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ABSTRACT
Along with Helicobacter pylori infection, the gastric microbiota is hypothesized to modulate 
stomach cancer risk in susceptible individuals. Whole metagenomic shotgun sequencing (WMS) 
is a sequencing approach to characterize the microbiome with advantages over traditional culture 
and 16S rRNA sequencing including identification of bacterial and non-bacterial taxa, species/ 
strain resolution, and functional characterization of the microbiota. In this study, we used WMS to 
survey the microbiome in extracted DNA from antral gastric biopsy samples from Colombian 
patients residing in the high-risk gastric cancer town Túquerres (n = 10, H. pylori-positive = 7) and 
low-risk town of Tumaco (n = 10, H. pylori-positive = 6). Kraken2/Bracken was used for taxonomic 
classification and abundance. Functional gene profiles were inferred by InterProScan and KEGG 
analysis of assembled contigs and gene annotation. The most abundant taxa represented bacteria, 
non-human eukaryota, and viral genera found in skin, oral, food, and plant/soil environments 
including Staphylococus, Streptococcus, Bacillus, Aspergillus, and Siphoviridae. H. pylori was the 
predominant taxa present in H. pylori-positive samples. Beta diversity was significantly different 
based on H. pylori-status, risk group, and sex. WMS detected more bacterial taxa than 16S rRNA 
sequencing and aerobic, anaerobic, and microaerobic culture performed on the same gastric 
biopsy samples. WMS identified significant differences in functional profiles found between 
H. pylori-status, but not risk or sex groups. H. pylori-positive samples were significantly enriched 
for H. pylori-specific genes including virulence factors such as vacA, cagA, and urease, while 
carbohydrate and amino acid metabolism genes were enriched in H. pylori-negative samples. 
This study shows WMS has the potential to characterize the taxonomy and function of the gastric 
microbiome as risk factors for H. pylori-associated gastric disease. Future studies will be needed to 
compare and validate WMS versus traditional culture and 16S rRNA sequencing approaches for 
characterization of the gastric microbiome.
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Introduction

Although Helicobacter pylori infection is the stron-
gest factor associated with developing gastritis and 
stomach cancer, increasing evidence suggests the 
gastric microbiota may also have a key role in mod-
ulating disease risk in susceptible individuals1–3. 
Culture and 16S rRNA sequencing have been the 
primary means to study the gastric microbiome, and 
while these approaches have revealed important 
insights into the potential influence of the micro-
biome on gastric disease risk and progression, these 
methods have limited scope including low- 

throughput or nonspecific taxonomic identification. 
Unlike 16S rRNA sequencing, metagenomic shot-
gun sequencing (WMS) is an untargeted, micro-
biome sequencing approach that enables 1) 
identification of bacterial, eukaryota, viral, and 
archaea microbes, 2) species and strain level taxo-
nomic resolution, and 3) functional characterization 
of the microbiota4,5. As a result, WMS is being 
increasingly used with 16S rRNA profiling to study 
the gastrointestinal microbiome, especially to iden-
tify risk factors associated with intestinal inflamma-
tory diseases and cancers6–12. While numerous 
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studies have characterized the gastric microbiome 
using 16S rRNA profiling1, WMS provides an 
opportunity to further define how the microbiome 
taxonomic composition and function may contri-
bute as factors associated with disease risk.

In this study, we utilized WMS to survey the 
microbiome in gastric biopsy samples collected 
from Colombian patients residing in the high gastric 
cancer risk (HGCR) town of Túquerres located in the 
Andes Mountains and low gastric cancer risk 
(LGCR) coastal town of Tumaco. While both popu-
lations have high prevalence of H. pylori infection 
(>80%), additional factors have been extensively 
investigated over the last four decades to explain 
the differences in gastric cancer risk. Geographic 
location has been hypothesized to represent multi-
factorial influences of host and H. pylori genotypes as 
well as dietary and environmental variables includ-
ing helminth infection and host microbiome 
composition/function13. Previous investigations of 
these Colombian cohorts by traditional culture and 
16S rRNA profiling have revealed significant differ-
ences in the gastric microbiome composition 
between gastric cancer populations13–15. Thus, in 
the current study, the gastric microbiome was 
further evaluated using WMS to assess its association 
as a risk factor for disease in these patient cohorts.

A significant challenge for next-generation 
sequenced-based profiling of the microbiome in 
tissue biopsy samples is the low abundance of 
microbe to host cells, especially in the stomach 
where microbial density is 5–10 log-folds lower 
compared to the lower intestine and feces16. 16S 
rRNA profiling attempts to overcome this chal-
lenge via PCR amplification of 16S rRNA genes 
regions prior to sequencing. However, this method 
is prone to technical artifacts due to amplification 
bias and sensitivity to contamination17,18. 
Conversely, WMS does not require PCR and there-
fore potentially provides a more accurate reflection 
of the gut microbiota compared to 16S rRNA 
profiling11. Despite this advantage, WMS is sub-
stantially more expensive and resource intensive 
than 16S rRNA profiling because magnitudes of 
deeper sequencing are required to detect micro-
biota genes in tissue samples with low microbe- 
to-human DNA ratios, even with methods to 
deplete host DNA prior to sequencing19. Thus, an 

objective of the current study was to compare gas-
tric microbiota profiles between HGCR and LGCR 
tissue samples using WMS versus 16S rRNA 
approaches as well as by traditional bacterial cul-
ture. To our knowledge, this study is the first to use 
WMS, 16S rRNA and culturing profiling meth-
odologies to evaluate and compare the gastric 
microbiome. We hypothesize WMS is a feasible 
approach to characterize the composition and 
functional potential of the gastric microbiota 
from human stomach biopsy tissue as well as iden-
tify significant features that differentiate patients 
from HGCR and LGCR populations.

