under pulses. The position of skyrmions and polarization represent the dynamic response of the magnetic- and

ferroelectric-based devices respectively.
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du

dt
=

U � u

tF
+Uð1 � uÞd�t � tsp

�
(Equation 2)

where x represents normalized vesicle resources responding to synaptic efficacy, u is the normalized

release probability. d indicates the difference between time t and spike release time tsp. The time

constant tF and tD characterizes the time required for facilitation and depression to recover the

baseline levels of 1 and U, respectively. Equations 1 and 2 correspond to the facilitation and inhibition

processes, respectively, where the former mimics neurotransmitter depletion and the latter mimics

Ca2+ influx into the presynaptic terminal to influence the release probability. Based on the mutual bal-

ance of facilitation and inhibition determined by t, a variety of short-term behavior can be described

phenomenologically. This model provides a basic reference for engineering STP devices and thus for

chip design.

Short-term physical mechanisms in artificial synaptic devices

In general, the synaptic weights are described as synaptic efficacy which is represented by the conductance

in artificial synapses. The performance requirements and resistance switching mechanisms of LTP are

widely reviewed in emerging devices for in-memory computing,44–49 whereas the significance of STP is

rarely investigated. Herein, we summarized the fundamental mechanisms of short-term plasticity in

emerging artificial synaptic devices.

The implementation of STP utilizing emerging devices generally relies on their short-term dynamic prop-

erties, that is, the capability of returning to or shifting toward the initial state spontaneously after

removing the stimulus. According to the switching mechanisms, the physics for short-term dynamics

could be roughly divided into four types which are ionic-, electronic-, magnetic-, and ferroelectric-based,

as shown in Figure 3. In the following section, we will discuss all these different short-term devices in

detail.
iScience 26, 106315, April 21, 2023 5
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Ionic-based devices

The transition of ionic-based devices generally accompanies by a large number of mobile ions, including

cations (e.g., metal ions) or anions (e.g., oxygen ions). Triggered by the electric field, ions can migrate in-

side the functional layer, which changes the device’s conductance. When the activation is removed, the

ions gradually degrade under thermal or gradient of concentration effects, resulting in the recovery of

conductance.

Under the motivation of the electric field, ions such as Ag+ and O2� can be driven to form the filament, as

shown in the first panel in Figure 3. Spontaneous rupture of the filaments occurs following the disappear-

ance of the stimulus. Theoretical frameworks such as the minimization of interfacial energy of atomic

clusters,50 minimization of filament surface area by surface diffusion of metal ions,51 and local heat distri-

bution52,53 have been developed to clarify such spontaneous rupture. It is proposed that the timescale

of the short-term plasticity in ions-based devices could be controlled by carefully designing the dielectrics,

on the basis of the ‘‘easy coming, easy go’’ statement.

Ions in the interface-based devices accumulate at the dielectric interface under the electric field, reducing

the potential barrier width and thus enhancing the tunneling current, which could effectively modulate the

conductance.54 For example, in oxide-based memristors,55,56 the O2� shift toward the bottom electrode

interface through applying the electric field on the top electrode, as shown in the second panel in Figure 3.

After removal of the stimulation, the ions will move to the steady state arising from the ion concentration

gradient, resulting in a volatile conductance change.57 The time constant of the interface-based devices

generally ranges from 1ms to 100 ms.55,56

Distinct from filament- and interface-based devices, ion migration in electrolyte-gated transistors (EGTs)

occurs in the electrolyte, a process that changes the channel’s conductance. The EGTs possess the archi-

tecture superiority of control terminal (gate) and transduction terminals (source-drain),49 allowing for the

control and read of the conductance simultaneously. EGTs can be generally divided into two categories:

electrochemical doping (ED) and electric double layer (EDL). In the ED devices, gate voltage could drive

the ions, such as Li+, H+, OH� and organic ions, in the electrolyte to inject into the channel and thus change

the channel’s conductance.58 In contrast, the ions in EDL devices mainly accumulate at the interface, which

makes the device recover quickly after the removal of the stimulus, as shown in the third panel in Figure 3.

As reported, the EDL devices are more favorable to perform short-term dynamics with the timescale of�s.8

Nevertheless, the small dynamic ranges of current EGTs limit their further applications.59 To improve the

short-term properties, the interaction between injected ions and the electrolyte materials should be

carefully designed. Additionally, implementing the controlled short-term dynamics at device level is

desirable, which needs further investigation.

Electronic-based devices

During the material synthesis and device fabrication process, defects including vacancies, interstitials,

precipitates, dislocations, and grain boundaries might emerge either intentionally or unintentionally. These

defects can act as trapping centers to capture and release carriers. Under stimulation, the trapping sites

are filled with carriers, and thus the trap-assisted tunneling or thermal excitation current is strengthened, lead-

ing to an increase in device conductance, as illustrated in fourth panel in Figure 3. At the end of the excitation,

the carriers in the trapping sites are gradually released or recombined, suggesting the volatile characteristics.

The defects-assisted short-term plasticity is more pronounced through the introduction of nanoparticles in

materials which allows for more trapping sites.60 In comparison to ions-migration-based devices, the capture

and release of carriers demand less energy, thus might be more favorable for energy-efficient applications.

