
Wang et al. Journal of Neuroinflammation           (2023) 20:76  
https://doi.org/10.1186/s12974-023-02753-6

REVIEW

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Journal of Neuroin�ammation
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for alleviating Alzheimer’s disease
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Abstract 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease, with the characteristics of neurofibrillary tangle 
(NFT) and senile plaque (SP) formation. Although great progresses have been made in clinical trials based on relevant 
hypotheses, these studies are also accompanied by the emergence of toxic and side effects, and it is an urgent task 
to explore the underlying mechanisms for the benefits to prevent and treat AD. Herein, based on animal experiments 
and a few clinical trials, neuroinflammation in AD is characterized by long-term activation of pro-inflammatory micro-
glia and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. Damaged signals from the 
periphery and within the brain continuously activate microglia, thus resulting in a constant source of inflammatory 
responses. The long-term chronic inflammatory response also exacerbates endoplasmic reticulum oxidative stress in 
microglia, which triggers microglia-dependent immune responses, ultimately leading to the occurrence and deterio-
ration of AD. In this review, we systematically summarized and sorted out that exercise ameliorates AD by directly and 
indirectly regulating immune response of the central nervous system and promoting hippocampal neurogenesis to 
provide a new direction for exploring the neuroinflammation activity in AD.
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Background
Alzheimer’s disease (AD) is one of the most common 
neurodegenerative diseases. Nowadays, it is estimated 
to be approximately 50 million AD patients all over the 
world, and the number will reach up to 76.14 million in 
2030 [1]. Although the understanding of AD concept 
and pathogenesis has advanced since the first case was 
reported in 1907 [2], there are no effective treatment 
strategies. According to the amyloid cascade hypothesis, 
AD is caused by the excessive accumulation of amyloid-β 
peptide (Aβ) generated from amyloid precursor protein 

(APP) in the brain, especially Aβ42 and its polymers. The 
decreased clearance rate of Aβ is also an essential factor 
for Aβ deposition [3]. In addition, Aβ also can induce the 
hyperphosphorylation of microtubule-associated protein 
Tau [4], which promotes the dissociation of tubulin and 
the aggregation of tubulin into bundles, thereby resulting 
in pairs of helical filaments and neurofibrillary tangles 
(NFTs), and eventually causing neuronal dysfunction and 
even death [5]. Tau protein deposition is also considered 
to be another critical pathological feature of AD. During 
exploring the broad neuropathology of the human brain 
across the lifespan, the experiments in many primates tell 
us that the deposition of Aβ may be an aging-related by-
product. The abnormal increase in hyperphosphoryla-
tion of Tau protein is likely to be the initial cause of AD 
pathogenesis [6, 7]. Consequently, further exploration of 
the pathogenesis and treatments of AD is highly desired 
from other perspectives.

Since neuroinflammation hypothesis was proposed in 
1992, neuroinflammation caused by disturbed inflammatory 
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neuroimmune system has become the third core patho-
logical feature of AD [8]. Several studies have demonstrated 
inflammatory responses accompanied by the activation of 
immune cells in the brains of early clinical AD patients and 
postmortem pathological tissues as well as animal mod-
els [9–12]. Many antibodies that target these tissues are 
determined in the cerebrospinal fluid (CSF) of AD patients, 
indicating that AD is likely to be an inflammatory disease 
accompanied by autoimmune activation [13]. Recently, 
the Food and Drug Administration (FDA) has approved 
sodium oligomannate, a seaweed extract, for the treatment 
of AD patients in China, which can suppress the neuroin-
flammatory response by inhibiting the accumulation of 
phenylalanine and isoleucine in the blood [14]. Moreover, 
the drug has successfully passed the phase III clinical trial 
[15]. Although epidemiological studies suggest the applica-
tions of non-steroid anti-inflammatory drugs (NSAIDs) to 
prevent AD, most clinical trials have been unsuccessful [16]. 
The major reasons may be correlated with the precision tar-
gets [17], blood-brain barrier [18], adverse reactions [19], 
and medication timing [20]. It is worth noting that more and 
more studies have confirmed that scientific and reasonable 
exercise can effectively regulate the neuroimmune system, 
which has been proven in cardiovascular disease, respira-
tory system, and other diseases [21, 22]. Relevant animal 
and clinical experiments have also demonstrated that exer-
cise can alleviate the symptoms of neurodegenerative dis-
eases and delay the pathological progression in various ways 
[23], indicating that there is a close connection between 
exercise and the immune system [24]. In recent years, exer-
cise has gradually received extensive attention in preventing 
and treating AD. Therefore, we systematically summarized 
the relationships among exercise, neuroinflammation and 
AD, which will provide relevant theoretical references for 
the suppression of neuroinflammation to realize the preven-
tion and treatment of AD upon exercise interventions.

A new perspective on AD‑related hypotheses
AD is an age-dependent neurodegenerative disease 
accompanied by cognitive impairment, memory loss, and 
abnormal behavior [3]. From the cholinergic hypothesis 
proposed in 1976 [25], to the amyloid cascade hypoth-
esis in 1991 [26], and even to the recent hypotheses with 
cellular aging [27] and dysfunctional immune regulation 
[28], a large number of scholars have contributed aca-
demic explanation of AD pathogenesis. Over the past 
three decades, many experimental studies have docu-
mented that Aβ is the culprit of neurodegeneration in 
AD [26, 29], thereby confirming the deposition of Aβ and 
the accumulation of hyperphosphorylated Tau protein 
in neurons as the major pathogenesis of AD to lead to 
impaired synaptic plasticity and cognitive dysfunction, as 
well as the occurrence of dementia. Due to the complexity 

of pathological process of AD, a single hypothesis could 
not fully clarify the specific pathogenesis of AD, which 
also provides the explanation for failed clinical trials of 
drug candidates [30]. Many developed drugs have not 
shown the positive therapeutic effects on AD patients 
and even can cause severe adverse reactions, such as 
meningitis [31] and cognitive impairment [32]. Recent 
animal and clinical studies have reported that Tau pathol-
ogy can spread in the brain and cause cognitive impair-
ment without the accumulation of Aβ, which may be due 
to the speeded clearance rate of Aβ in the brain upon 
anti-Aβ treatment for AD [33]. In addition, some non-
amyloid treatment methods, such as circadian rhythm 
intervention [34], have gradually gained the attention by 
scholars. Recently, several new treatment proposals after 
summarizing a large number of clinical trial data have 
been put forward: including developing drugs to simul-
taneously or continuously target Aβ and Tau protein; 
non-biological targeted treatment strategies; or select-
ing mild cognitive impairment (MCI) patients or early 
AD patients as clinical trial subjects [35]. When APP is 
subjected to the cleavage by α-secretase and β-secretase, 
the β-carboxyl terminus of APP is released, and the Aβ48 
and Aβ49 are produced through the endo-proteolytic(ε) 
cleavage by γ-secretase. Then, Aβ48 and Aβ49 can be 
γ-cleaved in the order of every three amino acid residues 
to generate shorter Aβ peptides, such as Aβ40 and Aβ37 
[36]. The contents of these smaller Aβ peptides can be 
important indicators for evaluating γ-secretase activity. 
Among them, Aβ40 and Aβ42, mainly accumulated in 
nerve cells, are the most abundant and exhibit the sub-
stantial neurotoxicity [37]. Therefore, they are often used 
as biomarkers to predict mild cognitive impairment and 
AD. However, the Aβ37/Aβ42 ratio in CSF is more accu-
rate in diagnosing AD because the change in Aβ37 level 
can better reflect the functional status of γ-secretase than 
Aβ40 [38]. Recently, based on the linear causal relation-
ship in the amyloid cascade hypothesis, a new probabil-
istic model of A(Aβ)-T(Tau)-N(Neurodegeneration) has 
been proposed. Compared with the traditional hypothet-
ical model, this model can be applied to different clini-
cal types of AD [39]. However, recent animal or clinical 
studies have found that APP [40] or Aβ [41] in the brain 
does not always seem to be harmful. Only 30-40% of 
people with Aβ deposition in the brain will develop AD 
after the age of 70 years old, while approximately 50% of 
the populations never experience a cognitive decline for 
whole life [42, 43]. In recent years, when many scholars 
are conducting clinical trials of Aβ antibodies, they have 
found that many subjects have significantly reduced Aβ 
deposition in the brain. However, cognitive function has 
not been improved [44]. Similarly, neurodegeneration in 
the brain is persistent after APP is knocked out in animal 
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models [45]. After analyzing brain imaging of 2,700 ordi-
nary people, patients with mild cognitive impairment 
and AD patients at different periods, the appearance of 
AD symptoms may be caused by the reduction of soluble 
Aβ42 [41].

