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Abstract

Purpose: Computerized phantoms have been widely used in nuclear medicine imaging for 

imaging system optimization and validation. Although the existing computerized phantoms can 

model anatomical variations through organ and phantom scaling, they do not provide a way to 

fully reproduce the anatomical variations and details seen in humans. In this work, we present a 

novel registration-based method for creating highly anatomically detailed computerized phantoms. 

We experimentally show substantially improved image similarity of the generated phantom to a 

patient image.

Methods: We propose a deep-learning-based unsupervised registration method to generate a 

highly anatomically detailed computerized phantom by warping an XCAT phantom to a patient 

CT scan. We implemented and evaluated the proposed method using the NURBS-based XCAT 

phantom and a publicly available low-dose CT dataset from TCIA. A rigorous trade-off analysis 

between image similarity and deformation regularization was conducted to select the loss function 

and regularization term for the proposed method. A novel SSIM-based unsupervised objective 

function was proposed. Finally, ablation studies were conducted to evaluate the performance 

of the proposed method (using the optimal regularization and loss function) and the current 

state-of-the-art unsupervised registration methods.

Results: The proposed method outperformed the state-of-the-art registration methods, such as 

SyN and VoxelMorph, by more than 8%, measured by the SSIM and less than 30%, by the MSE. 

The phantom generated by the proposed method was highly detailed and was almost identical in 

appearance to a patient image.

Conclusions: A deep-learning-based unsupervised registration method was developed to create 

anthropomorphic phantoms with anatomies labels that can be used as the basis for modeling 

organ properties. Experimental results demonstrate the effectiveness of the proposed method. The 

resulting anthropomorphic phantom is highly realistic. Combined with realistic simulations of the 

image formation process, the generated phantoms could serve in many applications of medical 

imaging research.
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I. Introduction

Computerized phantoms for nuclear medicine imaging research have been built based on 

anatomical and physiological models of human beings. They have played a crucial part 

in evaluation and optimization of medical image reconstruction, processing and analysis 

methods1,2,3,4. Since the exact structural and physiological properties of the phantom are 

known, they can serve as a gold standard for the evaluation and optimization process. 

The 4D extended cardiac-torso (XCAT) phantom5 was developed based on anatomical 

images from the Visible Human Project data. This realistic phantom includes parameterized 

models for anatomy, which allows the generation of a series of phantoms with different 

anatomical variations. These phantoms have been used in Nuclear Medicine imaging and CT 

research6,7,8,9,10,11,12, as well as in various applications of deep learning13,14,15.

In the XCAT phantom, changing the values of parameters that control organ anatomy can be 

used to vary the volumes and shapes of some tissues. However, the scaling of organs, even 

when different factors are used in orthogonal directions, does not fully and realistically 

capture the anatomical variations of organs within different human bodies. However, 

for many applications, having a population of phantoms that models the variations in 

patient anatomy and, in nuclear medicine, uptake realization is essential for comprehensive 

validation and training of image processing and reconstruction algorithms. To solve this, 

in16, Segars et al. used a deformable image registration technique to map phantom labels 

to segmented patient images; the resulting deformation fields were then applied to the 

phantom, thus creating a population of new XCAT models that capture the anatomical 

variability among patients. This method relies on the segmentation of patient images, 

which is tedious and time consuming. In this work, we propose an approach based on 

Convolutional neural networks (ConvNets) to perform phantom to patient registration 

without requiring the patient segmentation. The resulting deformation field can then be 

applied to organ label maps to generate a gold-standard segmentation for the deformed 

phantom image.

Deformable Image registration is a process of transforming two images into a single 

coordinate system, where one image is often referred to as the moving image, denoted 

by Im, and the other is referred to as the fixed image, denoted by If. Traditional methods 

formulate registration as a variational problem for estimating a smooth mapping, ϕ, between 

the points in one image and those in another. They often tend to iteratively minimize the 

following energy function (eq. 1) on a single image pair17:

E = Esim Im ∘ ϕ, If + R(ϕ), (1)

where, Esim measures the level of alignment between the transformed moving image, Im ◦ϕ, 

and the fixed image, If. Some common choices for Esim are mean squared error (MSE) or the 

squared L2 norm of the difference18, sum of squared differences (SSD)19, cross-correlation 

(CC)20, and mutual information (MI)21. The transformation, ϕ, at every point is defined by 

an identity transformation with the displacement field u, or ϕ = Id + u, where Id represents 

the identity transform22. The second term, R(ϕ), is referred to as the regularization of 

the deformation, ϕ, which enforces spatial smoothness. Many regularization designs have 
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been proposed previously based on different applications and prior knowledge about the 

deformation field. However, they are usually characterized by the gradients of u. In some 

applications, regularizers were designed to take sliding organs into account23,24,25, where 

instead of enforcing global smoothness, they preserve motion discontinuities allowing 

multiple organs to move independently. In most applications, a common assumption is 

that similar structures are present in both moving and fixed images. Hence, a continuous 

and invertible deformation field (a diffeomorphism) is desired, and the regularization term, 

R(ϕ), is designed to enforce or encourage this. Diffeomorphisms can be essential in some 

studies, for which the registration field is analyzed further. However, in the application 

of registration-based segmentation, the quality of the segmentation propagation is more 

critical than the diffeomorphic property of the underlying deformation fields26. In this 

study, due to the large interior and exterior shape variations between digital phantoms and 

patients, diffeomorphism is less important. However, we show that by introducing various 

regularizers to the proposed model, the number of non-invertible voxel transformations in 

the resulting deformation field can be substantially reduced.