Results

Study population

Twenty gastric biopsy tissue samples for micro-
biome analysis were selected to match for 
H. pylori status, risk group, histopathology scores, 
age, and sex from a total set of 163 adult patients 
undergoing upper gastrointestinal endoscopy from 
the HGCR and LGCR in Colombia (Table 1). There 
were no statistical differences in age between 
H. pylori status, risk, or sex groups. 
Histopathology scores were not statistically differ-
ent based on H. pylori status or risk group, but 
samples from males had significantly higher 
pathology scores compared to those from females 
(P = 0.008, Mann – Whitney U-test).

WMS taxonomic profiling of the gastric microbiome

WMS yielded 35,062,050 to 168,230,930 total reads 
per sample after quality control. Of these reads, 
WMS profiling classified ~96–99% reads as host 
(i.e., Homo sapiens), and ~1–4% reads were unclas-
sified taxa (supplemental figure S1). The remaining 
reads belonged to bacteria (~0.03–0.2%), archaea 
(~0.0007–0.002%), virus (~0.002–0.006%), and 
non-human eukaryota (~0.03–0.1%) taxa (supple-
mental figure S1). Thus, 42,319 to 304,298 total 
reads per sample classified as bacteria, non- 
human eukaryota, viral, and archaea operational 
taxonomic units (OTUs) were further evaluated 
in this study (supplemental figure S1). There were 
no statistical differences in the number of reads in 

2 A. MANNION ET AL.



Table 1. H. pylori status, risk group, histopathology scores, age, and sex of patient gastric biopsy samples from low and high gastric 
cancer risk populations in Colombia.

Sample ID Subject ID Town Risk Sex Age Histological Diagnosisa Histology Score H. pylori statusb

E1 MT5168 Tumaco Low Risk Female 41 NAG 1.33 Negative
A5 MT5170 Tumaco Low Risk Female 59 NAG 1.33 Negative
H4 MT5122 Tumaco Low Risk Female 47 NAG 1.67 Positive
F2 MT5127 Tumaco Low Risk Female 48 NAG 2.33 Positive
C5 MT5125 Tumaco Low Risk Female 53 NAG 2.67 Positive
F3 MT5104 Tumaco Low Risk Male 53 MAG-IM 4.7 Negative
C2 MT5175 Tumaco Low Risk Male 59 NAG 2.33 Positive
B4 MT5156 Tumaco Low Risk Male 51 NAG 2.67 Positive
D5 MT5178 Tumaco Low Risk Male 50 NAG 3 Positive
B5 MT5179 Tumaco Low Risk Male 52 NAG 3 Positive
G1 MT2181 Túquerres High Risk Female 46 NAG 1.33 Negative
H2 MT2162 Túquerres High Risk Female 41 NAG 1.67 Negative
E5 MT2176 Túquerres High Risk Female 52 NAG 2 Positive
E2 MT2172 Túquerres High Risk Female 45 NAG 2.33 Positive
D3 MT2164 Túquerres High Risk Female 40 NAG 2.67 Positive
A4 MT2126 Túquerres High Risk Male 46 MAG-IM 4.6 Negative
C4 MT2143 Túquerres High Risk Male 57 MAG-IM 4.3 Positive
G2 MT2116 Túquerres High Risk Male 57 NAG 1.33 Negative
E4 MT2147 Túquerres High Risk Male 41 NAG 2.67 Positive
D4 MT2141 Túquerres High Risk Male 45 NAG 2.67 Positive

aNAG, non-atrophic gastritis; MAG-IM, multifocal atrophic gastritis with intestinal metaplasia. 
bH. pylori status determined by a modified Steiner stain and culture.

Figure 1. Relative percent of reads classified as bacteria, archaea, virus, and non-human eukaryota OTUs at the kingdom (A), phylum 
(B), and genus (C) level using WMS. Absolute reads classified as bacteria, archaea, virus, and non-human eukaryota OTUs at the 
kingdom (D), phylum (E), and genus (F) level using WMS. The top 10 most abundant OTUs are shown.
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total or per taxa between H. pylori status, risk 
group, or sexes, except that males had significantly 
higher bacterial reads than females (86,045.0 ±  
38,847.2 vs. 51,290.7 ± 26,999.1, P = 0.03). Of 
these, bacteria and non-human eukaryotes predo-
minated. Virus followed by archaea were the next 
most abundant. At the bacterial genus level, WMS 
identified significantly more OTUs compare to 16S 
rRNA sequencing (P < 0.001) (supplemental fig-
ure S2).

When all taxa (i.e., bacteria, archaea, virus, and 
non-human eukaryota) were evaluated, the top 10 
most abundant OTUs represented bacteria, non- 
human eukaryota, and viral genera that have been 
described in skin, oral, small/large intestine, food, 
plant, and soil environments (Figure 1). Beta diver-
sity was significantly different based on H. pylori 
status (P = 0.031), risk group (P = 0.022), and sex 
(P = 0.004) (Figure 2). Observed OTUs, Chao1, and 
Shannon alpha diversity metrics were not 

significant between these groups. The Simpson 
alpha diversity metric was significantly lower in 
H. pylori-positive samples (P = 0.024) and males 
(P = 0.019) (Figure 2). When Helicobacter reads 
were excluded from these analyses, beta diversity 
was no longer statistically different between 
H. pylori-positive versus H. pylori-negative sam-
ples, but remained significantly different between 
risk groups and sexes (supplemental figure S3). 
There was no significance difference in alpha diver-
sity metrics when Helicobacter reads were 
excluded from analyses (supplemental figure S3). 
Differential abundance analysis by GLM and T-test 
identified that males were significantly enriched in 
Keratinibaculum spp., regardless if H. pylori reads 
were included or excluded (supplemental figure 
S5A). No OTUs were statistically abundant 
between the H. pylori status or risk groups. While 
sample F3 appeared to be an outlier in the PCA 
plots, statistical significance for beta diversity did 