Interestingly, it is found that dense-core plaques are 
formed after activated microglia phagocytosed loosely 
organized Aβ plaques to relieve inflammation, thereby 
inducing the protective effects [46]. In addition, cogni-
tive impairment is likely due to functional and structural 
impairment of neurons caused by hyperphosphorylation 
of Tau protein rather than Aβ [47], which reminds us that 
there may be a greater need to explore the difference with 
amyloid cascade hypothesis of AD. With the in-depth 
exploration of AD, new concepts and perspectives on the 
pathogenesis of AD continue to emerge, which gradu-
ally enriches the theoretical references of AD, and will be 
helpful for developing effective prevention and treatment 
strategies for AD [48].

Inflammation and AD
According to the epidemiology, AD is mainly divided 
into two categories: early-onset familial AD (EOAD) and 
late-onset AD (LOAD), but their pathophysiology is very 
similar. From a genetic point of view, the pathogenesis 
of EOAD is closely related to the mutation of Aβ-related 
genes APP, presenilin-1 and presenilin-2. However, most 
AD cases (> 95%) belong to LOAD, whose most vital 
genetic risk factor is apolipoprotein E ε4 (APOEε4) [5]. 
In APOEε4 heterozygotes, the risk of AD is approxi-
mately 400%, when compared with approximately 1500% 
in homozygotes [49]. Dementia patients typically expe-
rience four stages of health, prodromal AD, mild cogni-
tive impairment, and AD [50]. Prodromal AD refers to 
the stage from the first neuropathological changes in the 
brain to the first symptoms of AD. Diagnosis in the pre-
clinical stage requires the absence of clinical signs and 
symptoms of AD and the presence of at least one bio-
marker of AD, which often requires early biomarkers for 
diagnosis [51, 52]. Long-term clinical cohort studies have 
documented the importance of platelet Tau variants as 
early diagnosis or the prevention of neurodegenerative 
diseases including AD [53, 54], which is consistent with 
relevant results, indicating that phosphorylated Tau in 
plasma may be an essential biomarker in the early stage 
of AD [55, 56]. Mild cognitive impairment and AD are 
assessed according to the severity of cognitive impair-
ment. According to the 2022 World Alzheimer’s Disease 
Report, up to 40% of dementia are correlated with life-
styles, including work stress, growth environment, and 
living standards [57]. Changing these adverse factors 
can prevent and delay AD to a certain extent [50]. The 
most significant risk factor for LOAD is aging, and other 

factors include obesity, diabetes, and cardiovascular dis-
eases. The common feature of these factors is systemic 
chronic low-level inflammatory response [58]. Multi-
ple meta-analyses have documented the inflammatory 
responses to AD [59, 60], and more and more studies have 
validated that inflammatory diseases such as bacterial 
infection [61], oral infection [62], and imbalanced intes-
tinal flora are closely related to AD [63]. With the exten-
sion of age, body function reveals the gradual decline, 
and the integrity and permeability of the blood-brain 
barrier (BBB) to protect the brain from peripheral immu-
nity are destroyed. The damaged BBB allows peripheral 
hormones, bacterial metabolites, and immunoglobulins 
to enter the brain to activate microglia, thereby activat-
ing the central immune system [58, 64, 65]. The levels of 
CD45 lymphocytes, interleukin-17 (IL-17), interferon-G 
(IFN-G), and interleukin-6 (IL-6) in CSF and blood of 
patients with AD are significantly increased [66], sug-
gesting that activated immune cells can also participate 
in the immune response by entering the brain from the 
periphery. The presence of many reactive hyperplasia 
of microglia and astrocytes around SPs imply that the 
immune system is an essential event in the pathogenesis 
of AD. Observational studies have found that elevated 
glial fibrillary acidic protein (GFAP) and triggering recep-
tor expressed on myeloid cell 2 (TREM2) in blood and 
CSF can serve as biomarker events for the diagnosis of 
early AD [67, 68]. TREM2 levels in CSF reveal the reduc-
tion before AD and the increase in early AD, and the final 
decrease again in late AD [69]. Plasma GFAP can more 
accurately reflect the changes in Aβ burden (not Tau pro-
tein) and disease severity in pre-symptomatic AD when 
compared with GFAP and TREM2 in CSF [70–72]. At 
the same time, TREM2 levels in CSF are closely related 
to Tau protein [73]. In addition, a biomarker analysis of 
healthy elderly, MCI patients, and AD patients has found 
that MCI patients with low levels of TREM2 in CSF or 
high levels of plasma TREM2 are more likely to acceler-
ate the progression of AD [71]. In AD and other neuro-
degenerative diseases, the function of TREM2-mediated 
activation of microglia depends on the stage of disease 
progression and the type of microglia [74]. After summa-
rizing the recent studies, relevant scholars propose that 
neuroinflammation is more than an incidental phenom-
enon of AD pathology. Conversely, neuroinflammation 
may help to drive the pathogenesis of AD. Epidemiologi-
cal studies have confirmed that long-term users of anti-
inflammatory drugs are less likely to suffer from AD [75]. 
In addition, according to the neuroinflammation hypoth-
esis, new treatments for the alleviation of AD using nat-
ural anti-inflammatory products such as curcumin are 
gaining attention [76–78]. Therefore, AD has regarded 
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as one of the secondary neurological diseases of chronic 
inflammation [79] (Fig. 1).