Recently, many deep learning-based methods have been proposed to perform registration 

tasks (summarized in Table 1). Some of the methods rely on ground truth deformation 

fields27,28,29, which are often obtained by simulated deformations or applying classical 

registration algorithms on a pair of images. However, ground truth registration fields are 

time-consuming to obtain and can limit the types of deformations that are learned. While 

other methods, such as22,30,31,32,33,34, were introduced as unsupervised (or more percisely, 

self-supervised) techniques, but they still require a prior training stage with a large amount 

of training data. These methods assume that neural networks can provide a universal and 

generalized model for image registration by minimizing the registration energy function over 

a dataset of images. This is a common assumption with deep-learning-based approaches. 

Yet, such an assumption could be unreliable according to a recent study from Zhang et al.35, 

where they showed that a well-generalized CNN classifier trained by a large dataset can still 

easily overfit a random labeling of the training data. Other studies on fooling deep neural 

networks (DNNs) with adversarial images also suggest that the well-trained networks can 

be unstable to small or even tiny perturbations of the data36,37,38,39,40. On the other hand, 

the proposed registration method is fully unsupervised, meaning that no previous training 
is required. Instead of following the conventional pattern of training a network on a large 

dataset of training images, we show that a CNN can estimate an optimal deformation field 

for a single image pair by minimizing the energy function described in eq. 1 iteratively. 

This idea was inspired by Lempitsky et al.’s work on the Deep Image Prior41 (DIP), where 

they showed that learning from a large amount of data is not necessary for building useful 

image priors, but the structure of a ConvNet itself is sufficient to capture image statistics. 

They treated the training of ConvNets with random initialization as a regularization prior, 

and in order to achieve good solutions in their application of image denoising, determining 

early stopping points was often required. Whereas in image registration, instead of starting 

from a random initialization (i.e., random noise images), it makes logical sense to initialize 

the ConvNet with a moving image. Since one would like to transform the moving image 

so that it is similar to a target image as possible, early stopping is not desired. In this 

work, we treat ConvNet as an optimization tool, where it generates a deformation field 
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that minimizes the difference between deformed moving and fixed images by updating its 

parameter values in each iteration. The deformation is realized with a spatial transformer 

constructed based on the spatial transformer networks42 and VoxelMorph22. It differs from 

the B-Spline grids used in29,31,32, which are only demonstrated on sub-regions (patches) of 

images, support only small transformations, and impose implicit regularization defined by 

interpolation methods22,33. On the contrary, the control points of the spatial transformer used 

in this work were applied to all the pixel locations. This, thus, enables large deformations 

and allows for external regularization.

II. Materials and Methods

II.A. Computerized Phantom Generation

The phantom used in this study was created from the 3D attenuation distribution of the 

realistic NURBS-based XCAT phantom43. Attenuation values were computed based on the 

material compositions of the materials and the attenuation coefficients of the constituents 

at 140 keV, the photon energy of Tc-99m. This single 3D phantom image was deformed 

to multiple patient CT images. The simulated attenuation map image can be treated as the 

template image, and phantom label map can then be thought of as the atlas in the traditional 

paradigm of medical image registration. The aim is to first register the phantom attenuation 

map image to patient CT images. Next, the registration parameters would be applied to 

the XCAT phantom label map (used to define organs and thus the activity distribution) to 

create new anthropomorphic phantoms. For the nuclear medicine imaging application, new 

images would be generated from the resulting phantoms using conventional physics-based 

simulation codes44,45,46,47,48,49.

II.B. Image Registration with ConvNet

Let the moving image be Im, and the fixed image be If; we assume that they are grayscale 

images defined over a n-dimensional spatial domain Ω ⊂ ℛn and affinely aligned. This 

paper primarily focuses on the 2D case (i.e., n = 2), but the implementation is dimension 

independent (Notice that for n > 2 cases, the required GPU memory will be significant 

increased). We model the computation of the displacement field, ϕ, given the image pair, 

Im and If, using a deep ConvNet with parameters θ, i.e., fθ(Im, If) = ϕ. Fig. 1 describes 

the architecture of the proposed method; it consists of a ConvNet that outputs a registration 

field, and a B-spline spatial transformer. First, the ConvNet generates the ϕ for the given 

image pair, Im and If. Second, the deformed moving image is obtained by applying a 

B-spline spatial transformer that warps Im with ϕ (i.e., Im ◦ ϕ). Finally, we backpropagate 

the loss computed from the similarity measure between Im ◦ ϕ and If to update θ in the 

ConvNet. The steps are repeated iteratively until the loss converges; the resulting ϕ then 

represents the optimal registration field for the given image pair. The loss function (ℒ) of 

this problem can be formulated mathematically as:

ℒ Im, If, ϕ; θ = ℒsim  Im ∘ ϕ, If; θ + λR(ϕ; θ)
= ℒsim  Im ∘ fθ Im, If , If; θ + λℛ fθ Im, If , θ . (2)
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where ℒsim is the image similarity measure and ℛ represents the regularization of ϕ 
Then, the parameters θ that generate the optimal registration field can be estimated by the 

minimizer:

θ* = arg min 
θ

ℒ Im, If, ϕ; θ , (3)

and the optimal ϕ is then given by:

ϕ* = fθ* Im, If . (4)

Different choices of image similarity metrics and registration field regularizers (R(ϕ)) were 

also studied in this work, and they are described in detail in a later section. The next 

subsection describes the design of ConvNet architecture.