Figure 2. PCA plots of Aitchison distance for beta diversity comparisons of bacteria, archaea, virus, and non-human eukaryota OTUs at 
the genus level detected using WMS for H. pylori status (A), risk group (B), and sex (C) samples. Statistical analysis for beta diversity was 
performed using PERMANOVA to determine significance differences (P-value) and percentage of the variance explained (R2) the 
between groups. Observed OTUs, Chao1, Shannon and Simpson alpha diversity metrics on bacteria, archaea, virus, and non-human 
eukaryota OTUs at the genus level detected using WMS for H. pylori status (D), risk group (E), and sex (F) samples. Statistical 
comparisons of alpha diversity metrics between groups was performed using the Wilcoxon rank sum test with P-value adjustment 
using the Holm method.
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not change when omitted, suggesting this sample 
did not skew results (results not shown).

Analyses repeated on only bacteria taxa (i.e., 
archaea, virus, and non-human eukaryote taxa 
excluded) identified that genera associated with 
the skin, oral, small/large intestine, and soil were 
the most abundant in samples (Figure 3) and pre-
dominately belonged to the Proteobacteria and 
Firmicutes phyla. Helicobacter and Klebsiella spp. 
were the most abundant Proteobacteria detected. 
Staphylococcus, Streptococcus, Bacillus, and 
Lactococcus, and Clostridium spp., all of which 
were Firmicutes, were within the 10 most abundant 
bacterial taxa detected. The soil-associated genera 
Arthrobacter and Thermatoga spp. were also pre-
sent. A significant difference in beta diversity was 
again present based on H. pylori status (P = 0.012), 
risk group (P = 0.012), and sex (P = 0.005) 
(Figure 4). There were no significant differences 
in alpha diversity metrics based on H. pylori status 

when Helicobacter reads were included or 
excluded from analyses (Figure 4, supplemental 
figure S4). If Helicobacter reads were excluded, 
beta diversity remained significantly different 
between risk groups (P = 0.011) and sex (P =  
0.049) (supplemental figure S4). Keratinibaculum 
spp. remained significantly enriched in males when 
only bacterial taxa were evaluated (supplemental 
figure S5B). Statistical significance for beta diver-
sity did not change when sample F3 was omitted 
from PCA plots (results not shown).

There was no significant difference in alpha or 
beta diversity between groups when non-human 
eukaryote (supplemental figure S6), archaea (sup-
plemental figure S7), or viral (supplemental figure 
S8) taxa were individually analyzed. Aspergillus 
spp., a fungal genus, was the predominant non- 
human eukaryote OTU noted (supplemental figure 
S9). Siphoviridae spp., which target bacterial and 
archaea hosts, were the most enriched viral OTU in 

Figure 3. Relative percent of reads classified as bacteria OTUs at the phylum(A), family(B), and genus (C) level using WMS. Absolute 
reads classified as bacteria OTUs at the phylum(E), family(F), and genus (G) level using WMS. The top 10 most abundant OTUs are 
shown.
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all samples (supplemental figure S10). Of archaea, 
Pyrolobus species were the most common (supple-
mental figure S11). Together, these results indicate 
that H. pylori alters the structure and diversity of 
the gastric microbiome and primarily affects bac-
terial communities. Non-bacterial taxa were in 
general uniform across samples, regardless of 
H. pylori infection status. Since significant differ-
ences in diversity were not present for other taxo-
nomic kingdoms, bacteria appear to be the primary 
constituents of gastric microbiota diversity.

16S rRNA versus WMS for bacterial microbiome 
characterization

Unlike WMS analysis, 16S rRNA profiling only 
identified significant differences in beta diversity 
based on H. pylori-status (Figure 5). Additionally, 
observed OTUs, Chao1, Shannon, and Simpson 

indices were significantly lower in H. pylori- 
positive samples (Figure 5). These alpha diversity 
metrics suggests H. pylori outcompetes other 
microbes for colonization in the gastric niche, and 
when H. pylori is absent, the gastric niche may be 
occupied by a higher diversity of microbes. When 
Helicobacter reads were excluded, beta diversity as 
well as Shannon and Simpson indices were no 
longer statistically different between H. pylori- 
status groups (supplemental figure 12). Only 
Helicobacter, Streptococcus, and Lactococcus were 
shared between the top 10 most abundant bacterial 
genera between 16S rRNA versus WMS profiling 
(Figure 6). Linear regression of relative abundance 
at the genus level was performed to evaluate how 
similar the microbiome profiles were between 16S 
rRNA and WMS per sample. Seven of thirteen 
H. pylori-positive samples had strong coefficient of 
determinations (R2>0.75), suggesting these 16S 

P=0.012
R2=7.369

P=0.012
R2=7.253

P=0.005
R2=7.569

P=0.97P=0.53P=0.68P=0.68P=0.31P=0.19P=0.22P=0.22P=0.081P=0.097P=0.64P=0.64

a b c

d e f

Figure 4. PCA plots of Aitchison distance for beta diversity comparisons of bacteria OTUs at the genus level detected using WMS 
between H. pylori status (A), risk group (B), and sex (C) samples. Statistical analysis for beta diversity was performed using PERMANOVA 
to determine significance differences (P-value) and percentage of the variance explained (R2) between the groups. Observed OTUs, 
Chao1, Shannon and Simpson alpha diversity metrics on bacteria OTUs at the genus level detected using WMS for H. pylori status (D), 
risk group (E), and sex (F) samples. Statistical comparisons of alpha diversity metrics between groups was performed using the 
Wilcoxon rank sum test with P-value adjustment using the Holm method.
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rRNA and WMS methods yielded similar gastric 
microbiome profiles (supplemental figure 13A). 
Interestingly, when Helicobacter reads were 
removed from the linear regression analysis, these 
R2 values became less than 0.1 (supplemental figure 
13B). For the remaining 5 H. pylori-positive and 7 
H. pylori-negative samples, microbiome profiles at 
the genus level were poorly correlated between 16S 
rRNA and WMS methods, as shown by low R2 

values (supplemental figure 13A). These findings 
indicate that gastric microbiome profiles drastically 
differ based on the sequencing methodology 
utilized.