Pathogenesis of neuroinflammation in AD
Neuroinflammation has been first proposed as the essen-
tial inducer of AD. Long-term stimulation of "damaged 
signals" can activate the innate immune system and trig-
ger a series of inflammatory cascades, which is closely 
related to neurodegeneration in AD [80–82]. Relevant 
studies have pointed out that the importance of Tau in 
AD neuroinflammation may be far greater than that of 
Aβ [81]. Furthermore, the neuroinflammation hypothesis 
also seems to hold for other neurodegenerative diseases 
with tauopathy [83]. The body is exposed to various stim-
uli in daily life, including exogenous PAMPs and in vivo 
DAMPs, such as bacterial endotoxins and mis-folded 
proteins. As a defense mechanism, neuroinflammation 
protects the brain mainly by clearing DAMPs or PAMPs.

PAMPs and DAMPs play a protective role by bind-
ing to pattern recognition receptors (PRRs) to initi-
ate the activation of microglia and promote the release 

of mature pro-inflammatory cytokines from microglia 
to clear DAMPs and PAMPs. However, dysregulated 
DAMPs and PAMPs can pathologically exacerbate the 
levels of chronic inflammation with the extension of age 
[84]. When these stimuli are chronically present, micro-
glia remain activated and become a long-term source of 
inflammatory factors [85]. However, long-term inflam-
matory stimulation may show a wrong side [86]. Inflam-
matory factors can also activate protein-related kinases, 
such as cyclin-dependent kinase 5, to promote the for-
mation of NFTs from hyperphosphorylated Tau protein 
and further aggravate the inflammatory response in the 
brain [87–89]. Blocking the formation of inflammasomes 
in microglia can reduce neuroinflammation and delay the 
pathogenesis of AD [90]. On the one hand, communica-
tion between microglia and astrocytes plays a vital role 
in neuroinflammation [91]. As the most numerous glial 
cells in the brain, astrocytes regulate blood flow, main-
tain the blood-brain barrier, and maintain a stable envi-
ronment for synapses and neurotransmitters [92]. The 
switch of both glial cells between pro-inflammatory and 

Fig. 1  The molecular regulation of neuroinflammation for AD. At the early stage of AD, the body presents a chronic low-inflammatory state 
induced by aging, hypertension, type II diabetes, obesity, infection, and other risk factors, which can release a variety of danger-associated 
molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) to activate immune responses of the nervous system. Resting 
microglia can be converted into a pro-inflammatory M1 phenotype to clear these danger signals for returning to a resting state. With the 
progression of the disease, under the continuous stimulation of DAMPs dominated by hyperphosphorylated Tau protein, extensive endoplasmic 
reticulum stress, oxidative stress, and the formation of NOD-like receptor protein 3 (NLRP3) inflammatory cells after assembly by NLRP3 in 
activated microglia are triggered, which promotes the entry of nuclear factor kappa-B (NF-κB) into the nucleus, thus resulting in the up-regulation 
of inflammatory genes (such as IL-1β and IL-18) to restore neural homeostasis. Thus, the accumulation of mis-folded proteins, M1-phenotype 
microglia, and inflammatory factors contribute to the neuroinflammatory microenvironment. Neuroinflammation also promotes the diffusion of 
hyperphosphorylated Tau protein in the brain, thereby creating a positive feedback loop to drive AD
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anti-inflammatory phenotypes promotes the transfor-
mation of each other. For example, IL-1α, TNF-α, and 
complement secreted by activated microglia can con-
vert astrocytes to a pro-inflammatory phenotype [93]. 
Interestingly, neuroinflammation due to the activation 
of astrocytes is responsible for the degenerative devel-
opment of tauopathies [94]. Recent animal and clinical 
studies have shown that a subset of astrocytes can influ-
ence microglial function by releasing IL-3, thereby allow-
ing microglia to focus on clearing phosphorylated Tau 
and NFTs without destroying neurons [95]. In addition, 
the primary source of the protective IL-3 is the brain, and 
its expression is reduced in the brain of 5xFAD mice [95]. 
On the other hand, both high-risk factors for AD (aging 
and APOE4) and astrocyte damage disrupt the integrity 
of the blood-brain barrier, thus allowing the immune 
privilege in the brain to be disrupted [96]. Blood-borne 
DAMPs and PAMPs, such as complement, monocytes, 
and gut microbiota metabolites, enter the compro-
mised blood-brain barrier to promote specific immune 
responses and exacerbate the burden on the innate sys-
tem, thereby accelerating neurodegeneration [97]. In 
addition to the activation of peripheral T cells, the num-
ber of CD8+ T cells in the CSF of MCI and AD patients is 
significantly higher than that of normal subjects [98]. The 
experimental results of AD model animals have also con-
firmed that the neuroinflammatory events of AD include 
not only the activation of immune cells, but also the infil-
tration of activated peripheral immune cells in the brain 
[97]. Peripheral immune cells can penetrate brain tissue 
and bind to glial cells, thus reducing AD pathology and 
cognitive impairment in AD-transgenic mice [99, 100]. 
However, the role of peripherally derived immune cells 
remains controversial. In brain tissues of AD patients, the 
level of CD3+ T cells in peripheral blood vessels is related 
to Tau protein, rather than Aβ [101], suggesting that Tau-
related neurodegenerative changes drive the intervention 
of peripheral immune substances. Thus, the interaction 
between microglia and astrocytes and the disruption of 
brain immune privilege plays essential roles in neuroin-
flammation (Fig. 2).

Neuroinflammation as an upstream core event in AD 
pathogenesis
The immune system of the brain and the levels of inflam-
matory biomarkers in blood largely contribute to the 
occurrence and development of AD due to hyperphos-
phorylated Tau protein accumulation, neuronal dam-
age and cognitive impairment [102]. In a study with CSF 
examination and brain magnetic resonance images of 300 
people over the age of 60 years old, it is found that even 
people without dementia symptoms exhibit a trend of 
significantly higher inflammatory biomarkers [103, 104]. 

When lipopolysaccharide (LPS) induces a chronic inflam-
matory state in mice, AD-related pathological processes 
in brain tissues of mice are significantly aggravated [105]. 
These experimental data in animal models and humans 
suggest that neuroinflammation is an upstream event 
in AD pathogenesis. Large-scale samples also show the 
increased C-reactive protein (CRP) in the blood of the 
people at middle age, which is similar with AD patients 
[106]. However, some clinical studies have also reported 
that lower plasma CRP levels are more prone to AD 
[107]. It is worth noting that CRP elevation is an acute 
inflammation as the feedback adaptation, indicating 
that chronic inflammation may be an essential factor for 
inducing AD. In addition, neuroinflammation can induce 
M1-phenotype microglia to release pro-inflammatory 
factors, whose complements modulate neuronal and syn-
aptic damage, thereby resulting in the spread of Tau pro-
tein from the medulla or pons to the entire cortex [108]. 
In animal experiments, sustained expression of inter-
leukin-1 beta (IL-1β) in the hippocampus can activate 
astrocytes and microglia to trigger a robust inflamma-
tory response, ultimately leading to memory impairment 
[109]. For AD patients with long-term application of 
NSAIDs, symptomatic or asymptomatic progression of 
AD is significantly slowed down [78]. Therefore, neuro-
inflammation may be the upstream core event with the 
function of triggering AD.