II.B.1. ConvNet Architecture—The ConvNet had a U-Net-like ”hourglass” 

architecture50. The network consisted of one encoding path, which takes a single input 

formed by concatenating the moving and fixed images into a 2 × M × M volume, where M 
× M represents the shape of one image. Each convolutional layer had a 3×3 filter followed 

by a rectified linear unit (ReLU), and the downsampling was performed by 2×2 max pooling 

operations. In the decoding stage, the upsampling was done by ”up-convolution”50. Each of 

the upsampled feature maps in the decoding stage was concatenated with the corresponding 

feature map from the encoding path. The output registration field, ϕ, was generated by the 

application of sixteen 3×3 convolutions followed by two 1×1 convolutions to the 16 feature 

maps. This is a relatively small network with 98,794 trainable parameters in total. The 

network architecture is shown schematically in Fig. 2.

II.B.2. Spatial Transformer—The spatial transformer was implemented on the basis of 

the spatial transformer networks42, which applies a non-linear warp to the moving image, 

where the warp is determined by a flow field of displacement vectors (u) that define the 

correspondences of pixel intensities in the output image to the pixel locations in the moving 

image. The number of control points in the flow field, (u), is equal to the image’s size; thus, 

the spacing of the control points grid is 1. The intensity at each pixel location, p, in the 

output image, Im ◦ ϕ(p), is defined by:

Im ∘ ϕ(p) = Im(p − u(p)) . (5)

Notice that p − u(p) is not necessarily an integer, and pixel intensities are only defined at 

integer locations in the image. Therefore, the value of Im ◦ ϕ(p) was obtained by applying 

interpolation methods to the nearest pixels around p − u(p):

Im ∘ ϕ(p) = ∑
q ∈ z p′

Im(q) ∏
d ∈ x, y

k pd
′ − qd ,

(6)

where p′ = p−u(p), Ƶ(p′) represents the neighboring pixels of p′, d iterates over dimensions 

of the spatial domain Ω, and k() is a generic sampling kernel, which defines the image 

interpolation. We used, respectively, bi-linear and nearest-neighbor interpolation to obtain 
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pixel values in the deformed XCAT attenuation map and the deformed organ labels. The 

nearest-neighbor interpolation reduces (6) to:

Im ∘ ϕ(p) = ∑
q ∈ z p′

Im(q) ∏
d ∈ x, y

δ pd
′ + 0.5 − qd ,

(7)

where δ() represents the Kronecker delta function, and pd
′ + 0.5  rounds pd

′  to nearest integer 

value. If k() is a bi-linear sampling kernel, (6) is reduced to:

Im ∘ ϕ(p) = ∑
q ∈ z p′

Im(q) ∏
d ∈ x, y

1 − pd
′ − qd .

(8)

II.B.3. Image Similarity Metrics—Over the years, considerable effort has been 

expended designing image similarity metrics. We mentioned some of the metrics that have 

been widely adopted in image registration in the previous section. In this work, we studied 

the effectiveness of five different loss functions, we also propose a new ℒsim that combines 

the advantages of both Pearson’s Correlation Coefficient (PCC) and the Structural Similarity 

Index (SSIM). In the following subsections, we denote the deformed moving image as Id 

(i.e., Id = Im ◦ ϕ) for simplicity.

Mean Squared Error (MSE): MSE is a measurement of fidelity, and indicates the degree 

of agreement of intensity values in images; it is applicable when If and Im have similar 

contrast and intensity distributions. The loss function is defined as ℒsim(Im, If, ϕ;θ) = 

MSE(Id, If).

Local Cross Correlation (CC): Another popular image similarity metric is CC, due to its 

robustness to intensity variations between images20,33,51. Since CC ≥ 0, we minimize the 

negative CC, the loss function is ℒsim(Im, If, ϕ; θ) = −CC(Id, If).

Mutual Information (MI): MI was first applied to image registration in52. It measures the 

statistical dependence between the intensities of corresponding pixels in both moving and 

fixed images. Let pIf(a) and pId(b) be the marginal probability distributions of the fixed and 

deformed moving images. MI is a measure of the Kullback-Leibler Divergence53 between 

the joint distribution pIfId(a, b) and the distribution associated with the case of complete 

independence pIf(a) ⋅ pId(b)52:

MI Id, If = ∑
a, b

pIfId(a, b) log pIfId(a, b)
pIf(a) ⋅ pId(b) . (9)

The joint distribution, pIfId(a, b), can be computed as:

pIfId(a, b) = 1
Ω ∑

i ∈ Ω
δ a − If(i) δ b − Id(i) , (10)

Chen et al. Page 6

Med Phys. Author manuscript; available in PMC 2023 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Notice that the Kronecker delta function, δ(), is not differentiable. Therefore, the resulting 

loss cannot be back-propagated in the network. To solve this issue, we approximate pIfId(a, b)
with the Parzen windowing functions as described by Mattes et al. in54:

pIfId(a, b) = α ∑
i ∈ Ω

ψ a − If(i) χ b − Id(i) , (11)

where α is a normalization factor that ensures ∑ pIfId(a, b) = 1, and ψ() and χ() are kernel 

functions of Parzen window. There is a broad choice for kernel functions, such as the first 

order or the third order B-Spline kernel54, and Gaussian kernel21. Since Cubic B-Spline 

has a close relationship with Gaussian functions55,56, we chose ψ() and χ() to be Gaussian 

kernels in this work. The joint distribution, (11), can be rewritten as:

pIfId(a, b) = α ∑
i ∈ Ω

1
ΔwdΔwmπe

a − If(i) 2

2Δwf
2 e

b − Id(i) 2

2Δwd
2 , (12)

where Δwf and Δwd are the widths of each intensity bin in image If and Id. A larger bin 

width potentially leads to an improvement in computational efficiency, because the number 

of intensity bins used in the estimation of the marginal probability distributions could be 

reduced. Finally, the two marginal probability distributions can be derived using pIfId(a, b). 
Maximizing MI is equivalent to minimizing the negative of the MI. Thus, the loss function is 

formulated as ℒsim(Im, If, ϕ; θ) = −MI(Id, If).