In addition to thin films, two-dimensional (2D) materials in porous structures have also been investigated

for short-term synapses. The interface states and defect sites in 2D materials can be modified through

various physical or chemical treatments such as post-annealing or chemical doping,61 which is beneficial

for achieving STP. More intriguingly, 2D materials with suitable bandgap demonstrate outstanding light

sensitivity, which greatly broadens the application area of artificial synapses and provides convenience

for integrated sensory storage and computational systems. Meanwhile, it is more advantageous to scale

down the size of 2D devices in comparison to the bulk counterparts, arising from their unique van derWaals

layered structure, which is favorable to improve circuit density. Nevertheless, the synthesis of large-area 2D

materials in high quality and uniformity needs to be addressed before their practical applications.
6 iScience 26, 106315, April 21, 2023
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Magnetic devices

Magnetic-based devices, such as magnetic tunnel junctions and magnetic textures, employ both the

uniquemagnetic and electronic properties of the electrons.When electrons flow through themagnetic ma-

terials, the majority becomes spin polarized by the magnetization orientation. Meanwhile, when a current

with the spin-polarization paralleling to that of the electrons is injected into the magnetic material, the ma-

terial also exhibits higher conductance if it owns parallel polarization.62 Besides, the spin currents can drive

the movement of magnetic textures.63 Magnetic tunnel junctions can be used as embedding memory with

non-volatile programming,64 while magnetic textures such as skyrmions possess short-term characteristics

in the timescale of nanoseconds.65 Skyrmions are topologically stable particle-like spin textures in nano-

scale, which can bemanipulated and driven over large distances with spin torques and spin-orbit torques.66

It is noted that the distances are potential vectors of information allowing for computing.65,67 Particularly,

the particle-like behavior of skyrmions and their thermal Brownian motion are similar to the diffusion of

neurotransmitter.68 Additionally, the displacement transition can be restrained through introducing addi-

tional potential barrier which could block the pathway of the skyrmions transition.69 The thermal or current

disturbance could deform the skyrmions, which changes the electrical response.65 After the removal of the

disturbances, Skyrmions return to their initial arrangement and morphology within several nanoseconds.67

Skyrmion features nanosecond response and relaxation, which is difficult to achieve in other devices with

different mechanisms. However, so far, the investigation of Skyrmions-based STP is still in the stage of

theoretical simulation, the experimental demonstration in hardware devices needs more exploration.

Ferroelectric devices

Ferroelectric materials intrinsically possess spontaneous electric polarization that can be reversed by an

external electric field, as shown in the top right corner of Figure 3. The spontaneous polarization can

modulate the interface barrier of ferroelectric tunneling junctions (FTJ) or induce carriers in the channel

of ferroelectric field effect transistors (FeFET). When applying an electric field greater than the coercive

voltage, the polarity of the ferroelectric materials is capable of flipping, which results in the conductance

change. In contrast, a small electric field is not sufficient to completely flip the domains,70 in which the

reversible domain wall motion dominates at this point. The characteristics of domain wall motion in

ferroelectric materials are depicted in the last panel in Figure 3. The polarization state of ferroelectric

materials demonstrates history-dependent transient switching under pulse stimulations. For example, Li

et al. reported a ferroelectric diode71 in which the polarization-relaxation-induced increase in the Schottky

barrier height leads to conductance decay. It is noted that the larger polarization flip would emerge under

stronger stimulus, which gives rise to more robust retention characteristics. Therefore, the stimuli for ferro-

electric materials need to be precisely controlled to achieve short-term characteristics which also limits the

applications of ferroelectric devices. In comparison, anti-ferroelectric materials might be more suitable for

short-term devices with spontaneous domain recovery in nature. Recently, Cao et al. constructed an

anti-FeFET to emulate leaky and integration properties of neurons.72 Such leaky nature demonstrates great

potential for future short-term artificial synapses.

In summary, the rich dynamics of the emerging devices can provide easy access to emulate STP. However,

there are still many problems existing in these devices for serving as the short-term synapses, such as the

discrete nature of ionic-based devices, the incompatibility between EGT and CMOS circuits, the limited

physical implementation of magnetic skyrmion, and the practical exploration of anti-ferroelectric materials.

All these novel devices need to be further developed to satisfy the ever-growing demands.
SHORT-TERM PLASTICITY BEHAVIORAL EMULATION

Based on the above physical mechanisms, the conductance of the emerging devices can vary in the

timescale from microseconds to seconds. The short-term characteristic experimentally enables the imple-

mentation of STP behaviors, including PPF, PPD, and PTP, which are three cornerstones for the computing

functionalities in the network (collective) level of the nervous system.73 In this section, recent advances in

mimicking the fundamental short-term behaviors in the emerging devices are discussed.
Short-term potentiation

Short-term potentiation increases the transmission of synaptic information. PPF and PTP are two basic

forms of potentiation. PPF refers to the synaptic currents evoked by pairs of stimuli, in which the second
iScience 26, 106315, April 21, 2023 7



Figure 4. STP implementation in emerging devices

(A) Comparison of ion dynamics in the diffusive SiOxNy:Ag memristor with that in biological synapses. Left panel: Diffusion of Ca2+ from extracellular sources

via VGCCs and receptors, and the removal of Ca2+ via exchanger. Right panel: Ag diffuses into the dielectric layer to form filaments under the electrical field

and removes by interfacial energy or mechanical stress. Reproduced with permission from ref. 77, Springer Nature.

(B) Schematic of the switching process inside the ion migration device. Filaments are formed through ions migration under the electric field and relax to

clusters after stimuli.

(C) Experimental demonstration of PPD following PPF in the diffusive SiOxNy:Ag memristor. Device current (blue) responses to a voltage pulse train with the

same amplitudes but different frequencies. Reproduced with permission from ref. 77, Springer Nature.
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response (A2) is greater than the first one (A1). The intervalDt between two stimuli typically ranges from few

milliseconds to several seconds, suggesting that the PPF is able to maintain up to several seconds.