Critical features of neuroinflammation in AD
Microglial activation has been recognized as a criti-
cal hallmark event in the pathogenesis of AD [110]. The 
activation process of microglia is closely related to the 
release of endocannabinoids. Microglia are the primary 
source of endocannabinoids under physiological con-
ditions, but the expression of cannabinoid receptors in 
resting microglia is low [111]. Under normal conditions, 
microglia play a vital role in removing the aggregation of 
mis-folded proteins or forming a glial barrier to prevent 
mis-folded proteins from accumulation and spreading 
[112]. Activated microglia can also express cannabinoid 
receptors to activate endogenous cannabinoid signaling 
to regulate the polarization and proliferation of micro-
glia, ultimately reducing the inflammatory response [113, 
114]. According to the microglial dysfunction hypoth-
esis, when the damage factors exist for a long time, the 
chronically activated microglia will suffer from malnutri-
tion and apoptosis, so they cannot perform their average 
clearance and monitoring functions, eventually acceler-
ating the formation of neuroinflammation and neuronal 
degeneration [115–117]. Using the tracking technology 
of microglia, positron emission tomography (PET) data 
show that microglial activation is observed in the elderly 
and patients with MCI. Moreover, AD patients show a 
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sequential increase in activated microglia, and this phe-
nomenon may be positively correlated with the level of 
phosphorylated Tau protein in the brain [108], which is 
also consistent with the results from RNA-seq analysis of 
brain tissue samples from AD patients [118]. Moreover, 
chronically activated microglia-mediated inflammatory 
events may be also related to the maturation of precur-
sor interleukins induced by Aβ-activated NLRP3 in 
microglia [119]. The initiation signals of NLRP3 include 
several internal and external activators, such as PAMPs 
and DAMPs. Mis-folded proteins are the most typical 
DAMPs in AD. In APP/PS1, APP/PS1/NLRP3−/−, and 
APP/PS1/Caspase-1−/− model mice, reduced NLRP3 and 
Caspase-1 activity can promote the clearance of DAMPs 
and restore learning and memory capacity of the mice 
[90]. Interestingly, in APP/PS1/NLRP3−/− mice, M2 phe-
notype microglia are the majority, indicating that the 

NLRP3-Caspase-1 axis plays a vital role in the pathologi-
cal process of AD, and this axis may be a potential thera-
peutic target through suppressing neuroinflammation. 
At the same time, the increased expression of Caspase-1 
in brain tissues of MCI and AD patients is determined 
[90], implying that the NLRP3 inflammasome is at a 
chronic activation state during the pathogenesis of AD. 
Indeed, apoptosis-associated speck-like protein contain-
ing caspase recruitment domain (CARD) (ASC) specks 
in the inflammasomes are released into the intercellular 
space. Adjacent microglia can take up these specks, thus 
leading to the spreading of inflammatory factors in the 
brain and long-term activation of the immune system. 
However, neurodegeneration is ameliorated after apply-
ing the ASC speck antibody [120–122]. High expression 
of NLRP3 and Caspase-1 can suppress the function of 
microglia and then accelerate the pathological process 

Fig. 2  The pathogenesis and process of neuroinflammation in AD. After damaged signals (DAMPs and PAMPs) invade the brain, microglia become 
pro-inflammatory cells and secrete inflammatory factors to clear these signals. Subsequently, anti-inflammatory microglia emerge and secrete 
anti-inflammatory factors to counteract inflammatory factors. Damage signals in AD cannot be entirely cleared by microglia, so pro-inflammatory 
microglia keep secreting inflammatory factors to damage neurons. Inflammatory factors continuously intensify the phosphorylation of Tau protein 
and the formation of NFTs, which are the major substances of damaged signals in AD, finally forming a vicious circle
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of AD [123, 124]. Notably, the changes in inflamma-
tory responses appear to be triggered by Tau pathology 
alone. Previous experiments have shown that the inflam-
matory response in the AD brain is pronounced in the 
presence of Tau pathology only, with the essential role in 
the involvement of microglia [125, 126]. Furthermore, in 
AD, Tau protein propagates itself into the brain via the 
NLRP3-ASC signal pathway, so the aggregation of Tau 
protein appears to be more inflammation than Aβ and is 
associated with the progression of AD symptoms [127], 
indicating that Tau protein is likely to be the dominant 
player in neuroinflammation. In in  vitro studies, micro-
glial activation may lead to pathological aggravation of 
Tau proteins again, which supports this positive feedback 
mechanism and explains the rapid progression of cortical 
NFTs in AD [128]. Consequently, reducing the expres-
sion of these inflammatory factors and the activation of 
NLRP3 in microglia are helpful for alleviating cognitive 
impairment of AD mice [129]. The inhibition of NF-κB 
and NLRP3/Caspase-1 signal pathways in microglia is a 
potential therapeutic strategy for AD [130]. Therefore, 
chronic activation of microglia and NLRP3 are the sig-
nificant features of neuroinflammation in AD.

Regulatory mechanisms of neuroinflammation in AD
Long-term endoplasmic reticulum dysfunction is closely 
related to cognitive impairment and memory loss in AD 
[131]. In the AD brain, the continuous accumulation of 
Aβ and hyperphosphorylated Tau leads to the continuous 
increase of endoplasmic reticulum stress (ERS), which 
sequentially activates the unfolded protein response 
(URP) and NF-κB, through the PKR-like ER kinase 
(PERK)/JAK1/STAT3 and inositol-requiring enzyme 1 
(IRE1)/thioredoxin-interacting protein (TXNIP) sig-
nal pathways, thereby causing aseptic inflammatory 
responses [132, 133]. The significant elevation of URP 
markers such as immunoglobulin heavy-chain-bind-
ing protein (BiP) is detected in the hippocampus of AD 
patients, especially in neurons of the CA1 and CA2 
regions [134]. Moreover, ERS and hyperphosphoryla-
tion of Tau protein can mutually induce and promote 
each other, thereby exacerbating the pathogenesis of AD 
[135]. In addition to participating the process of relieving 
ERS, URP itself can activate inflammatory pathways in 
immune responses, including NF-κB, mitogen-activated 
protein kinase (MAPK) family protein c-Jun N-terminal 
kinase (JNK), and p38 [136]. It has been reported that 
ERS induced by Aβ and NFTs in the hippocampus of 
5xFAD mice could also up-regulate TXNIP, although it 
does not affect the expression level of its negative regula-
tor or redox regulator thioredoxin (TRX) [137]. ERS also 
can lead to increased expression and secretion of IL-1β 
in the hippocampus via the activation of TXNIP/NLPR3 

signal pathway in the brain [138], which is consistent 
with the previous report that ERS can induce inflamma-
tion in diabetes to modulate islet β cell death [139]. The 
expression of cytokines and chemokines is enhanced by 
the activated PERK signaling, and conditional knockout 
of PERK can enhance synaptic plasticity and memory 
function in APP/PS1 transgenic mice [140, 141].