Pearson’s Correlation Coefficient (PCC): PCC measures the linear correlation between 

two images. Unlike MSE, PCC is less sensitive to linear transformations of intensity values 

from one image to another. Its application to medical image registration is described in57. 

PCC is defined as the covariance between images divided by the product of their standard 

deviations:

PCC Id, If = ∑i ∈ Ω If(i) − If Id(i) − Id

∑i ∈ Ω If(i) − If ∑i ∈ Ω Id(i) − Id
(13)

where If and Id represent the mean intensities. PCC has a range from −1 to 1, where 

0 implies that there is no linear correlation, and −1 and 1 correspond, respectively, to 

the maximum negative and positive correlations between two images. Since a positive 

correlation is desired, we can define the loss function to be: ℒsim(Im, If, ϕ; θ) = 1 − PCC(Id, 

If).

Structural Similarity Index (SSIM): SSIM was proposed in58 for robust image quality 

assessments based on the degradation of structural information. Within a given image 

window, SSIM is defined by:

SSIM Id, If = 2μIdμIf + C1 2σIfId + C2

μIf
2 + μId

2 + C1 σIf
2 + σId

2 + C2
, (14)
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where C1 and C2 are small constants needed to avoid instability, μIf and μId, and σIf and σId

are local means and standard deviations of the images If and Id, respectively. The SSIM has a 

range from −1 to 1, where 1 indicates a perfect structural similarity. Thus, ℒsim(Im, If, ϕ; θ) 

= 1 − SSIM(Id, If).

PCC + SSIM: While PCC is robust to noises, it was also found to be less sensitive 

to blurring. A motivating example is shown in Fig. 3, where in (b), the ”Shepp-Logan” 

phantom image59 was corrupted with Gaussian noise, and in (c), the image was blurred by a 

Gaussian filter. Both (b) and (c) yield a lower SSIM and a higher PCC. If we think of (a) as a 

moving image, and (b) and (c) as fixed images, SSIM would impose the ConvNets to model 

the details, including noises and artifacts. Whereas, using PCC alone as the loss function 

might converge to a less accurate result. Hence, there is a need to balance the two similarity 

measures. Both PCC and SSIM are bounded with a range from −1 to 1, where 1 indicates the 

most similar. Thus, we propose to combine SSIM and PCC with an equal weight:

ℒsim Im, If, ϕ; θ = 0.5 * 1 − SSIM Id, If + 0.5 * 1 − PCC Id, If (15)

II.C. Deformation Regularization

The spacing of the control point grid is 1 pixel, thus the spatial transformer does not 

implicitly enforce any regularization (i.e., smoothness of the deformation field). Because 

each pixel can move freely, optimizing the image similarity metrics solely would encourage 

the deformed moving image, If, to be as close as possible to the fixed image, Im. However, 

the resulting deformation field might not be smooth or realistic. To impose smoothness 

and weakly enforce diffeomorphism in the deformation field, we tested several different 

regularizers.

II.C.1. Diffusion Regularizer—Balakrishnan, et al. used a diffusion regularizer in a 

ConvNet-based image registration model, VoxelMorph22. In this method, the regularization 

is applied on the spatial gradients of the displacement field u:

ℛDiffusion(ϕ; θ) = ∑
i ∈ Ω

∥ ∇u(i) ∥2 , (16)

where the spatial gradients are approximated by the forward difference, that is ∇u(i) ≃ 
u(i+1)−u(i). Minimizing this the value of this regularizer leads to smaller spatial variations 

in the displacements, resulting in a smooth deformation field.

II.C.2. Total Variation Regularizer—Instead of using the squared L2 norm as the 

diffusion regularizer, the total variation norm regularizes the L1 norm on the spatial 

gradients of u60:

ℛTV(ϕ; θ) = ∑
i ∈ Ω

∥ ∇u(i) ∥1 (17)
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Penalizing the TV of the displacement field constrains its spatial incoherence without 

forcing it to be smooth. Detailed properties of TV regularization of displacements were 

studied by Vishnevskiy et al. in61.

II.C.3. Non-negative Jacobian—The determinants of the Jacobian represent the 

amount of transformation under a certain deformation. In62, Kuang et al. proposed a 

regularizer that specifically penalizes ”folding” or non-invertable deformations, that is, 

the spatial locations where the Jacobian determinants are less than 0. This regularizer is 

formulated as:

ℛJacobian(ϕ; θ) = ∑
i ∈ Ω

det Jϕ(i) − det Jϕ(i) . (18)

Combined this with diffusion regularization to constrain the overall smoothness results in a 

regularizer that produces deformations with fewer folded pixels:

ℛreg(ϕ; θ) = ℛDiffusion(ϕ; θ) + αℛJacobian(ϕ; θ), (19)

where α is a weighting parameter.