Compared to PPF, PTP requires the activation of a high-frequency burst of presynaptic APs (referred to

tetanus) and is delayed in its onset. For example, as shown in Figure 2C, the response to the first stimulus

at 2000 ms is much stronger than that at 120 ms in the resting state. PTP typically enhances the transmitter

release up to a fewminutes after the train of stimuli.74 It is noted that the PTP and PPF usually appear simul-

taneously during realistic stimulus trains. The PPF ratio (A2/A1) versus Dt has two components of facilitation

that can be evaluated by a double exponential decay:14,75,76

R = 1 + C1 expð�Dt = t1Þ+C2 expð�Dt = t2Þ (Equation 3)

where C1 and C2 are the initial facilitation magnitude of the rapid and slow phase, t1 and t2 are the char-

acteristic relaxation times of the rapid and slow phase respectively. It is worth noting that the equation can

also describe PPD with negative C.

PPF bionics has been investigated for more than a decade. Ohno et al. demonstrated STP in Ag2S-based

electrochemical metallization (ECM) devices.3 The atomic bridge gradually precipitates under successive

pulses, which then ruptures spontaneously once the input is removed. The device exhibits typical PPF

characteristics before the completed formation of the bridge. Wang et al. clarified the mechanism of

Ag diffusion device possessing dynamics similar to the biological accumulation and extrusion of Ca2+ (Fig-

ure 4A).77 In detail, Ag ions can be driven by the electric field and interfacial energy, which is similar to the

Ca2+ movement influenced by concentration gradients and exchangers. Under successive stimulation of

electrical pulses, Ag ions are repelled or attracted, which produces a conductive channel with gradual

solidification, as shown in the left half of Figure 4B.

In contrast to the extensive investigations in PPF, the emulation of the kinetic system of PTP is rare since its

biological function is still unclear and the mechanism is not straightforward. Most works illustrate PTP by

using a series of pulses, in which the PTP is expressed as the comparison of the initial and final conductance

values.78–81 For instance, Ji et al. presented an organic EGT utilizing PEDOT:Tos/PTHF as the active chan-

nel.78 The PTP was defined as the current ratio between the 10th response and the first one, which is
8 iScience 26, 106315, April 21, 2023



ll
OPEN ACCESS

iScience
Perspective
however different from that of the genuine biological mechanism. The synaptic computation inspired by

PTP still requires more exploration.

Short-term depression

STP plays a vital role in various neural computations and biological behaviors, which is particularly true for

inhibitory synapses. The underlying biological mechanisms and related behaviors of short-term depression

have been widely studied,13,82 whereas the experimental implementation of the depression emulation is

still limited. In contrast to PPF, it is difficult to realize PPD in a single device becausemost emerging devices

exhibit positive feedback under stimulation. After the first stimulus, devices tend to bemore conductive for

the subsequent stimulus. Therefore, richer dynamics are required to achieve PPD.

The second half of Figure 4B illustrates that successive electrical stimulation drives Ag+ shift toward the

cathode after the formation of filament. The gradual decrease of Ag+ near the anode leads to the breakage

of the filament and the decrease of device conductivity, which is illustrated as the PPD effect after the PPF,

as shown in the second half of Figure 4C. It is noted that the PPD can only be realized after the formation of

filaments in Ag diffusion devices. This conductance transition emulates the switch from PPF to PPD, corre-

sponding to the amount of available vesicle in biological synapses. In comparison, it is more advantageous

to achieve PPD in three-terminal devices arising from the more controllable intrinsic properties via an extra

terminal. Recently, Yang et al. proposed a versatile mechanoplastic artificial synapse based on tribotronic

floating-gate MoS2 transistors.
57 The charges are trapped in the floating gate assisted with the Au nano-

particles followed by the gradual decay through the tunneling layer in the artificial synapse, which realizes

the mechanical displacement derived PPD and PPF. However, attributing to the low carrier mobility of the

channel materials, the TENG-based EGT is restricted by a relatively large relaxation time of about 20 s. Xi

et al. fabricated a Schottky barrier-based field-effect transistor by employing single-crystalline NiSi2
contacts which forms an atomically flat interface with Si and Hf0.5Zr0.5O2 ferroelectric layers on insulating

substrates.83 The polarization switching dynamics of the ferroelectric layer could effectively modulate

the NiSi2/Si Schottky barriers and the potential in the channel, which therefore changes the device conduc-

tance. Both PPF and PPD were observed in the Schottky barrier-based transistors by using the pulse with

low energy of �2 fJ, indicating its outstanding energy efficiency. Zhou et al. demonstrated an artificial

synapse based on solution-processed 2D C3N/polyvinylpyrrolidone (PVPy) matrix,79 in which C3N

nanosheets serve as the protons capture centers. Under positive stimuli, protons accumulate in the C3N

layer and form the transport paths with proton hopping. Both PPF and PPD were successfully mimicked

by changing the interval between the successive pulses.