On the other hand, oxidative stress is a proximal event 
in AD pathogenesis prior to AD symptoms [142]. In 
SAMP8 mice with significant oxidative stress, the cog-
nitive function of the mice can be alleviated or even 
reversed after the application of antioxidants, Aβ anti-
bodies, and APP antibodies, respectively [143, 144]. 
Similarly, enhancing antioxidant capacity can suppress 
the expression of Aβ and APP and ultimately restore the 
impaired memory capacity of 3xTG transgenic mice. At 
the same time, the reduction of superoxidase dismutase 
(SOD) activity in the cytoplasm can lead to the forma-
tion of more Aβ oligomers [145, 146]. Oxidative dam-
age can disrupt oxidative homeostasis, thus resulting in 
the production of reactive oxygen species (ROS) [147]. 
In the cerebral cortex of APP/PS1 transgenic mice at the 
age of 7, 12 and 20  months, the ratio of NAD+/NADH 
is decreased when compared with that of wild-type mice, 
and the inflammatory signal pathway in the hippocam-
pal tissues is decreased upon the treatment with NAD+ 
supplementation nicotinamide riboside (NR), as shown 
in reducing neuroinflammation and alleviating cellu-
lar senescence through the cGAS-STING signal path-
way [148]. Interestingly, TXNIP is not only implicated 
in ERS, but also acts as an endogenous inhibitor of the 
antioxidant TRX [149]. TRX is a major intracellular thiol-
reducing and ROS-scavenging protein, and the binding 
of TXNIP to TRX can inhibit TRX activation and trigger 
oxidative stress. In AD, the antioxidant effect can reveal 
a decreasing trend with the decrease of nuclear factor-
related factor 2 (Nrf2) level [150], as confirmed that 
Dl-3-n-butylphthalide (NBP) inhibits NLRP3 inflammas-
omes and delays the pathological process of AD through 
the Nrf2-TXNIP-TRX signal pathway [151, 152]. There-
fore, ERS and oxidative stress, at the early stage of AD, 
can execute the protective mechanism and the suppres-
sion of neuroinflammation in AD.

Exercise and inflammation
Today, it is widely accepted that physical activity is essen-
tial for maintaining and promoting health. In 2020, the 
World Health Organization (WHO) proposed that all 
adults should have 150–300  min of moderate-intensity 
physical activity or 75–150  min of vigorous-intensity 
physical activity per week [153]. Exercise has a wide 
range of effects on the immune system. Exercise can 
increase the inflammatory state in the body by promoting 
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the hypothalamus-pituitary-adrenal axis, improving cell 
survival environment and anti-apoptosis, optimizing the 
functional status of autophagy, and regulating endocrine. 
Exercise can also trigger an inflammatory response, thus 
releasing ROS and reactive nitrogen species (RNS) by 
damaging muscle, suppressing immune systems, acti-
vating inflammation, and depleting glycogen [23, 154]. 
According to the “open-window” hypothesis, a compro-
mised immune system after strenuous exercise increases 
the risk of contracting an upper respiratory tract infec-
tion [155]. However, strenuous exercise also increases 
immune activity by redistributing immune cells to 
desired tissues, thereby reducing the chance of infection 
[156]. The effect of exercise on inflammation is related 
to the type, intensity, duration of exercise training, and 
individual or tissue differences [157]. For example, reg-
ular moderate-intensity physical activity can promote 
an anti-inflammatory state, but high-intensity physical 
activity or competition has been shown to activate the 
inflammatory response [158]. An acute exercise results in 
peak inflammation in muscle tissue within the first few 
hours [159], and this initial pro-inflammatory response is 
quickly counteracted by anti-inflammatory effects after 
regular exercise [160]. In addition, studies have shown 
that exercise intensity can be adjusted by assessing the 
level of neopterin, an endogenous immune activation 
marker, to determine the level of inflammation in the 
body during or after exercise [157]. In an animal model 
of LPS-induced inflammation, 3-week moderate-inten-
sity treadmill exercise reduces neopterin levels and sup-
presses immune-inflammatory responses [161]. Regular 
moderate-intensity physical activity is thought to have 
immunomodulatory effects, enhancing defenses against 
infection and reducing the incidence of chronic diseases 
[155]. Therefore, the anti-inflammatory effects of exercise 
are more likely to be triggered by long-term moderate-
intensity physical activity.

Increasing animal and clinical studies show that scien-
tific and reasonable exercise can stimulate the body to 
produce an anti-inflammatory phenotype state [162]. In 
addition to enhancing memory and cognitive capacity, 
regular aerobic exercise can also reduce the levels of CRP, 
IL-6, tumor necrosis factor alpha (TNF-α), soluble tumor 
necrosis factor receptor-1 (sTNFR1), and soluble tumor 
necrosis factor receptor-2 (sTNFR2) and promote the 
production of anti-inflammatory factors such as interleu-
kin 10 (IL-10), IL-1 receptor antagonist (IL-1RA), inter-
leukin 4 (IL-4) and transforming growth factor beta-1 
(TGF-β1) [163, 164]. For example, regular aerobic exer-
cise of patients with metabolic syndromes can reduce 
IL-6 by 30%, TNF-α by 15% and leukocyte counts by 15% 
in blood [165]. Not only that, regular physical activity 
also can exert an anti-inflammatory effect on chronic and 

inflammatory diseases. Similarly, weekly moderate-inten-
sity aerobic exercise can be helpful to reduce peripheral 
inflammation levels of the people with type 2 diabetes 
[166]. Regular physical activity can promote the tropism 
of neutrophils and natural killer (NK) cells to optimize 
their functional status [167]. Similarly, the elderly at the 
average age of 71 years old reveal a threefold decrease in 
the number of pro-inflammatory monocytes CD14 and 
CD16 in their blood after strength training of legs and 
chest [168]. In addition, regular exercise (aerobic and 
resistance exercise) can also reduce the secretion of pro-
inflammatory cytokines in young people and induce skel-
etal muscle to release anti-inflammatory mediators such 
as IL-6 [169]. Exercise-induced increase of circulating 
IL-6 and increased plasma levels of anti-inflammatory 
factors, such as IL-1RA and IL-10. IL-1RA can inhibit 
IL-1β signaling, while IL-10 can inhibit the production 
of inflammatory factors, including TNF-α [170]. Nota-
bly, the expression of toll-like receptors on the monocyte 
membrane is decreased after an acute prolonged exer-
cise, thereby affecting the secretion of pro-inflammatory 
factors [164]. In addition, prolonged exercise can also 
affect the number of different T cells including regulatory 
T cells for influencing the immune system [171]. There-
fore, exercise may be one of the crucial ways to regulate 
immune and inflammatory responses.