Culture versus 16S rRNA and WMS for bacterial 
microbiome characterization

Bacterial genera detected by 16S rRNA and WMS 
analysis were compared with those cultured from 

gastric biopsies. 117 non-Helicobacter bacteria iso-
lates representing 20 genera were cultured from 17 
gastric biopsy samples under aerobic, anaerobic, and 
microaerobic conditions (Figure 7A). No non- 
Helicobacter bacteria were cultured in three samples 
(B4, E1, and G1; Figure 7A). Non-Helicobacter bac-
terial genera identified by 16S rRNA, WMS, and 
culture profiling were plotted on a binary presence/ 
absence heatmap to determine the concurrence of 
detection between methods per sample (Figure 7B). 
For culture-based detection, there were 49 instances 
in which a specific genus was present in a specific 
gastric biopsy sample (hashed boxes in Figure 7B). 
WMS had more of these genera in common with 
culture than 16S rRNA sequencing (41/49 versus 35/ 
49, respectively) (Figure 7B), but these proportions 
were not statistically different using the z-score test. 
Thirty-one of the isolates detected by culture were 
identified by both WMS and 16S rRNA profiling 

P=0.017
R2=10.071

P=0.062
R2=8.449

P=0.867
R2=3.577 

P=0.39 P=0.31P=0.63P=0.63P=0.029P=0.029P=0.28P=0.28P=0.0034P=0.0017P=0.00031P=0.00031

a b c

d E F

Figure 5. PCA plots of Aitchison distance for beta diversity comparisons of bacteria OTUs at the genus level detected using 16S rRNA 
profiling for H. pylori status (A), risk group (B), and sex (C) samples. Statistical analysis for beta diversity was performed using 
PERMANOVA to determine significance differences (P-value) and percentage of the variance explained (R2) between the groups. 
Observed OTUs, Chao1, Shannon and Simpson alpha diversity metrics of bacteria OTUs at the genus level detected using 16S rRNA 
profiling for H. pylori status (D), risk group (E), and sex (F). Statistical comparisons of alpha diversity metrics between groups was 
performed using the Wilcoxon rank sum test with P-value adjustment using the Holm method.
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(Figure 7B). Interestingly, culture detected four iso-
lates not identified by 16S rRNA or WMS profiling 
(Gordonia in sample H4, Atopobium in samples C4 
and E4, and Aerococcus in sample A4). While 
Gordonia and Aerococcus were identified by 16S 
rRNA or WMS profiling in other samples 
(Gordonia in samples A4 and B4, Aerococcus G1, 
G2, A5, C4, D3, B4, C5), Atopobium was not 
detected by either sequencing approach in any of 
the 20 biopsies (Figure 7B). Under the aerobic, 
anaerobic, and microaerobic conditions, growth for 
fungi or archaea were not observed after 2–3 weeks 
of culture from any gastric biopsy sample.

Functional prediction of bacterial gastric 
microbiome from WMS

WMS reads classified as bacterial were assembled 
into contigs and annotated for protein coding 

genes. Bacterial reads were assembled into 1,361 
to 7,628 contigs comprising 289,174 to 2,366,126 
bp of total metagenomics sequence and included 
1,120 to 5,513 annotated protein coding genes 
(supplemental table S1). DIAMOND analysis of 
the annotated protein gene sequences against the 
nr database was performed to determine the clo-
sest taxonomic homolog for each gene. Beta 
diversity in the taxonomic profiles of annotated 
protein genes was statistically different between 
H. pylori-positive versus H. pylori-negative sam-
ples (supplemental figure S14). Only genes cor-
responding to Helicobacter spp. were statistically 
more abundant in H. pylori-positive compared to 
H. pylori-negative samples based on differential 
abundance analysis by GLM and T-test 
(FDR<0.001). There were no statistical differ-
ences in beta diversity or differentially abundant 
genes between risk groups or sexes 

Figure 6. Relative percent of reads classified as bacterial OTUs at the phylum (A), family (B), and genus (C) level detected using 16S 
rRNA profiling. Absolute reads classified as bacterial OTUs at the phylum (D), family (E), and genus (F) level detected using 16S rRNA 
profiling. The top 10 most abundant OTUs are shown.
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Figure 7. A) Heatmap showing absolute number non-Helicobacter bacterial isolates cultured per genera from each gastric biopsy 
sample. Culture conditions in which genera were isolated are indicated in parenthesis next to taxa names. Ae, aerobic; An, anaerobic; 
M, microaerobic. B) The concurrence of genera detected by culture, 16s rRNA and/or WMS profiling per gastric biopsy sample using 
a heatmap showing the binary presence/absence of genera per method. Note hashed boxes represent the 49 total instances in which 
at least one isolate from specific genus was cultured from a gastric biopsy sample.
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(supplemental figure 14). H. pylori-positive com-
pared to H. pylori-negative samples were 
assembled into more contigs (3,565.4 ± 1,983.1 
vs. 3,941.0 ± 1,474.6, P = 0.635) with larger over-
all metagenomics sequence (740,570.4 ±  
379,153.0 vs. 1,590,043.4 ± 536,639.7, P = 0.002) 
as well as had more genes annotated (2,435.6 ±  
1,038.4 vs. 3,812.1 ± 885.3, P = 0.006).