Although huge efforts have beenmade to emulate STP recently, there are no certain indicators to define its

standard merits. In general, the operation pulse width is expected to be t < 1 ms2. Scalability and formless

operation are essential to achieve high-density integration with high reliability. Additionally, for practical

applications in neuromorphic computing, the devices are required to have low power consumption. To

reduce power consumption, themost straightforward approach is to lower the operating voltage and pulse

duration. The excellent scalability of memristors is essential to lower the operating voltage. Besides, the

leakage currents can be retained at a low level through interface engineering or the introduction of inter-

layers.84,85 It is reported that the operating voltage of memristor can be reduced to tens of millivolts.86 On

the other hand, a faster switching speed allows for the shorter pulse duration and thus the lower power

consumption. Meanwhile, faster operation speed is more favorable for enhancing the computing speed

of the system, which is essential for high-speed scenarios, such as high-speed photography.87 In addition

to the power consumption, it is essential to ensure the operation voltage and relaxation time compatible

with bio-signals for biological interfaces such as prosthetics and bio-detection sensors.88 To compare the

STP characteristics in different types of the emerging devices, we summarize the recent studies shown in

Table 1.

STP BASED NEURAL FUNCTIONS AND HARDWARE IMPLEMENTATIONS

The previous section describes the emulation of synaptic STP at the behavioral level by using the emerging

devices, including PPF, PTP and PPD. These behaviors serve as the building blocks for higher-order brain

function. However, attributing to the difficulty in distinguishing the contribution of various forms of STP

from the synaptic dynamics, it is challenging to study the role of individual type of STP on synaptic

operations.101 It is almost unlikely to realize high-level brain functions by employing a single synaptic

behavior, since most of the functions are based on the interconnected networks. In this section, several
iScience 26, 106315, April 21, 2023 9



Table 1. Summary of recent studies using emerging devices to demonstrate short-term plasticity

Materials &

Structure Mechanism PPF PPD PTP

Relaxation

Time

Pulse

Amplitude

Pulse

Width Features/Applications Study

Ag/MgO/Pt Filament O O �200ms 5V 1ms STP-to-LTP transition Zhang et al.,89

Pt/SiOxNy:Ag/Pt Filament O O �30ms 0.75V 5ms - Wang et al.,77

Cu/a-Si/Pt Filament O �2ms 0.8V 1ms - Zhang et al.,90

Ag2S Filament O >10s 80mV 0.5s - Ohno et al.,3

Ag/Ag:Ta2O5/Pt Filament O O �80us 0.6V 10us STP-to-LTP transition Wang et al.,91

TiN/Ti/TiO2/SiOx/

Si

Interface O �1s 3.5V 10ms Highly nonlinear I–V

characteristics

Cho and Kim,92

Cr/TiO/Pt Interface O �200ms 1V 1ms - Lim et al.,73

ITO/TiOy/TiOx/TiN Interface O >100us 1V 50us - She et al.,93

SiO2/IGZO FET EGT O O - 0.5V 5ms High-pass and low-pass

filtering

Wan et al.,94

C3N/PVPy EGT O O O �200ms 5V 10ms - Zhou et al.,79

PEDOT:Tos/PTHF EGT O O �100s 0.5V 20ms Associative learning Ji et al.,78

Au/LPE/Mxene/Si EGT O �2s 1V 360ms Associative learning Wei et al.,95

Au/Electrolyte/

Graphd-iyne/Si

EGT O �2s 1V 0.44s Information integration Wei et al.,96

MoS2 Electronic-

based

O O �10s 25V 50ms Sound localization Sun et al.,30

- Skyrmion O <10ns - 1ns - Prasad et al.,97

Ag/PZT/LSMO Ferroelectric O <1s 2.2V 100ns Low energy cost Yoon et al.,98

Pt/BTO/SNTO Ferroelectric O �10us 0.1V 50ns - Yoon et al.,99

Sb-memtransistor Phase change O O O �5s �20V - Sequential learning

Combinatorial

optimization

Sarwat et al.,100
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neuromorphic functions based on one or more of the above behaviors are discussed, including temporal

filtering, sound localization, associative learning, working memory and reservoir computing.

Temporal filtering

STP inherently possesses the filtering function, in which potentiation supports a high-pass filter and depres-

sion underpins a low-pass filter.6 For potentiation, the subsequence stimulus enhances the synaptic efficacy

by the residual Ca2+. Thus, high-frequency input makes the synapse more active, which is beneficial for

high-pass filtering. In contrast, the depression behavior in an opposite way can be used for a low-pass filter.

Besides, band-pass filters can be realized in the facilitation and depression of co-existing synapses by

controlling the number of vesicles and release probability.75 Figure 5A shows three kinds of nerve signals

representing these filtering functions. The bioelectrical signals in the left panel show PPD, PPF, and

frequency-dependent responses, and the filtering functions are illustrated by plotting the responses as a

function of stimuli frequency as shown in the right panel.6 In spike processing, dynamic tuning of the syn-

aptic weight gives rise to many significant pattern representation and processing capabilities.102 For

instance, in biological sensing systems, depression can be linked to habituation while facilitation is related

to the sensitization, i.e., escape-related reflex.103 Besides, filtering enables the extraction of key informa-

tion for organisms, which is favorable for fast and energy-efficient information encoding in the ever-chang-

ing external world.

In hardware implementations, artificial synapses with PPF or PPD behaviors intrinsically possess rate-

dependent response.106 The lateral-coupled proton EDL transistor shown in Figure 5B104 can serve as a

high-pass filter arising from its PPF characteristics. The EPSC amplitude triggered by the presynaptic spikes

increases with the frequency of the gate pulse, enabling high-frequency dynamic time filtering, as shown in

Figure 5C. The equivalent filtering gain can be obtained from the ratio of the EPSC amplitudes triggered by

the last spike and the first spike. The proton transistor demonstrates excellent high-pass filtering
10 iScience 26, 106315, April 21, 2023



Figure 5. Temporal filtering in biology and physical devices

(A) Left panel: examples of EPSCs recorded in response to an irregular stimulus train with an average rate of 20 Hz at the climbing fiber (CF), parallel fiber (PF)

and Schaffer collateral (SC) synapses. Right panel: steady-state EPSC as a function of stimulus rate. Reproduced with permission from ref. 6, Springer Nature.