II.C.4. Gaussian Smoothing—A direct way to constrain a deformation field to be 

smooth is to convolve the displacements with a Gaussian smoothing filter parameterized by 

its standard deviation, σ34:

u = Gσ * u, (20)

where a larger σ gives a smoother deformation, and vice versa.

II.D. Registration Procedure

The overall algorithm for the proposed method is shown in Algorithm. 1. In the beginning, 

we initialized an untrained ConvNet (fθ) for a given pair of moving and fixed images, Im 

and If. First, the untrained fθ produces an initial deformation field, ϕ. Second, we deform the 

moving image with ϕ (i.e., Im ◦ ϕ). Then, the registration loss is computed as:

ℓ = ℒsim Id, If; θ + λℛ(ϕ; θ), (21)

where ℒsim represents the similarity measure between Id and If, ℛ represents the value of 

the regularizer applied to the deformation field, and λ is a user-defined weighting parameter 

to control the effectiveness of ℛ. The loss is back-propagated to update the parameters in fθ. 

The above procedure is repeated for a pre-specified number of iterations.
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Since no information other than the given image pair is needed, the proposed method 

requires no prior training and is thus fully and truly unsupervised. The ConvNet is capable 

of learning an ”optimal” deformation from a single pair of images. In the next section, 

we discuss a series of experiments that were performed to study the effectiveness of the 

proposed method.

II.E. Experiments

The goal of this work was to create anthropomorphic phantoms by registering the XCAT 

phantom attenuation map with patient CT images, and then using the deformed of XCAT 

phantom label map. Nine clinical low-dose whole-body CT patient scans were used in 

this study; for those, only the torso part of the scans was extracted, resulting in 1153 

2D-transaxial slices in total. We resampled the 2D slices into the size of 384 × 384 using 

bi-linear interpolation to match the size of an XCAT slice. The proposed method was 

implemented using Keras63 with a Tensorflow64 backend on an NVIDIA Quadro P5000 

GPU (with 16 GB memory). We applied the proposed method to register a pair of 2D XCAT 

and CT images slice by slice. The required GPU memory to register a pair of 2D slices 

was 2,693 MB. The patient CT data was obtained from a publicly available dataset (NaF 

Prostate,65) from The Cancer Imaging Archive (TCIA,66). The dataset contains 44 baseline 

and follow-up studies of nine patients, where we randomly extracted one PET/CT scan from 

the studies of each nine patients to form the dataset used in this work. We first compared 

the performance produced by the ConvNets with different image similarity metrics. Then, 

we compared the proposed method to state-of-the-art registration algorithms: the symmetric 

image normalization method (SyN)20 from the ANTs package67, and a learning-based 

self-supervised method, VoxelMorph22,33.

II.F. Evaluation Metrics

We used the following metrics to evaluate the quality of the registration:

• Mean Squared Error: MSE is measured as the mean squared difference 

between every pixel in Id and the corresponding pixel in If.

• Structural Similarity Index: SSIM indicates the average of perceived change in 

structural information between the Id and If.

• Number of Non-positive Jacobian Determinants: Jϕ gives the portion of 

the registration transformation that resulting from the deformation, ϕ. The 

quantity measurement of the non-positive |Jϕ| indicates the number of pixel 

transformations that are not inveratible. A small number of non-positive |Jϕ| 

means a smoother deformation, and vice versa.

III. Results

We first compared the effectiveness of different loss functions (without any regularization) 

in section III.A.. Then, we showed that some qualitative results generated by different 

regularizers in section III.B.. Finally, we comprehensively studied the proposed method and 

compared it to several state-of-the-art registration methods. The corresponding empirical 

results are shown in section III.C..
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III.A. Loss Function Comparisons

Some examples of the registered XCAT phantom attenuation map images resulting from the 

six loss functions are shown in Fig. 4. Images (a) and (h) represent the same moving image, 

and (b) and (i) are the target images from the same CT slice, where the later was blurred by 

a low-pass Gaussian filter to reduce the effects streaking artifacts. The images in both (c)-(h) 

and (k)-(p) show results from using, respectively, PCC, SSIM, PCC+SSIM, MSE, CC, and 

MI. As highlighted in the boxes, MSE, CC, and MI all failed in leading to acceptable results. 

Whereas, the results produced by SSIM+PCC exhibits fewer image artifacts and provided 

the best structural match to the target image (as shown in (m)). Combined with the Gaussian 

pre-filtering to suppress streaking artifacts in the target image, SSIM+PCC generated the 

best qualitative results among the loss functions evaluated.

III.B. Regularization Comparisons

Fig. 5 shows results generated using different regularizers. The three images in the first 

column are a slice of the XCAT attenuation map (moving image), a slice of patient 

CT image (fixed image), and a slice of the XCAT label map. The second through 

last columns show the deformed moving image (first row), transformed labels (second 

row), and deformed grids (last row) by using no regularization, diffusion regularization, 

TV regularization, diffusion with none-negative Jacobian regularization, and Gaussian 

smoothing, respectively. The deformed moving image using no regularization had a virtually 

identical appearance compared to the fixed image. However, the deformed label maps were 

unrealistic: in the regions highlighted in rectangles, the bone marrow appeared outside of the 

cortical bone. Applying regularization to the deformation field helped with this issue, but 

there was a clear trade-off between the similarity to the fixed image and the smoothness of 

the deformation field. This trade-off was quantitatively studied, and the results are discussed 

in the next section. We specifically quantifed the regularity of the field by counting all the 

pixel deformations for which the transformation was not diffeomorphic (i.e., folding or |Jϕ| ≤ 

0)22,68.