Gene annotations were analyzed using 
InterProScan, Gene Ontology (GO), and KEGG 
to evaluate and compare the functional potential 
of the H. pylori-positive versus H. pylori-negative 
gastric microbiomes. The beta diversity for these 
functional features was significantly different based 
on H. pylori status (Figures 8, 9, supplemental 
figure S15), but not risk groups or sexes 

P=0.001
R2=14.557

a

b c

Figure 8. Comparison of InterProScan protein domain abundance in annotated bacterial genes by WMS after contig assembly with 
metaSpades using a heatmap of the 50 most abundant features (A) and PCA plot of Aitchison distance for beta diversity comparisons 
(B) between H. pylori-positive versus -negative samples. Statistical analysis for beta diversity was performed using PERMANOVA to 
determine significance differences (P-value) and percentage of the variance explained (R2) between the groups. C) Differential 
abundance analysis of InterProScan protein domains in annotated bacterial genes between H. pylori status determined using Welch’s 
t-test and generalized linear model (GLM) on centered log-ratio (clr) transformed abundances with a false discovery rate (FDR) 
correction for P-values using the Benjamini-Hochberg (BH) method. The abundance of differentially expressed features with 
a FDR≤0.01 for both tests is shown.
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(supplemental figures 16, 17, 18). Eleven 
InterProScan protein domains and 11 GO terms 
were significantly enriched in H. pylori-positive 
compared to H. pylori-negative samples based on 
differential abundance analysis by GLM and T-test 
(FDR<0.01; Figure 8C, supplemental figure S15C). 
The protein annotations corresponding to these 
enriched InterProScan protein domains and GO 

terms features were attributed to H. pylori. Two 
KEGG pathways (carbohydrate and amino acid 
metabolism) were statistically higher in H. pylori- 
negative samples (FDR<0.05; Figure 9C) and were 
attributed to over 15 different microbial taxa pre-
sent at different abundances in each sample. The 
most commonly shared genera attributed to carbo-
hydrate metabolism annotations in H. pylori- 

P=0.028
R2=9.473

a

b c

Figure 9. Comparison of KEGG metabolism pathway abundance in annotated bacterial genes by WMS after contig assembly with 
metaSpades using a heatmap of the 50 most abundant features (A) and PCA plot of Aitchison distance for beta diversity comparisons 
(B) between H. pylori-positive versus -negative samples. Statistical analysis for beta diversity was performed using PERMANOVA to 
determine significance differences (P-value) and percentage of the variance explained (R2) between the groups. C) Differential 
abundance analysis of KEGG pathways in annotated bacterial genes between H. pylori status determined using Welch’s t-test and 
generalized linear model (GLM) on centered log-ratio (clr) transformed abundances with a false discovery rate (FDR) correction for 
P-values using the Benjamini-Hochberg (BH) method. The abundance of differentially expressed features with a FDR≤0.05 for both 
tests is shown.
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negative samples was Neisseria (n = 4/7; samples 
F3, A5, G2, and H2) followed by Corynebacterium 
(n = 2/7; samples E1 and G1). For amino acid meta-
bolism genes, the most commonly shared genera in 
these samples was represented by Bacillus (n = 2/7; 
samples F3 and A5), Corynebacterium (n = 2/7; 
samples E1 and G1), Propionibacterium/ 
Cutibacterium (n = 2/7; samples G1 and H2), and 
Ralstonia (n = 2/7; samples F3 and G2). No signifi-
cant enrichments for InterProScan protein 
domains, GO terms, or KEGG pathways were 
detected between risk groups or sexes.

Detection of H. pylori virulence factors gene 
sequences using WMS

Strain-specific H. pylori virulence factor genes 
detected by WMS were further evaluated. Across 
all 13 H. pylori-positive samples, more than 80% of 
the genes in the reference H. pylori strain 26695 
genome were detected by WMS. Per sample, strain- 
specific virulence factor profiles were apparent, 
including differences in cag pathogenicity- 

associated island (PAI) and vacuolating cytotoxin 
(vacA) status as well as a repertoire of outer mem-
brane protein including those belonging to Hop 
and Hor families. (Figure 10). While vacA 
sequences were detected in the majority of 
H. pylori-positive samples by WMS, the sequences 
were not long enough to identify subtypes.

Complete urease operons were detected in 
H. pylori protein annotations (Figure 10). Urease 
activity is essential for H. pylori to neutralize sto-
mach acid and colonize the gut. Interestingly, other 
urease-like genes were not detected in non- 
H. pylori contigs or protein annotation (see urease 
activity GO: 0009039 in supplemental figure 15C). 
This suggests that these bacteria may utilize alter-
native mechanisms to neutralize stomach acid and 
enable colonization in the gastric environment. 
Alternatively, increased pH of the stomach acid as 
a result of gastric disease progression (i.e., NAG 
and MAG-IM) may have facilitated increased colo-
nization of non-H. pylori species. Gastric pH was 
not measured in patients to evaluate this potential 
association.

Discussion

Gastric cancer is the 5th most common cancer and 
the 4th most common cause of cancer death glob-
ally, especially in emerging countries like 
Colombia, South America where H. pylori infection 
can exceed 80%20,21. While H. pylori infection is the 
strongest risk factor associated with gastric disease, 
age, sex, smoking, diet, and hygiene may also mod-
ify risk20. Recently, non-H. pylori microbes present 
in the gastric microbiome have been appreciated as 
important factors that may modulate gastric dis-
ease states1,2,22. Previous studies have shown that 
non-H. pylori microbes can be readily cultured 
from the gastric tissue samples14. Furthermore, 
non-H. pylori microbes residing in the gastric 
niche have been appreciated to interfere with 
urease-breath test results23, implying sufficient 
colonization loads exist in the stomach to yield 
physiological effects on the host.