(B) Indium-zinc-oxide (IZO)-based protonic/electronic hybrid transistor. Protons are laterally coupled under electric fields to produce a change in

conductance. Reproduced with permission from ref. 104, Springer Nature.

(C) Frequency responses of the IZO-based EGT. The lateral coupling of protons increase with sequence inputs, and high-pass filtering is realized by the PPF

effect. Reproduced with permission from ref. 104, Springer Nature.

(D) Facilitatation anddepression are realized respectively in single EGTby linking thegate to input andground.When thegate is positively stimulated, channel can

induce charges. In contrast, when the gate is grounded, charges in the channel would be excluded. Reproduced with permission from ref. 105, Wiley.

(E) The analog circuit containing two EGTs connected in high- and low-pass modes is able to achieve a band-pass filter. Reproduced with permission from

ref. 105, Wiley.
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characteristics, whereas its relaxation time is as long as seconds, which is unfavorable for the low-pass filter.

Wan et al. investigated an indium-gallium-zinc oxide (IGZO) EDL transistor,94 in which high-pass and low-

pass filtering characteristics for both fixed-rate spike train and Poisson-like rate spike train are successfully

emulated. As shown in Figure 5D, the high-pass and low-pass properties are realized by different

grounding methods in which the three-terminal EDL transistor is reduced to a two-terminal synaptic device

with two modified connection schemes. Through combining the high- and low-pass filter, an analog circuit

implementing a band-pass filter was successfully achieved using an IZO-based EGT (Figure 5E).105 As

shown in the inset of Figure 5E, the signals are firstly fed to an inhibitory connected device, in which the

output serves as the gate control for the facilitated device. By adjusting the input frequency, it is possible

to achieve a tunable balance between the depression and potentiation of the two devices. It is noted that

the three-terminal devices have a more flexible structure to achieve different forms of filtering functions

due to their richer connection modes. Although the role of dynamic filtering is not yet fully understood

in practical information transfer, it is the cornerstone for achieving higher-order functionality in the hard-

ware for the applications of neuromorphic computing.

Thanks to the rich ionic dynamics in the biological synapse, different temporal filtering states may be trig-

gered in different scenarios. In artificial synapses, multiple dynamics are usually realized by precisely

changing the control signals.107 Multi-terminal devices offer more possibilities for regulation, which could

be a promising solution to achieve various filtering characteristics through different electrical connections.
Sound localization

Sound localization is one of the most precise spatiotemporal coding functions in the brain. Sound locali-

zation relies on many complicated mechanisms, among which the interaural time difference (ITD) and
iScience 26, 106315, April 21, 2023 11



Figure 6. Sound localization in biology and physical devices

(A) Schematic image of sound location by ITD and ILD effects in human. Reproduced with permission from ref. 113, the American Physiological Society.

(B) Sample binaural signals at high and low frequencies. ITD is embodied in the phase differences and ILD in the amplitudes. Reproduced with permission

from ref. 114, Springer Nature.

(C) Amplification of the ITD at the acoustic, mechanical, and neuronal levels. Reproduced with permission from ref. 110, Elsevier.

(D) A schematic structure of the neuro-transistor with multiple in-plane gates in one direction, which are regarded as presynaptic terminals on a single

dendritic branch of a neuron. Reproduced with permission from ref. 115, Wiley.

(E) The ratio of the current amplitude as a function of the time interval and the sound azimuth. Reproduced with permission from ref. 115, Wiley.

(F) A sound localization system with amplifying the ITD effect. Reproduced with permission from ref. 30, American Chemical Society.
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interaural level difference (ILD) are the most prominent ones.108 Due to the stereoscopic sound perception

of the creatures, sound signals are transmitted to the two ears at different times and intensities (Figure 6A).

Figure 6B illustrates the ITD and ILD effects in human ears. The red and blue lines represent the sound sig-

nals in the human brain. ITD and ILD exist for both high- and low-frequency inputs. As for ITD, these signals

exhibit phase-locked firing actions.109 When the sound localization is activated, the nervous system acts as

an amplifier which would magnify the time difference generated by the ITD twice in the neural circuit.110 As

shown in Figure 6C, the red line represents the acoustical signal received from the environment. The

mechanical amplification expands the time differences via the cochlear structure shown as blue line. The

differences could be further magnified through signal processing and adaptation at the neuronal level

arising from the neuron interactions, shown as the green line. As for ILD, the improvement in sound level

enhances the firing rate of cochlear nucleus neurons and thus the average frequency of excitatory postsyn-

aptic potentials (EPSPs).111 Although the firing intensity increases with the sound level, animals are able to

maintain acoustic sensitivity over a wide dynamic range of intensities and avoid cochlear damage caused

by runaway amplification in ILD mode. It is believed that PPD makes a difference in the gain control.31,112

Although louder sounds provide higher frequency inputs to cochlear nucleus neurons, ILD is counteracted

by synaptic inhibition, preserving the total synaptic input unaffected by stimulus frequency.