Exercise and AD
Since current drugs for AD have not achieved good 
clinical efficacy, people have focused their attention on 
changing lifestyles for the prevention and treatment of 
AD. The 2022 report on AD lists high-risk factors for AD 
at all stages. For example, one of early AD risk factors 
includes poor education; late risk factors are smoking, 
physical inactivity, depression, social isolation, diabetes, 
and air pollution. In addition, 40% of AD patients can be 
prevented or delayed by modulating these controllable 
risk factors [172]. Several decades observational studies 
have confirmed this fact [173, 174]. Therefore, the study 
recommends the prevention of dementia based on the 
entire life cycle, such as regular physical activity in mid-
dle and old age [175]. It is well known that a sedentary 
lifestyle is associated with impaired cognitive function 
in AD populations, so one possible approach to amelio-
rating AD is regular physical activity [176]. A recent ret-
rospective analysis including 160,000 participants has 
found that participants with regular and active exercise 
have a lower risk of developing AD by 45% [177], suggest-
ing that physical activity has a more positive role in pre-
venting AD, and similar results are also reported in other 
literature [178]. Comparable results are also achieved in 
a prospective study of 716 elderly subjects [179]. In addi-
tion, exercise positively affects high-risk factors for AD, 
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including hypertension, type II diabetes, obesity, and 
hyperlipidemia [180]. On the other hand, regular physi-
cal activity has been reported to have multiple benefits in 
relieving AD symptoms in both human and animal exper-
iments [181]. For example, physical activity has improved 
learning and memory capacity by increasing long-term 
potentiation (LTP) and neurogenesis [182], suggesting 
that physical activity may also be associated with struc-
tural and functional changes in the brain. The 5-month 
voluntary wheel running can reduce Aβ40 and Aβ42 
levels in the brains of 3xTG transgenic mice [183]. Simi-
larly, 3-month-old APP/PS1 transgenic mice reveal the 
significantly reduced Aβ accumulation in the brain after 
five months of treadmill running [184]. In addition to 
reducing the expression level of β-secretase in transgenic 
mice, exercise can also change the activity of γ-secretase 
[185] and promote the activity of α-secretase in a Sirt1-
dependent manner [186]. Furthermore, exercise also can 
promote lactate secretion in skeletal muscle in a Sirt1-
dependent manner to increase the level of brain-derived 
neurotrophic factor (BDNF) in the hippocampus for 
enhancing neuronal function and ultimately restoring 
the memory capacity of mice. At the same time, BDNF 
can reduce β-site amyloid precursor protein cleav-
ing enzyme 1 (BACE1) activity [187, 188]. The capabil-
ity of the brain to synthesize BDNF reveals an increase 
by approximately 2–3 folds during prolonged exercise 
[189]. Therefore, exercise may reduce the content of Aβ 
in AD model mice by regulating the activities of α-, β-, 
and γ-secretase. Accumulating evidence suggests that 
microglia play essential roles in many aspects including 
the regulation of Aβ, hyperphosphorylated Tau, neu-
ronal function, and synaptic plasticity [190]. For exam-
ple, microglia can promote the phagocytosis capacity of 
Aβ [191]. Astrocytes can promote the positional change 
of the aquaporin 4 (AQP4) to increase the clearance rate 
of Aβ. Similarly, a transient and prominent microglial 
activation state in the hippocampus of 3xTG transgenic 
mice after 3  weeks of voluntary wheel running is also 
observed [192]. Reducing the deposition of Aβ in the hip-
pocampus can increase learning and memory capacity of 
mice. Therefore, the effects of exercise on preventing and 
delaying AD are multifaceted. After 6-month resistance 
exercise in 100 MCI patients aged 55–85 years old, their 
memory, attention, and executive skills are improved sig-
nificantly during and 12  months after exercise [193]. In 
terms of different AD patients, MCI patients, or healthy 
people, exercise is effective against high-risk factors for 
AD. It also can enhance the resilience against AD, thereby 
improving cognitive reserve function and brain tissue 
plasticity [194]. However, some human experiments have 
shown that 16-week aerobic exercise does not reduce 
the content of Aβ in the brain of AD patients [195]. This 

result may suggest that the anti- and pro-inflammatory 
effects of exercise may depend on various factors such as 
exercise intensity and duration.

Exercise suppresses neuroinflammation 
for ameliorating AD
AD has been recognized as a neurodegenerative dis-
ease caused by a chronic inflammatory response [196]. 
The aging of organisms, the accumulation of progres-
sive damage, and the loss of the reserve function of each 
organ may be related to the inflammatory response [197]. 
Long-term high-frequency physical exercise can alleviate 
the degeneration of the body system for delaying aging 
and improving physical fitness [198]. In studies on natu-
rally aging animals and healthy people with different age, 
it is found that lifelong exercise can effectively alleviate 
the systemic inflammatory response in mice by inhibit-
ing the levels of pro-inflammatory factors and increasing 
the levels of anti-inflammatory factors, respectively [199, 
200]. A recent review proposes that the anti-inflamma-
tory properties of exercise can suppress the inflammatory 
state of AD and ameliorate the pathophysiological char-
acteristics of AD [201]. Numerous studies have shown 
the decreased immune responses and ameliorated cog-
nitive impairment in elderly, and MCI and AD patients 
after a period of physical activity [202]. The studies on 
exercise-mediated neuroinflammation in AD models are 
listed in Table  1. Non-work-related exercise has a spe-
cific protective effect on AD. For example, exercise can 
improve the judgment and problem-solving capacity of 
AD patients and modulate serum inflammatory markers 
in AD patients [203]. Similarly, human and animal data 
show that exercise can increase TREM2 levels in CSF of 
AD patients, maintain plasma TREM2 levels in APP/PS1 
mice, and reduce plasma GFAP levels in multiple sclero-
sis patients [204–206]. The plasma of long-term exerciser 
has been shown to suppress inflammatory responses in 
the hippocampus by inhibiting complement-related sig-
nal pathways and preventing neuroinflammation [207]. 
Although these causal mechanisms are still under debate, 
the anti-inflammatory effects of exercise are meaningful 
and feasible as a therapeutic strategy for aging-related 
neurodegenerative diseases. Therefore, the inhibition 
of inflammatory responses may be a potential target for 
ameliorating AD (Fig. 3).

Neuroimmune‑modifying effects upon exercise 
interventions
The innate immune system is the primary defense against 
exogenous pathogens and endogenous infections in 
the body. PAMPs or DAMPs bind to pattern recogni-
tion receptors (PPRs) on the membrane of glial cells to 
release cytokines, nitric oxide (NO), and other factors for 
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defense [208]. In many animal models and humans with 
AD, astrocytes and microglia are significantly activated in 
areas with the initiation of AD pathology (frontal cortex 
and hippocampus) [209]. Activated microglia and astro-
cytes transform from a rest state to a pro-inflammatory 
state and play a protective role in clearing these dam-
aged insults. However, under the long-term stimulation 
of injury factors, glial cells are continuously activated 
to stimulate the release of pro-inflammatory factors for 
restoring the cellular homeostasis in the body. As men-
tioned above, the activation state of microglia and cor-
responding phenotypic transformation play a key role in 
inflammatory responses in AD. After 10-day treadmill 
running of 4-month-old and 18-month-old C57BL/6 
mice, exercise can promote the phagocytic capac-
ity of mouse microglia, thereby reducing the content of 
IL-1β and reversing the decline of hippocampal neu-
rons and memory capacity [210]. In multiple studies, the 

activation of microglia is suppressed in the hippocampus 
of APP/PS1 mice after 4 or 5  months of aerobic exer-
cise [211, 212]. In addition, the treadmill running for 
12 weeks promotes the transformation of microglia from 
the M1 phenotype to the M2 phenotype, thereby reduc-
ing inflammation and oxidative damage in hippocampal 
tissues, and finally resulting in the improvement of cogni-
tive performance of mice [213].