Eradication of H. pylori infection with antibio-
tics effectively reduces gastric disease and cancer 
risk. For example, INS-GAS mice, a transgenic 
mouse line that overexpresses human gastrin and 
has increased indices of gastric disease, have 

cag PAI
vacA

urease
hopZ

horB

hopH

sabB/hopOsabA/hopPbabB/hopT

alpA/hopC
alpB/hopB

Figure 10. H. pylori virulence factor genes detected in assembled 
contigs and mapped to H. pylori reference strain 26695. Rings 
(outer to inner): 1) Forward protein coding genes (green), 2) 
Reverse protein coding genes (purple), 3) Virulence factor genes 
from H. pylori reference strain 26695 (orange), and 4) histogram 
showing number of genes detected by WMS per H. pylori- 
positive sample (n = 13).
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reduced gastric disease progression and severity 
when maintained under germfree conditions or 
when treated with antibiotics under conventional 
housing24–26. Additionally, antibiotic treatment 
that failed to completely clear H. pylori in human 
patients still significantly reduced their risk for 
gastric cancer27, implying that other microbes pre-
sent in the gastric niche of the host may contribute 
to disease progression.

With the advent of next-generation sequencing 
technology, targeted 16S rRNA profiling has facili-
tated culture-free approaches to evaluate the gastric 
microbiome. Numerous studies have found that 
while H. pylori is the predominant bacterial taxa 
present in the stomach in infected individuals, 
there is a high diversity of non-H. pylori taxa also 
detectable2,22. In H. pylori-negative patients, the 
gastric microbiome remains highly diverse includ-
ing a variety of bacteria taxa from all major phyla. 
Additionally, the magnitude of gastric microbiome 
diversity is also associated with the host states, such 
as increases in gastric pH due to acid suppressant 
drugs, antibiotic use, and during progression of 
disease noted in H. pylori-associated cancer2,22,28– 

30. While culture and 16S rRNA sequencing have 
provided insights into the diversity of bacterial 
microbes inhabiting the stomach, these approaches 
fail to capture the functional diversity of the gastric 
microbiome and how this may impact the host. In 
general, it is also largely unknown if non-bacterial 
taxa are present in the gastric niche and contribute 
to normal or pathological states in the host. To this 
end, we utilized non-targeted WMS to characterize 
the composition and function of the gastric micro-
biome in human patients from high- and low-risk 
gastric cancer populations residing in Colombia, 
South America. In addition to capturing the bac-
terial diversity and strain-specific genetic signa-
tures that included annotation of microbial 
protein coding gene sequences, WMS allowed us 
to identify eukaryota, viral, and archaea microbes 
present in the gastric microbiome. We did not 
identify any statistical differences in eukaryota, 
viral, or archaea populations between H. pylori sta-
tus, risk group, or sex. In our study, Candida spp. 
were detected in all gastric biopsy tissues samples 
by WMS, but were not isolated by culture, even 
though media we used for culture will support the 
growth of fungi. The lack of fungal growth possibly 

is due in part to the polymicrobial nature of the 
gastric biopsies where other bacteria colonizing 
this niche can inhibit slower growing fungi, as 
well as reducing fungal viability. Further, 16S- 
based bacterial analysis would not detect fungal 
presence, given 18S sequencing is used to identify 
fungi in tissue samples. Future studies investigating 
the role of fungi in gastric cancer progression are 
warranted. Interestingly, Candida spp. have been 
recently detected in colorectal cancer tumor DNA 
from human patients and associated with meta-
static progression31.

Our current WMS analysis confirms previous 
culture-based and 16S rRNA microbiome studies 
that non-H. pylori bacteria are present in sto-
mach tissues of Colombian patients from high- 
and low-gastric-cancer-risk cohorts13. While 
H. pylori is the predominant taxa in the stomach 
when present, significant differences exist the 
gastric microbial population between gastric can-
cer risk groups and sex, even when H. pylori is 
excluded from analyses (see supplemental figures 
S3 and S4). This finding reinforces the signifi-
cance non-Helicobacter microbes may have in 
modulating gastric cancer risk and progression. 
Additional studies are needed to understand how 
the gastric microbiota contributes to cancer risk 
as well as interplays with other potential multi-
factorial attributes between Túquerres and 
Tumaco populations, for example, diet and sex, 
parasitic infections, and genetic characterization 
of H. pylori.

Several soil-associated bacterial taxa were abun-
dant in the gastric microbiome. Bacillus, 
Actinomyces, and Arthrobacter spp. were detected 
by both WMS and culture in our study. 
Perturbations in presences of these taxa have been 
associated with gastric cancer risk32–35. 
Interestingly, the abundance of Keratinibaculum 
spp., thermophilic anaerobes originally isolated 
from soil36, was significantly higher in males versus 
females. Future studies will be needed to validate 
the presence and enrichment of Keratinibaculum 
spp. in the gastric niche as well as its association 
with sex and/or gastric disease progression, espe-
cially since males had significantly higher pathol-
ogy scores compared to females. The significant 
differences in the gastric microbial beta diversity 
as well as enrichment of Keratinibaculum spp. 
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between males versus females is particularly inter-
esting considering males have a greater than 2-fold 
higher incidence and death rate of gastric cancer 
compared to females20. Keratinibaculum spp. have 
not been previously described in the gastric micro-
biome. It is plausible these soil-associated microbes 
were introduced from consumption of food or 
water sources. The role of these taxa in gastric 
carcinogenesis requires further study.