Most physical sound location systems are based on the ITD effect. He et al. proposed a capacitor-coupled

multi-terminal oxide-based EGT for spatiotemporal information processing.115 This device can receive in-

puts from multiple gates, as shown in Figure 6D. In the case that the sound signal comes from the left side,

channel will receive signals from ‘‘Gate4,’’ ‘‘Gate3,’’ ‘‘Gate2,’’ and ‘‘Gate1’’ in sequence. The device exhibits

PPF behavior, which produces significant response signals while gradually enhancing the successive stim-

uli. In contrast, if the sound comes from the right side, the device fails to fire under progressively weakened

stimuli. The coupling between devices decreases with increasing spatial distance. Using a pair of devices

set in a symmetrical structure, the artificial ear will distinguish the angle by the response ratio as shown in

Figure 6E. In order to clearly distinguish the ITD effect from frequency information, Sun et al. demonstrated

the synaptic computation using a MoS2-based device.30 The highly n-doped MoS2 transistor shows
12 iScience 26, 106315, April 21, 2023
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apparent metal-insulator-transition behavior modulated by the gate voltage. Both the PPF and PPD were

emulated through varying doping. Based on the frequency of selective excitatory and inhibitory synapses, a

sound location system is constructed. As shown in Figure 6F, this system suppresses interference with ILD

by enlarging signals using PPF and encodes ITD-related information through PPD effects. This process

amplified the time difference between the two signals, and thus identifies the orientation with ITD only.

Although these devices could realize the orientation detection of signals, its practical applications should

be further explored since sound localization in biology is far more complex. For example, according to the

current strategy, stereo sound recognition needs at least a three-dimensional integrated system.

Associative learning

Associative learning describes the recurrence of two different stimuli and the formation of brain connec-

tions, such as conditioned reflexes and other behaviors, which is usually closely related to the interconver-

sion of short- and long-term memory.116 With repeated training, the two unrelated stimuli (conditioned

stimulus, CS; unconditioned stimulus, US) could be coupled to each other under specific conditions in asso-

ciative learning. In detail, animals can associate CS and US in artificial synapses and then respond to the CS

in the same way as US. Although the biological mechanisms of associative learning are not fully under-

stood, previous reports have verified that short-term plasticity plays an important role in associative

learning processes in mammals.117 It is proposed that associative learning enables related things to link

together, which plays a crucial role in the cognitive functions of biological systems.118,119 Pavlov’s dog

experiment is a typical example of conditioned reflexes that can be implemented in neuromorphic

computing tasks.

In the aspect of physical emulations, the co-stimulation of electrical and optical signals is usually used as

the US and CS respectively. Ji et al. fabricated two parallel PEDOT:Tos/PTHF transistors connected in se-

ries, where the associative learning is realized via coupling the response of optical and pressure signals

based on PPF.78 The transistor exhibits either STP or LTP characteristics through applying different bias

voltages. More intriguingly, the LTP could be strengthened with significant non-volatility when the pressure

sensor and photo-resistor response co-exist in the device, whereas triggered PPF in volatility could be

observed if the operation only acts in the pressure sensor. The volatile PPF alone cannot reach

the threshold to simulate salivating dogs. Once the conductivity of the non-volatile memory reaches the

threshold, the superimposed PPF effect results in ‘‘drooling’’ under several light stimuli. In terms of the

channel materials, perovskite is believed as a promising building block for sensing applications. A thin-film

transistor-like synaptic device120 using all-inorganic cesium lead bromide (CsPbBr3) perovskite quantum

dots (QDs) and amorphous indium gallium zinc oxide was also explored for intelligent optical computing

systems. The conditioned reflexes of Pavlovian dogs to CS after training, and the time-dependent forget-

ting and re-response after retraining could be simulated by using the single synaptic device. In addition,

flexible electronic systems have been extensively investigated for the application of short-term plasticity

and associative learning,121,122 which can be further utilized in simulating complex brain activity in bionic

memory sensors, intelligent soft robots, and skinned electronic devices.

Working memory

Working memory refers to the maintenance and manipulation of temporal information after receiving sig-

nals,123 a role which is that of DRAM in computers (Udipi et al., 2010). As a temporal interface, working

memory integrates multimodal information from sensory memory and long-term memory, forming the

foundation of cognition.124 Working memory could retain information until the related actions are

executed. It is noted that the short-term potentiation is critical to enhance the local connections in the brain

during the maintenance process.33 To recall the memory via performing an action, PPF serves as the pro-

moter to reactivate the local system by adding a weak nonspecific excitatory to the whole network.33

Based on the function of working memory, a four-part multi-component model is proposed for different

types of multimodal information processing, including central executive, visuo-spatial sketch pad, phono-

logical loop, and links to long-term memory (knowledge or experience).123,125 The ability to reactivate

quickly after a stimulus is a key indicator for working memory in experiments. This feature is favorable

for avoiding continuous delivery of high metabolic spikes and achieving information storage with low en-

ergy consumption. For instance, a planar memristor arrays based on the 2D channel was fabricated to

retrieve or update information quickly.126 Although the conductance in the array decays to the pristine
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values in 10 s, the operation history is still memorized, which is beneficial for the simple recall of the pro-

grammed pixels during retrieval. This behavior emulates the aforementioned reactivation of stimulated

neurons in the monostable state in the excitatory synapse, which is anti-noise. Besides, the information

computing and conversion were emulated by interacting with weights loaded from ‘‘long-term memory.’’

Through employing the four-part theoretical framework, multimodal information can be well-cognized by

experience or knowledge.

Working memory is a complex concept related to storage, utilization, and reconstruction of memory. It is

still difficult for hardware to emulate the whole functions because devices with different features are

required to be integrated into one chip. The exploration of new devices with both tunable long- and

short-term characteristics may hold promise for reconfigurable and energy-efficient memory.