III.C. Registration Performance Comparisons

In this subsection, we compared the proposed method with the SyN20 and VoxelMorph22,33 

algorithms. Since VoxelMorph requires prior training, it was evaluated using a leave-oneout 

method: images from eight patients were used for training (~1024 2D slices), and images 

from one patient were treated as the test set (~128 2D slices). Then, we altered patients 

whose image was used for training and testing, rendering 9 possible combinations of the 

patient images. Figs. 6 and 7 show comparisons of the proposed method with different 

regularizations, the SyN, and the VoxelMorph methods, respectively. The first column 

shows the moving and fixed images. The second to the last column shows the deformed 

XCAT images (upper row) and deformed labels (lower row), respectively. Based on these 

qualitative results, the proposed method provides a more detailed deformation than other 

methods, especially in terms of the anatomy of the bone structures and soft tissues. Since 

a gold-standard bone segmentation was not available for the NaF Prostate dataset65, the 

registration performance was evaluated quantitatively based on MSE and SSIM between Im 

◦ϕ and If. The results are shown in Table. 2. Without any regularization of the deformation 

Chen et al. Page 11

Med Phys. Author manuscript; available in PMC 2023 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



field, the proposed method gave a mean SSIM of 0.955 and a mean MSE of 37.340, which 

outperformed the SyN and VoxelMorph by a significant margin (with p-values < 0.0001 

from the paired t-test).

The plots in Fig. 8 exhibit the impact of different regularization parameters on the SSIM, 

MSE, and the number of folded pixels. A decreasing trend in registration accuracy and the 

number of folded pixels was generally seen with increasing weighting parameter values (λ 
and σ) for regularizers. Among the different regularization methods, the diffusion regularizer 

(column 1 in Fig. 8) with λ = 1 yielded the best balance between registration accuracy 

and the number of folded pixels. Overall, the method achieved comparable performances to 

VoxelMorph in terms of deformation regularity (as measured by the number of pixels where 

there was folding) while providing better registration accuracy.

IV. Discussion

IV.A. Fully Unsupervised ConvNet

We have developed a fully unsupervised U-Net-based registration framework for generating 

highly-detailed, anatomically-realistic phantoms. The proposed method works on an image 

pair consisting of the XCAT attenuation map and patient CT. Thus, it does not require 

prior training using a large dataset. This makes the proposed method different from 

the previously proposed self-supervised ConvNet-based registration algorithms, such as 

VoxelMorph22,30,33, DIRNet32, or DLIR31, which require a training stage. However, while 

the proposed method does not demand training data, there is a trade-off: like traditional 

techniques18,20, the proposed method minimizes a loss function iteratively for the given 

inputs, which leads to the increased computational time and complexity. The runtime for 

performing registration on a pair of 3D volumes (with size 192×192×128) is roughly an hour 

on an NVIDIA Quadro P5000 GPU. The computational time may be reduced either by using 

a smaller ConvNet (i.e., few trainable parameters) or using a faster GPU.

IV.B. Loss Function Choice

We demonstrated in the previous sections that the proposed SSIM-based loss function 

yielded the best qualitative performance and thus was more suitable for XCAT-to-CT 

registration. While other loss functions, MSE, CC, or MI, are commonly used in other image 

registration tasks, they all performed poorly in this task. Specifically, the failure of MSE 

is likely due to the lack of spatial information, and it is sensitive to linear transformations 

of the mean intensity values (as shown in the third to last column in Fig. 4). Another 

commonly used metric, CC, also produced sub-optimal results that exhibited image artifacts 

(as shown in the seventh column in Fig. 4). We also showed that using PCC or SSIM 

alone did not produce good results: while PCC loss was robust to image artifacts, it 

produced ”discretized” results around the spine (see the regions highlighted in rectangles 

in (c) and (j) in Fig. 4). On the other hand, the SSIM loss function produced an image that 

reproduced even the noise and artifacts in the target image (as shown in (d) in Fig. 4).
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IV.C. Regularization Choice

Despite the fact that the proposed method without any regularization generated a deformed 

image that was almost identical in appearance to the fixed image, the warped label maps 

were not realistic (see the second column in Fig. 7). This was mainly caused by the 

non-smooth and non-invertible deformation field that produced a large number of folded 

pixels. Adding a regularizer to the loss function enforced the smoothness in the deformation 

field, and thus produced more realistic warped label maps. However, as shown in Fig. 8 and 

Fig. 9, a decreasing trend in the similarity measure to the fixed image was observed with 

improved deformation regularity (i.e., a decrease in the number of non-positive Jacobian 

determinants). Images in (b), (f), and (j) in the right panel of Fig. 9 show the deformed 

XCAT attenuation map using different weights, λ, of the diffusion regularization. For λ = 

0 (no regularization), the soft-tissue components (e.g., liver) in (b) showed good alignment 

with those in the target image ((c) in the left panel of Fig. 9). When λ was increased (as 

shown in the second and the last row in the right panel of Fig. 9), the smoothness of the 

resulting deformation fields gradually improved (as shown in (d), (h), and (I)). However, the 

mismatch between the soft-tissue components in the deformed and the fixed image began to 

appear, while regions with higher contrast (e.g., bone and outer surface) retained the good 

alignment. The experimental results in Fig. 8 show that the diffusion regularization worked 

best among the regularizers investigated. It sacrificed a modest amount of image similarity 

(0.93 in mean SSIM and 42.6 in mean MSE) in exchange for smoother deformation 

fields with a smaller number of non-positive Jocobian determinants (< 0.8% of pixel 

transformations were noninvertible). It should be noted that the regularizers used in this 

work only consider global smoothing, thus we did not allow motion discontinuities between 

organs. Regularization methods that preserve sliding-motion23,24,25 could be included in the 

future to address the problem of sliding organs.