Moreover, exercise can also inhibit the excessive activa-
tion of hippocampal microglia in aged mice, maintain the 
homeostasis of the nervous system, and effectively pre-
vent neuronal damage in aged mice [214]. Furthermore, 
in streptozotocin (STZ)-induced diabetic model  rats 
with AD-like symptoms, treadmill running increases the 
proportion of M2 phenotype microglia and attenuates 
oxidative stress-induced injury in the brain [215]. There-
fore, exercise protects brain by suppressing the immune-
inflammatory response by increasing the number and 

Fig. 3   Exercise modulates neuroinflammatory responses to ameliorate AD. First, exercise suppresses chronic inflammation in the body through 
reducing circulating levels of pro-inflammatory factors and immune cells. Second, exercise restores the permeability and integrity of the BBB 
by repairing damaged endothelial cells and tight junctions, ultimately preventing inflammatory factors and immune cells from entering the 
brain. Third, exercise inhibits the pro-inflammatory M1 phenotype and stimulates the anti-inflammatory M2 phenotype to increase the levels of 
anti-inflammatory factors in the brain, thereby restoring homeostasis. Finally, exercise triggers adult hippocampal neurogenesis (AHN) by inducing 
the expression of BDNF in the brain and muscle, thus leading to the continuous formation of new neurons, astrocytes, and oligodendrocytes. These 
new cells can replace the corresponding senescent and damaged cells, thus remodeling the high-loading state caused by neuroinflammation. 
Therefore, exercise inhibits the neuroinflammatory response through four effects and ultimately delays the pathological process of AD and 
alleviates symptoms
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phagocytic capacity of M2 phenotype microglia, whose 
mechanism may be related to PPRs expressed on the 
microglial membrane. When the AIM2-like receptor 2 
(ALR2) function is lost, it can induce the transformation 
of microglia from M1 phenotype to M2 phenotype and 
reduce the inflammatory response [216]. Exercise can up-
regulate the expression of triggering receptor expressed 
on myeloid cell 2 (TREM2) and scavenger receptor 
A (SR-A) to enhance the neuroprotective function of 
microglia [205]. Moreover, a recent study has pointed 
out that four weeks of treadmill running can reduce 
NLRP3 content and Caspase-1 activity in the hippocam-
pus of the mice after lateral ventricle injection of Aβ40 
[217]. Numerous animal studies have also confirmed that 
inhibiting NLRP3 in microglia is a potential target for the 
treatment of AD in the future [218, 219], indicating that 
the regulation of PPRs in microglia by exercise is a poten-
tial immunotherapeutic direction. However, single-cell 
transcriptomics have revealed that microglia might have 
multiple phenotypes, including disease-associated micro-
glia (DAM), and microglia with the coexistence of differ-
ent phenotypes during the progression of AD [220, 221]. 
It is warranted in the future to investigate whether exer-
cise has differential effects on these subdivided microglial 
phenotypes. Furthermore, whether exercise has a similar 
effect on astrocytes also needs to be explored [222].

On the other hand, exercise can reduce the impact 
of peripheral inflammatory factors on the central sys-
tem. The BBB comprises endothelial cells, a basement 
membrane containing pericytes and astrocytes. Previ-
ous studies have confirmed that BBB is closely related to 
the occurrence and development of AD and is also a key 
point in preventing and treating AD [223]. Loss of BBB 
integrity allows cytokines and immune cells to enter the 
central nervous system (CNS), thereby activating glial 
cells and leading to changes in the extracellular milieu. 
Exercise can reduce TNF-α level in blood and enhance 
BBB function in patients with type II diabetes. Regu-
lar exercise training down-regulates pro-inflammatory 
cytokines, such as IL-6, and TNF-α, associated with low-
grade systemic inflammation [224]. In AD, the accumu-
lation of ROS activates metalloproteinases, thus leading 
to the disruption of BBB integrity [225]. BBB dysfunc-
tion during the progression of AD affects Aβ clearance 
and endothelial trafficking, impairs endothelial and peri-
cyte function, disrupts tight junction (TJ) integrity, acti-
vates glial cells, and promotes leukocyte recruitment in 
the brain [226]. Physical activity inhibits neuroinflam-
mation by up-regulating Aβ transporter activity to clear 
Aβ [227]. Aerobic exercise has been shown to allevi-
ate the reduction of aging-induced cerebral blood flow 
(CBF) and cognitive performance in healthy individu-
als [228]. In addition, exercise also promotes the return 

of tight junction proteins in the BBB to their original 
levels, thereby restoring the permeability of the BBB. 
Long-term aerobic exercise from the midlife to old age 
prevents aging-related neurovascular decline, reduces 
the entry of inflammatory substances into the brain, and 
increases synaptic plasticity and overall behavioral capac-
ity in aged mice [229]. Relevant  studies have found that 
high-intensity continuous training (high-intensity inter-
val training and high-intensity circuit training) has bet-
ter immunomodulatory effects than moderate-intensity 
training [230]. Moreover, high-intensity circuit training 
is more effective in suppressing the proliferation of T 
cells and macrophages. In contrast, high-intensity inter-
val training is better at inducing the anti-inflammatory 
phenotype polarization of immune cells [231]. Therefore, 
exercise suppresses neuroinflammation by altering the 
levels of peripheral inflammatory mediators and modu-
lating microglia in AD models.