Reservoir computing

Reservoir computing (RC) is a framework for computation derived from recurrent neural networks (RNN). It

is hard to consider RC as a higher functional manifestation of the brain, whereas it possesses extraordinary

capability to process temporal information, which has been demonstrated in various short-term devices.127

RC contains a fixed and nonlinear ‘‘reservoir’’ to process information recursively, and map the information

to higher dimensional computational spaces. Due to the fixed reservoir dynamics, only the readout layer

requires training.128 which makes RC favorable for low-cost training, high versatility, and fast learning.

Recently, the RC network employing self-feedback nodes is experimentally demonstrated in the devices

with nonlinear and short-term properties, as shown in Figure 7A. Nonlinearity maps feature from low-

dimensional inputs into a high-dimensional feature space and short-term memory enables nodes to

update states to handle temporal information.128

In physical implementation, many dynamic devices with nonlinearity and short-term memory effects (Fig-

ure 7B) have been used as reservoir nodes. For example, Ag diffusive devices131 decaying in every frame

(Figure 7C) are suitable for implementing the RC system. In the top panel, the two sequential stimulus at

the beginning induces a continuous Ag filament and high conductivity in the device when the device state

is analyzed in the fourth time slot. The remaining two panels are operated in a similar way with different

pulse conditions. Depending on the dynamical properties of the device, the different sequences result

in different device conductance. The temporal information is fully captured by the ions’ dynamics. In

order to integrate sensing and computing functions, ultra-wide bandgap semiconductor GaO-based

photo-synapses are fabricated for in-sensor recognition of latent fingerprints. Under optical stimulus,

the photo-synapses demonstrate similar response as that in the Ag diffusive electrical devices, as shown

in Figure 7E. The optical response of GaO-based nodes allows the RC system to work without data trans-

mission between sensor and reservoir, thus reducing energy consumption and data latency. In addition to

memristors, RC has also been experimentally implemented by exploiting the complex dynamics of

spintronic oscillators,134 magnetic skyrmions,67 and nanowire.135 Through mapping information into

high-dimensional space and updating states every frame, RC demonstrates the outstanding capability

for recognition and temporal tasks. For instance, handwritten digit recognition task is realized by convert-

ing pixels to pulse sequences,136 as shown in Figure 7F. On the other hand, excellent performance on the

time-series prediction can be achieved in the Mackey-Glass series task,133 as shown in Figure 7G. The

advantages of low power consumption and hardware friendliness illustrate the great potential of using

RC in the temporal prediction paradigm.137–139

Although a wide range of RC systems has been demonstrated successfully, the systems possessing multi-

plex time through using an individual device as a virtual node is still inefficient. Besides, to improve the

recognition accuracy, complex measuring and computing methods have to be adopted, such as multiple

sampling outputs (Figure 7E), and the conversion of the same information into several sequences with

different frequencies (Figure 7F). Nevertheless, the problems could be solved by optimizing the device per-

formance, including improving device-to-device uniformity for parallel input and computation, and

designing devices with tunable decay constants for more dynamics in information mapping (Figure 8).

Additional functions

In addition to the above-mentioned applications, there are still various STP-related functions that are

widely observed in biology but yet realized in physical devices. For example, the short-term depression

in cortical synapses has been validated to provide dynamic gain control, which enables equal percentage
14 iScience 26, 106315, April 21, 2023



Figure 7. Reservoir computing in physical devices

(A) Schematic of a conventional RC system. Emerging devices act as virtual nodes in the RC network. Reproduced with permission from ref. 129, Springer

Nature.

(B) Basic dynamic response for RC system. Nonlinearity maps information to a high-dimensional space for easy classification. Short-termmemory enables the

encoding of temporal information. Reproduced from ref. 130, CC BY license.

(C) Electrical synapses are able to produce history-dependent responses under different encoded sequence inputs in every frame. Reproduced from ref. 131,

CC BY license.

(D) Photo-synapses are able to sense optical stimulus and update conductance according to the optical sequences. Reproduced from ref. 132, CC BY license.

(E) Processing of inputs and sampling of outputs. Sample1 (SMP1) and sample2 (SMP2) are measured as classification basis. Reproduced from ref. 132, CC BY

license.

(F) Handwritten digit recognition using a memristor-based RC system. The pixels are encoded as spike sequences with different frequencies as nodes’

inputs. Reproduced from ref. 128, CC BY license.

(G) Autonomous forecasting of Mackey-Glass time series using a memristor-based RC system. Reproduced with permission from ref. 133, Springer Nature.
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rate changes for the inputs with different frequencies to produce equal postsynaptic responses.40 On the

other hand, thanks to the unique characteristics of potentiation and depression, synapses play a vital role in

modulating the information transmission process such as burst detection142 and decorrelation.143 Burst-

like clusters of transmissions contain more non-regular positive information which could be enhanced by

facilitation. Decorrelation could filter out irregular information and eliminate redundant associations, al-

lowing the transmission sequence to convey information more efficiently. Previous works also claim that

STP is correlated with the dynamic coding of the nervous system.144 In the early stage of adaptation, neu-

rons fire at high frequencies, which enhances the synaptic connections persisting for a while. After that, the

neurons would fire less frequently in late adaptation. Nevertheless, since the synaptic efficacy between

neurons has been enhanced together with the improvement of the synchronized firing of neuronal popu-

lations, the continuous encoding of object information can still be realized. Although it is challenging to

achieve many of the computational functions using STP in hardware as mature as brains, STP provides

abundant valuable insights for neuromorphic computing.19,145,146

Inspired by STP, mature neural networks can compute in a more efficient way. For instance, Sarwat et al.