IV.D. Example Application: SPECT simulations

In this section, we demonstrate a 3D application of the proposed method to generate realistic 

medical image simulations. We employed the proposed registration method to map the 3D 

volume of the XCAT attenuation map to a 3D patient CT scan acquired from a clinical 

bone SPECT/CT acquisition. We then generated a realistic simulated SPECT image on the 

basis of the resulting deformed XCAT attenuation map as described below. The patient scan 

was acquired using a clinical whole-body SPECT/CT scan protocol; the CT scan was a 

low-dose one designed to provide an attenuation map. Both SPECT and CT images were 

reconstructed using scanner software. Two sample coronal slices of the patient scans are 

shown in the second and the third columns of the left panel in Fig. 10; the second and third 

columns show the CT and SPECT images, respectively. We used the proposed method with 

a diffusion regularizer (λ = 1) to perform the 3-dimensional registration. We resampled the 

image volumes to a size of 192×192×128 in order to fit into the GPU memory of 16 GB. 

The memory required to perform this 3D registration was 15 GB. The resulting deformed 

XCAT attenuation map and the corresponding SPECT simulation are shown in the fourth 

and the fifth columns, respectively. We then added several artificial lesions to the phantoms, 

and two example slices of the resulting SPECT simulation are shown in the last column. 

SPECT projections were simulated by an analytic projection algorithm that realistically 

models attenuation, scatter, and the spatially-varying collimator-detector response47,48. We 
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computed attenuation values on the basis of the material compositions and the attenuation 

coefficients of the constituents at 140 keV, the photon energy of Technetium-99m. We 

inserted several artificial sclerotic bone lesions to random bone regions with increased 

attenuation coefficient and radio-pharmaceutical uptake. The cortical and trabecular bones 

had an uptake of, respectively, 12.6 and 23.2 times that of the soft-tissue background, and 

bone lesions had an uptake of 3.5–4.5 times that of normal bone. These scale factors were 

computed based on the patient SPECT scan. SPECT simulations were reconstructed using 

a the ordered subsets-expectation maximization algorithm (OS-EM)69 70 using 5 iterations 

and 10 subsets. The figure on the right panel in Fig. 10 shows three transverse slices 

of the patient SPECT (top row) and the simulated SPECT (bottom row). Because the 

deformed XCAT phantom was able to successfully capture the anatomical structures in the 

patient scan, when combined with realistic physics models of image formation processing, 

the resulting SPECT simulation appears quite realistic compared to the patient SPECT 

scan. In addition, the relationship between the generated phantom activity distribution and 

the projection data is quantitatively realistic because of the method used to generate the 

projections. Fig. 11 shows some additional SPECT simulations (with lesions added to 

various bone locations) generated using the proposed method with the 9 clinical CT scans 

from the TCIA dataset. In that figure, each row represents a different patient.

V. Conclusion

We have developed a method to create anthropomorphic phantoms using an unsupervised, 

ConvNet-based, end-to-end registration technique. Unlike existing deep-learning-based 

registration methods, the proposed method requires no prior training. While classical 

registration methods also do not require training data, they work in a lower-dimensional 

parameter space; the proposed approach operates directly in the high-dimensional parameter 

space common to deep-learning-based methods but without any prior training. Compared 

to the commonly used loss functions in ConvNet-based registration, we demonstrated that 

the registration performance can be improved by use of the combination of SSIM and PCC 

as a loss function for updating the parameters in the ConvNet. The proposed method was 

evaluated for the application of registering the XCAT attenuation map with real patient 

CT scans as part of a process to simulate realistic nuclear medicine images. We compared 

the registration performance of the proposed technique in terms of SSIM and MSE to 

conventional stateof-the-art image registration methods. Both quantitative and qualitative 

analyses indicated that the proposed method provided the best registration results. We also 

demonstrated that the proposed method, combined with accurate simulation tools, provided 

a highly realistic anthropomorphic medical image with known truth that faithfully represents 

the image formation process and qualitatively matches the appearance of a real patient 

image.
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Figure 1: 
Schematic of the proposed method. The network takes a pair comprised of one moving and 

one fixed image as its inputs. The ConvNet learns from a single image pair and generates 

a deformation field, ϕ. We then warp the moving image Im with ϕ using a B-spline spatial 

transformer. The loss determined by the image similarity measure between Im ◦ ϕ and If 

is then backpropagated to update the parameters in the ConvNet. Since no aspect of the 

ConvNet is learned from a prior training stage, the method follows a fully unsupervised 

paradigm.
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Figure 2: 
The ConvNet has a U-Net-like architecture.
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Figure 3: 
Comparison of ”Shepp-Logan” phantom images59 with different types of distortions. (a) 

Original Image. (b) Image corrupted by Gaussian noise. SSIM: 0.14, PCC: 0.96. (c) 

Gaussian blurred image. SSIM: 0.9, PCC: 0.94.
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Figure 4: 
In comparing registered XCAT attenuation map images generated using different loss 

functions (without any regularization), some differences are highlighted by colored 

rectangles. The top two rows show the results generated without pre-filtering the fixed 

image; the bottom two rows show the results generated using the pre-filtered fixed image. 