Proteobacteria and Firmicutes phyla predomi-
nated in the gastric microbiome. Klebsiella spp., 
belonging to the Proteobacteria phylum, were 
abundant in the gastric microbiome and increased 
levels have been previously associated with gastric 
cancer37. Several taxa from the Firmicutes phylum 
were enriched in the gastric microbiome and have 
been associated with gastric or intestinal cancer, 
including Clostridium 38–41, Lactococcus 42, 
Staphylococcus 14, and Streptococcus 14 spp.

Staphylococcus and Streptococcus species are 
considered commensals of the skin and oral sites. 
However, Staphylococcus epidermidis and 
Streptococcus salivarius isolated from stomach 
biopsy samples from the same Colombian cohort 
of the current study were capable of gastric coloni-
zation as well as modulated H. pylori-associated 
gastric pathology and host immune responses in 
a germfree INS-GAS mouse model of gastric 
cancer14. Staphylococcus epidermidis was cultured 
from both high- and low-risk gastric cancer 
patients, but Staphylococcus epidermidis was more 
often present in the stomach biopsies of low-risk 
gastric cancer patients14. Both strains exhibited 
urease activity and were able to maintain persistent 
colonization up to 5 months in the germfree mouse 
gastric niche alone or during co-infection with 
H. pylori. Neither strain affected H. pylori gastric 
colonization, but Streptococcus salivarius caused 
significantly higher gastric pathology than 
H. pylori only or H. pylori with Staphylococcus 
epidermidis. In a different study from our lab, we 
showed germfree INS-GAS colonized with 
a restricted intestinal microbiota that includes 
Clostridium spp. exacerbated gastric pathology 
and carcinogenesis due to H. pylori infection43. 
This study emphasizes how non-H. pylori stomach 
microflora play a role in the pathology of H. pylori- 
induced gastric cancer. In particular, this study 
reinforces previous investigations observing that 

oral commensal and opportunistic pathogenic 
microbes may have the potential to colonize the 
stomach and act as risk factors alongside H. pylori 
to influence chronic inflammation and 
carcinogenesis44. While future research is required 
to ascertain if taxa detected by next-generation 
sequencing approaches represent actively coloniz-
ing versus swallowed/transient microbes, we 
hypothesize some of these taxa have the potential 
to adhere to the mucosal surface and sustain active 
colonization in the gastric niche, as suggested by 
the previously published studies described above.

While only~0.03–0.2% of the total WMS reads 
were mapped to known bacterial sequences, we 
determined that cultured bacteria taxa from the 
gastric biopsies were more often detected by 
WMS than 16S rRNA analysis, suggesting that 
WMS may have stronger taxonomic resolution. 
Interestingly, Atopobium was the only genera 
detected by culture but not 16S rRNA or WMS 
profiling. We speculate that Atopobium strains 
may have low genetic abundance in the gastric 
biopsy samples that prevented detection by 16S 
rRNA or WMS profiling methods, but were 
enriched for growth by the culturing conditions/ 
media. Sample preparation methods that deplete 
host DNA in human colonic biopsy samples before 
WMS have been shown to increase the bacterial-to- 
human DNA ratio without distorting microbiome 
profiles, thereby increasing sequencing coverage of 
the microbial genomes in tissues samples19. 
Application of similar bacterial DNA enrichment 
methods for gastric biopsy tissues may improve 
detection of underrepresented species as well as 
the taxonomic and functional analysis by WMS. 
Follow-up studies in larger cohorts of patients 
will be needed to validate that WMS provides 
superior accuracy and depth of microbiome analy-
sis compared to traditional 16S rRNA approaches.

In our study, we found a poor correlation 
between the relative abundance at the genus level 
detected for 16S rRNA profiling versus WMS 
despite using DNA from the same extraction. 
This finding suggests these approaches may have 
different sensitivities or biases for taxonomic detec-
tion since 16S rRNA profiling relies on sequencing 
PCR amplicons while WMS targets bacterial geno-
mic fragments. It has been well described in the 
literature that 16S rRNA profiling is susceptible to 
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technical artifacts due to contamination as well as 
PCR amplification bias17,18. Conversely, WMS may 
be less prone to these caveats. Furthermore, the 16S 
rRNA gene is also susceptible to misidentification 
since some species (and genera like Escherichia and 
Shigella) can have nearly identical 16S rRNA 
sequences, but are considered different species 
based on the gold standard for microbial specia-
tion, whole-genome sequence analysis (e.g., core 
gene phylogeny, average nucleotide identity, digital 
DNA-DNA hybridization)45,46. WMS may also 
identify genera differently since this method can 
use any genomic sequence to identify a taxon, 
instead of a single gene (i.e., 16S rRNA sequence).

A potential limitation of our 16S rRNA profiling 
is a negative extraction control or negative PCR 
control to monitor for potential background noise 
was not included. However, since 16S rRNA and 
WMS profiling used the same DNA extracts, over-
lapping contamination would have been expected 
using both sequencing approaches which is not 
supported by the poor correlation in OTU abun-
dance between these methods. Our culture results 
suggest the predominant isolates cultured from 
these gastric biopsy samples were also detected by 
16S rRNA and WMS. Additionally, the OTUs we 
have detected by both 16S rRNA and WMS have 
been described in previous studies characterizing 
the gastric microbiota from these Colombian 
cohorts as well as other populations1,2,13.

