Skip to main content
. Author manuscript; available in PMC: 2023 Apr 1.
Published in final edited form as: Eur J Neurosci. 2022 Mar 27;55(7):1724–1741. doi: 10.1111/ejn.15639

Table 2:

Three types of equations obtained from the data transformation process.

Equation Type Sum Ratio Inequality
Source Hosseini-Sharifabad and Nyengaard, 2007 Gulyas et al., 2010 Jinno and Kosaka, 2006
Region CA1 CA3 Dentate Gyrus
Species Rat Mouse Mouse
Evidence excerpt Table 3 row #6, column 4

“Total number of neurons in the granular and pyramidal layers of the rat hippocampus
(unilateral values in millions)”
From […] 61 PV-EGFP cells recorded […], in 30 cases the […] boutons were localized to st. pyramidale and only rarely approached ankyrin G-stained profiles (Fig. 1c13) suggesting their FSBC origin. Conversely, in the remaining 31 cases the axonal arbor was densest in st. pyramidale and neighboring st. oriens […] and the boutons formed close appositions with ankyrin G-immunoreactive segments […], similar to the axon terminals of AAC. Table 4 row#15, columns 1 & 2

“Numerical densities (×103 mm−3) of chemically defined GABAergic neuron subtypes in the mouse hippocampus”
Location in publication Page 6, left center Page 4, left center Page 12, Left center
Interpretation Total number of neurons in the pyramidal layer of CA1 is 324,000 Ratio between PV+ basket and axoaxonic cells is 30:31 Number of parvalbumin positive neurons in granule layer is 3,680 (refer to ‘DG-Biomarkers’ row #6 of supplementary table for data transformation details)
Equation x69+x72+x75+x79+x81+x84+x86+x87+x91+x94+x96+x97+x100+x114+x131=324000 x6x8=3130 x7+x83680
x7+x8+x17+x21+x223680
Normalized form (x69+x72+x75+x79+x81+x84+x86+x87+x91+x94+x96+x97+x100+x114+x131)/3240001=0 30x631x81=0 x7+x8368010x7+x8+x17+x21+x2236801>=0
Least squares form
((x69+x72+x75+x79+x81+x84+x86+x87+x91+x94+x96+x97+x100+x114+x131)/3240001)2=0
(30x631x81)2=0 max(0,x7+x836801)2=0max(0,1(x7+x8+x17+x21+x223680)2=0
With weights r=10×((x69+x72+x75+x79+x81+x84+x86+x87+x91+x94+x96+x97+x100+x114+x131)/3240001)2 r=1(30x631x81)2 r=1×max(0,x7+x836801)2r=1×max(0,1(x7+x8+x17+x21+x22)/3680)2