Exercise promotes hippocampal neurogenesis 
through suppressing neuroinflammation
During adulthood, neural stem cells in the hippocam-
pus of humans can continuously proliferate and dif-
ferentiate to generate new neurons, termed adult 
hippocampal neurogenesis (AHN), which is closely 
related to the learning and memory capacity [232]. 
AHN exists only in the subventricular zone (SVZ) and 
subgranular zone (SGZ) in hippocampal tissues of the 
mammalian brain. AHN can promote brain plastic-
ity in adulthood, and the newly generated neurons 
can re-establish the connections between damaged 
neurons [233]. Emerging evidence suggests that AHN 
is impaired prior to onset in classical mouse models 
of AD [234]. During the intraperitoneal injection of 
LPS in the brains of 3xTG mice, the number of imma-
ture neurons in the hippocampal tissues of 3xTG mice 
reveals the significant reduction when compared with 
wild-type mice, even leading to hippocampal-depend-
ent memory loss [235]. The aggregation of Aβ leads to 
impaired function of neuronal stem cells in the adult 
hippocampus. Restoring stem cell function and reduc-
ing neuroinflammation are considered as the key thera-
peutic strategies for AD [236]. In addition, the immune 
system is an essential regulator of AHN. During the 
progression of AD, chronic inflammatory responses 
down-regulate AHN through anti-neurogenic effects. A 
study indicates that activated microglia, particularly the 
M1 phenotype, can promote inflammatory responses 
by reducing the survival of neural precursor cells and 
play an essential role in suppressing AHN [236]. It has 
been reported that intra-cerebroventricular injection 
of STZ in rats induces persistent neuroinflammatory 
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responses in the hippocampal SVZ and SGZ, and inhib-
its the proliferation, differentiation, and maturation 
of neural precursor cells, thus leading to memory loss 
[237]. Extensive evidence confirms that exercise can 
promote the generation of new neurons in the lateral 
ventricle and the differentiation of immature neurons 
in young, middle-aged, and elderly subjects [238, 239]. 
Experiments show that 4  months of voluntary wheel-
ing running promotes hippocampal neurogenesis in 
AD model mice [240]. Furthermore, exercise stimulates 
the secretion of selenoprotein for promoting the pro-
liferation, differentiation and migration of hippocam-
pal precursor cells [241]. However, drug-induced AHN 
does not affect cognitive function in 5xFAD mice, and 
only exercise-induced AHN can ameliorate cogni-
tive impairment in mice [242]. According to previous 
reports, exercise can awaken dormant neural stem cells 
and clear senescent neural stem cells to enhance AHN 
and reverse Aβ-induced cognitive impairment, which 
may be related to BDNF [243–245]. Chronic inflamma-
tion impairs neural stem cell function, and the admin-
istration of NSAID inhibits LPS-induced systemic 
inflammatory responses in mice, elevates IL-6 level, and 
enhances neurogenesis [246]. The activation of inflam-
matory response-mediated glial cells and chemokines 
in AD can inhibit AHN in the brain and promote the 
pathological process of AD, especially at the later 
stage of AD. However, reducing chronic inflammation 
in AD-transgenic mice can increase the proliferation 
of hippocampal stem cells and delay the occurrence 
and progression of AD [236]. In addition, exercise can 
restore the damaged nerve regeneration mediated by 
neuroinflammation through PGC-1α/FNDC5/BNDF 
signal pathway, thereby inducing sympathetic acti-
vation and the generation of uric acid [247, 248]. The 
newly generated neurons can restore standard mem-
ory-storing neural circuits, increase the number of 
neuronal dendritic spines, and restore regular expres-
sion of some neuronal genes [249]. However, recent 
animal studies have found that the differentiation ten-
dency of neural stem cells is related to the conditions 
of exercise [250]. For example, for a long-term runner, 
neural stem cells are more inclined to differentiate into 
astrocytes, and the self-proliferation capacity of micro-
glia is also enhanced. Glial cells have a particular regen-
eration capacity and can be induced to reprogram or 
convert into neurons, thereby extensively replenishing 
damaged neurons [251]. Therefore, exercise suppresses 
inflammation and increases the number of neurons and 
glial cells in the hippocampus to repair the irreversible 
damage caused by inflammation, which may be essen-
tial for early prevention and improvement of AD.

Exercise, neuroinflammation 
and neurodegenerative diseases
Numerous studies have shown that neuroinflamma-
tion is a common feature of neurodegenerative dis-
eases [83]. A pathological hallmark of age-related 
degenerative diseases is the accumulation of excessive 
mis-folded proteins in neurons. These diseases cover 
tauopathy dominated by AD and synucleinopathies 
represented by Parkinson’s disease (PD) and demen-
tia with Lewy bodies [252]. These abnormal proteins 
appear to share the features such as the formation and 
insolubility of amyloid fibril structures that make them 
less susceptible to clearance by defense mechanisms in 
the body and induce the conversion of normal proteins 
to irregular forms in a prion-like manner [253–256]. 
The constantly emerging and accumulating erroneous 
proteins are likely the results of glial-neuron interac-
tions in neuroinflammation. In addition, the studies 
on serial pathological section observations of post-
mortem brain tissue have found that the accumulation 
of these abnormal proteins is closely related to clini-
cal symptoms and spreading in the brain in a specific 
way [257–259]. In various neurodegenerative disease 
models, exercise increases the number of anti-inflam-
matory phenotypes of microglia, thereby reducing the 
formation of faulty proteins, ultimately delaying disease 
progression and mitigating symptoms of neurodegen-
erative diseases, which also may be also related to the 
down-regulation of pattern recognition receptors in 
microglia and neuronal apoptosis [213, 260–263]. Like-
wise, the propagation of pathologically faulty proteins 
across various brain regions can cause the loss of differ-
entiated mature neurons and impair the regeneration 
capacity of new neurons [264]. An experiment with 
autopsy specimens has demonstrated that increased 
susceptibility to AHN in different neurodegenera-
tive diseases, suggesting that the functional decline 
of hippocampal neural stem cells may underlie cogni-
tive impairment during pathological aging in humans 
[265]. In addition, abnormal glial function is associated 
with fragile AHN in aging and neurodegenerative dis-
eases [265]. Neuroinflammation can effectively inhibit 
AHN, and exercise can accelerate the formation of new 
neurons, thereby resisting the damage caused by the 
inflammatory response and ultimately improving cog-
nitive capacity [266]. Therefore, the role of exercise in 
immunomodulation and the repairing of damaged neu-
rons appear to be informative in studying other neuro-
degenerative diseases. However, the causal relationship 
between exercise and neuroinflammation in neurode-
generative diseases has been less studied.
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Limitations and future directions
Possibly due to ethical restriction and the difficulties in 
obtaining human brain tissue samples, there are only a 
few human studies on the relationship between exer-
cise and inflammation in AD, mainly based on animal 
experiments. Moreover, animal models used to explore 
the underlying mechanisms for neuroinflammation of 
AD vary widely. Even exercise has many negative results 
for AD and inflammation [267–269], because studies on 
exercise and inflammation in AD are still sparse, our cur-
rent understanding of the effects of exercise on regulating 
inflammation and the role of inflammatory responses in 
AD is limited. Moreover, the exercise conditions are not 
the same in animal or human experiments. Therefore, 
in terms of the current research results, we raise some 
thought-provoking questions and views: which chronic 
neuroinflammation level can induce AD? Is Aβ as a 
bystander in AD neuroimmune responses? Whether the 
restoration of inflammation can reduce the prevalence 
of AD or improve the prognosis of patients with MCI 
and AD is unclear. What kind of exercise has the best 
anti-inflammatory effect for AD patients is not defined? 
Does exercise have immunomodulatory effects on non-
polarized state, or non-M1/M2 phenotypes of micro-
glia? Whether microglia and their intracellular NLRP3 
are potential therapeutic targets for immunology-based 
drugs or biomarker development still needs to be clari-
fied. The roles of astrocytes in neuroinflammation still 
need to be explored. Which "exerkines" are involved in 
the anti-inflammatory effects of exercise? Are the anti-
inflammatory effects of exercise sustained throughout 
the lifespan? Does physical exercise affect plasma GFAP 
or TREM2 levels in subjects with MCI or AD? Is the anti-
inflammatory effect of exercise on other neurodegenera-
tive diseases? All above unsolved questions should be the 
future directions for the prevention and treatments of 
AD through exercise interventions, which are also highly 
needed for the resolutions based on animal or cell experi-
ments or the identification of potential biomarkers for 
clinical trials or practice.

Conclusion
Although exercise has been considered as an essential 
strategy for the prevention and treatment of AD, the 
specific mechanisms for ameliorating AD upon exercise 
interventions are still not fully uncovered, which is not 
conducive to further in-depth studies. Recent evidence 
highlights a more significant role of neuroinflammatory 
responses in AD pathogenesis, even prior to Aβ deposi-
tion, unlike previous amyloid cascade hypotheses. There-
fore, this article explores whether exercise can prevent 
and treat AD by suppressing inflammatory response, 

summarizes the key features and possible mechanisms 
of inflammatory response in AD, and the relationship 
between the immune regulation of exercise and the role 
of promoting AHN and neuroinflammation.
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