demonstrate a novel phase-change transistor with both long- and short-term plasticity.100 The synapse

with mixed-plasticity is capable of coupling the non-volatile and transient weight updates, which is advan-

tageous for important computational metrics against larger recurrent and long- and short-term memory
iScience 26, 106315, April 21, 2023 15



Figure 8. Roadmap with past milestones and future prospects in artificial synapses

Device-level LTP reproduced with permission from ref.140, American Chemical Society. Device-level STP reproduced with permission from ref.3, Springer

Nature. Array-level LTP reproduced with permission from ref.141, Springer Nature. Mixed-timescale plasticity reproduced with permission from ref.100,

Springer Nature.
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neural networks. The combination of synaptic plasticity with different time scales makes it possible to

achieve in-memory computing. Also, the application of STP in the continuous attractor network allows

for the introduction of negative feedback to the network and achieves the effect of changing from tracking

to anticipation.145 The model can well explain the anticipated tracking behavior of rat head-facing neurons

in biological experiments.

The current investigations of STP-based neuromorphic computing are still restricted by traditional algo-

rithms. The optimization of device dynamic characteristics together with the exploration of new neuromor-

phic algorithms could make boost for high-efficient computing.

DISCUSSION AND OUTLOOK

STP has an important computational role far beyond the current perception, which is promising to over-

come the challenges in nowadays computing systems. The rich dynamics in emerging devices make it

possible to implement STP in hardware with high efficiency. Nevertheless, the computing capabilities of

the STP have not been fully developed. The above-mentioned emerging devices also need further optimi-

zation. For example, two-terminal memristors are favorable for high-density integration arising from their

high area efficiency. The unit area can be as low as the ideal 4F2 or 4F2/N in a 3D structure. Nevertheless, the

sneak pass issue in the crossbar array requires extra selective devices, such as transistors, which hinder the

expected integration density. Thus, the investigation of area-efficient two-terminal selectors is of great sig-

nificance for the implementation of high-density memristor arrays with superior performance. On the other

hand, the intrinsic switching stochasticity in two-terminal memristors poses a great challenge in precisely

programming the synaptic weights in artificial synapses, which severely degrades the performance of the

neural networks. Therefore, the development of bio-inspired algorithms utilizing stochasticity is in high de-

mand for practical applications. Compared to two-terminal memristors, three-terminal EGTs combine the

architecture superiority of separated control and transduction terminals, making it possible for precise
16 iScience 26, 106315, April 21, 2023
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control and multiple-terminal operation.59 Moreover, the separated read/write operations of EGTs

contribute to the emulation of the delayed release of neurotransmitters in biological synapses, which is

important in synaptic computation. However, EGTs suffer from immature fabrication techniques and low

integration density, which could be addressed through joint efforts of thematerial and electrical engineers.

The time constant of the STP in magnetic devices is in nanoseconds, however, the devices suffer from

physical implementation and controllability. Additionally, the comprehensive investigation of the synaptic

dynamics in different devices is also emergent, since it is still difficult to fully apply the STP features in

neuromorphic computing. We propose that the current challenges of STP exist in both the biological

and physical aspects, which are discussed later in discussion.

i) Brain is a very powerful information-processing center composed of huge population of neurons and

synapses. Information encoding and decoding in the brain is achieved in a statistical manner, which

can be adjusted in real-time according to environmental conditions for self-learning and adaptation,

therefore contributing to the strong fault tolerance.147 The continuous perception of external infor-

mation and the integrated processing of self-stimuli are realized by impulse transmission in neural

networks. However, so far people still do not have a comprehensive understanding of the spatiotem-

poral encoding of impulse signals, which is a major obstacle to the development of artificial

intelligence.

ii) Many behaviors and perceptions of organisms cannot be explained solely by short-range plasticity.

The typical biological features including temporal-order learning,148–151 information compression,

and working memory are closely related to long-range plasticities such as STDP and neuronal pop-

ulation behavior., However, the coupling between short-term and long-term plasticity is complicated

with mutual modulation between each other, which should be further explored.

After the first demonstration of the LTP device,152 numerous works have been reported to achieve single

plasticity at the device level. The realization of LTP arrays141 has facilitated the computation of convolution

and accelerated neural networks. On the other hand, the development of STP computing is much slower. It

is recently proposed that the mixed-timescale devices100 are capable of improving the conventional

network on temporal information processing. Nevertheless, the implementation of a single device to

achieve tunable plasticity at multi-timescale so as to design integrated brain-like computational chips is

our ultimate goal. The computing system will act like a brain with in-sense and in-memory computing

capabilities in the future. The current issues that we need to address are.

i) The coupling and decoupling of long- and short-term plasticity in neural networks is a complex

process. Supports from dedicated algorithm engineers are in high demand.

ii) Biological synapses are capable of performing multi-timescale plasticity depending on the environ-

ment. The design of the specific single device possessing both STP and LTP is expected to achieve

more efficient in-memory computing.

iii) STP computing lacks targeted application scenarios and algorithmic networks, which could be

addressed through the close collaboration between the electronic and artificial intelligence engi-

neers.

Many of the underlying neuronal mechanisms are still obscure, which requires further investigation in an

interdisciplinary approach through researchers’ cooperation in different fields such as brain science, elec-

tronics, physics, materials science, and computing science. Novel computing paradigms based on volatile

devices should be further explored to accelerate existing AI computing systems. Integrating the unique

properties of each device to build computational systems is one of the future paths for system designers.

It is expected that the implementation of STP in artificial synaptic devices can significantly advance the

development of neuromorphic computing.
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Ellguth, G., and Schüffny, R. (2015).
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