The images in (a) and (i) exhibit the same slice of the attenuation map generated from the 

XCAT phantom, which served as the moving image, Im; (b) and (j) are the same patient CT 

images, but prior to use in the registration. Image (j) is (b) blurred with Gaussian filter (σ = 

0.8) to reduce noise and artifacts. The images in (b) and (j) were used as the fixed image, 

If. Images shown in (c)-(h) and (k)-(p) resulted from applying the ConvNet using 6 different 
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loss functions: (c) and (k) PCC; (d) and (l) SSIM; (e) and (m) PCC+SSIM; (f) and (n) MSE; 

(g) and (o) CC; and (h) and (p) MI.
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Figure 5: 
Example results from different regularization techniques. The three figures in the first 

column represent moving image, fixed image, and the corresponding label map, respectively. 

The second to last column shows deformed images: the first row shows the deformed 

XCAT phantom, the second row shows the deformed label map, and the last row shows the 

deformed grid.
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Figure 6: 
Example results generated by two baseline methods, SyN and VoxelMorph. The 1st column: 

moving (the XCAT attenuation map) and target image (patient CT). For the second to the 

last column, the first row corresponds to the deformed moving images, and the second row 

shows the deformed label map. The 2nd through 4th columns show results from SyN using 

CC, MSE, and MI. The 5th column through the last column shows results from VoxelMorph 

using MSE and CC.
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Figure 7: 
Example results generated by the proposed method with different regularization techniques. 

The 1st column exhibits moving (XCAT attenuation map) and target image (patient CT). 

The 2nd column to the last column display the deformed results. These correspond, 

respectively, to no regularization, diffusion regularization, TV norm, diffusion with none-

negative Jacobian regularization, and Gaussian smoothing.
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Figure 8: 
The effect of different regularization parameters on the registration accuracy (SSIM and 

MSE), and deformation regularity (number of folded pixels, i.e. where the determinant of 

Jacobian was ≤ 0). First to last rows indicate the performances in SSIM, MSE, and number 

of folded pixels, respectively. The columns, from left to right, are the results generated using 

the diffusion regularizer, TV regularizer, Gaussian smoothing, and non-negative Jacobian + 

diffusion regularizer, respectively.
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Figure 9: 
Visual effects of the diffusion regularization on the deformed image. Left panel: Images in 

(a), (b), and (c) corresponds to, respectively, moving image, moving image with Gamma-

correction (γ = 1.8), and fixed image. Right panel: Each row represents the results 

obtained using different regularization weights. The first through last columns, from left to 

right, represent deformed moving image, deformed moving image with Gamma-correction, 

deformed label map, and the corresponding deformation field.
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Figure 10: 
Visualization of the deformed XCAT attenuation map and SPECT simulations. Left: Two 

coronal slices of the original XCAT, patient CT and SPECT scans, the registered XCAT, 

the SPECT simulation, and the simulated SPECT with lesion added. Right: Comparison of 

transverse slices between patient SPECT scan and SPECT simulation.
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Figure 11: 
Example coronal slices of the SPECT simulations generated by the proposed method, where 

each row represents a different patient.
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Table 1:

Conceptual comparisons among various registration methods and the proposed method (UnsupConvNet).

Registration Methods DNN-based Supervision Operating mode

VoxelMorph22,30,33 Yes Self-supervised Whole image

DLIR32 Yes Self-supervised Patch-based

DIRNet31 Yes Self-supervised Patch-based

FAIM62 Yes Self-supervised Whole image

RegNet29 Yes Supervised Patch-based

RobustRegNet28 Yes Supervised ROI-based

SyN20 No Unsupervised Whole image

LDDMM18 No Unsupervised Whole image

UnsupConvNet Yes Unsupervised Whole image
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Table 2:

Comparison of SSIM, MSE, and the number and percentage of pixel locations with non-positive Jacobian 

determinant among the proposed method (UnsupConvNet), SyN, and VoxelMorph. The top three results in 

SSIM and MSE are shown in bold, underline, and italics, respectively. Evaluations were done on 2D images 

with size 384 × 384.

Method SSIM MSE |Jϕ| ≤ 0 (counts) % of |Jϕ| ≤ 0 (%)

Affine only 0.83 ± 0.008 69.2 ± 2.7 - -

VoxelMorph (MSE)22 0.88 ± 0.003 47.0 ± 2.4 685 ± 185 0.5 ± 0.1

VoxelMorph (CC)22 0.92 ± 0.006 43.5 ± 4.8 2754 ± 370 1.9 ± 0.3

SyN (MSE)20 0.88 ± 0.011 52.0 ± 4.1 - -

SyN (MI)20 0.88 ± 0.011 55.1 ± 4.0 - -

SyN (CC)20 0.89 ± 0.011 52.8 ± 4.1 - -

UnsupConvNet (w/o regularization) 0.96 ± 0.007 37.3 ± 5.1 21082 ± 3938 14.3 ± 2.7

UnsupConvNet
(w/ diffusion regularization)

0.93 ± 0.008 42.6 ± 5.4 1202 ± 225 0.8 ± 0.1

UnsupConvNet
(w/ diff. + None-neg. Jac. reg.)

0.92 ± 0.009 44.8 ± 4.9 518 ± 74 0.4 ± 0.1

UnsupConvNet
(w/ TV regularization)

0.87 ± 0.030 54.7 ± 9.3 659 ± 459 0.4 ± 0.3

UnsupConvNet
(w/ Gaussian filtering)

0.94 ± 0.008 41.5 ± 5.4 8500 ± 1829 5.7 ± 1.3
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