WMS enabled identification of statistically sig-
nificant differences in functional and metabolic 
genes harbored by the gastric microbiome between 
H. pylori-positive versus -negative patients. 
Interestingly, carbohydrate and amino acid meta-
bolism pathways were enriched in H. pylori- 
negative patients. Comparative genome analysis 
and metabolic experiments have shown H. pylori 
lacks the traditional glycolysis pathway used by 
bacteria to metabolize glucose into pyruvate and 
instead relies on alternative pathways to process 
carbohydrates47. Additionally, H. pylori has 
a limited gene content for de novo biosynthesis of 
the amino acids histidine, leucine, methionine, 
phenylalanine, and valine. As demonstrated experi-
mentally, H. pylori instead requires media supple-
mented with these amino acids to grow in the 
absence of serum in vitro; presumably serum acts 
as transporters for these nutrients47. Enrichment of 

carbohydrate and amino acid metabolism genes in 
H. pylori-negative samples were mainly repre-
sented by Bacillus, Corynebacterium, 
Cutibacterium, Neisseria, and Ralstonia spp. The 
biological significance of enrichment in carbohy-
drate and amino acid metabolism genes in the 
gastric microbiota requires further investigation, 
especially how it may relate to the pathogenesis of 
gastric disease and cancers. Continued optimiza-
tion of WMS methods for gastric tissues is needed 
to increase sequencing coverage for non- 
Helicobacter species occupying the gastric micro-
biota as well as further elucidate their genetic 
features.

As expected, H. pylori represented the predomi-
nant taxa in H. pylori-positive patients and signifi-
cant enrichment for H. pylori-specific genes were 
detected according to InterProScan domains and 
GO terms. These included genes for DNA methy-
lation for epigenetic modification48 (IPR002941, 
GO: 0008170, GO 00063006), outer membrane 
proteins49 (IPR002718, IPR040838), and urease 
activity (GO: 0009039). In particular, WMS was 
able to detect strain-specific H. pylori virulence 
factors genes that facilitate host colonization 
(urease, outer membrane proteins), immune eva-
sion (outer membrane proteins), gastric epithelial 
injury (vacuolating cytotoxin, cag PAI), and pro-
mote oncogenesis (cag PAI)50.

Previously, our group performed whole genome 
sequencing on H. pylori isolates cultured from gas-
tric biopsy tissues collected from the same high- 
and low-risk Colombian populations15, which 
included five samples also analyzed by WMS in 
the current study (samples B4, C2, C5, D3, and 
D4). These five H. pylori isolates were cag-positive 
and vacA-positive and harbored a variety of outer 
membrane proteins. WMS was able to detect vacA 
(3/5 samples), cag PAI (4/5 samples), and outer 
membrane proteins (4/5 samples) (data not 
shown). The gold standard for detecting and char-
acterizing disease-associated H. pylori strains has 
been culture to isolate the organism from the sto-
mach and enable subsequent biochemical, molecu-
lar and whole genome sequence characterization. 
However, given the fastidious nature of this spe-
cies, this has been a challenging bottleneck. 
Additionally, culture and passage of H. pylori may 
promote genotypic drifts given the high genomic 
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plasticity of this species, which may confound asso-
ciations between H. pylori genetics and host disease 
progression51. Therefore, WMS may augment tra-
ditional culture and genome sequencing 
approaches to identify, monitor, and characterize 
risk factors attributed to H. pylori colonization in 
patients, including detection of numerous strain- 
specific genes including disease-promoting viru-
lence factors like vacA and cag PAI52. While contig 
sizes and protein gene annotations from non- 
H. pylori taxa were too low to appreciably charac-
terize their strain-specific features and describe the 
microbiome beyond the genus level, continued 
optimization of WMS methods for gastric tissues, 
such as depletion of host DNA, may improve 
microbial genome sequencing coverage and there-
fore contig assembly for H. pylori and other taxa.

While numerous 16S rRNA profiling studies 
have been published, to our knowledge the gastric 
microbiome has been characterized using WMS in 
only a single report in the literature by Hu et al.53 

In this study, the authors evaluated gastric wash 
samples from 6 patients with advanced gastric ade-
nocarcinoma and 5 patients with superficial gastri-
tis and found significant differences in the 
composition and functional pathways related to 
bacterial OTUs. The authors did not report char-
acterization of non-bacterial taxa. Unlike the study 
by Hu et al., we surveyed the gastric microbiome 
using gastric biopsy samples, which represented 
mucosal-associated microbes. Host-microbe inter-
actions at the mucosal surface in the stomach and 
other sites of the gastrointestinal tract are hypothe-
sized to be more influential for host homeostasis 
and disease progression since microbes are in clo-
ser proximity to the epithelial barrier and immune 
sites compared to organisms primarily residing in 
the luminal content54. In the study by Hu et al., the 
authors did not perform 16S rRNA or culture pro-
filing of the gastric microbiota for comparison 
with WMS.

In a different published report by Thorell et al., 
metatranscriptomic RNA sequencing of stomach 
biopsy tissues from Nicaragua patients with differ-
ent H. pylori infection statuses and premalignant 
tissue changes was performed to evaluate the com-
position of the transcriptionally active microbial 
community in the gastric microbiota55. Similar to 
our findings, these authors determined that RNA 

transcripts from H. pylori predominated in 
H. pylori-positive samples, while fungi, 
Bacteroidetes, Firmicutes, and Actinobacteria tran-
scripts were also detected in biopsy tissues as well. 
Additionally, the authors noted highly expressed 
H. pylori nickel transport genes which parallels 
our findings of genes enriched for nickel cation 
binding (GO:0016151) in H. pylori-positive sam-
ples. Significant differences in stomach microbiota 
at different stages of gastric disease progression 
were not noted in this study. While these authors 
performed 16S rRNA profiling to support taxa 
identified by metatranscriptomic RNA sequencing, 
the authors did not statistically analyze the agree-
ment of taxa identified between sequencing 
methods.

In conclusion, our study demonstrates that 
WMS is a feasible approach to characterize the 
gastric microbiome. By continuing to study the 
gastric microbiome with WMS, novel insights 
into the structure, function, and interactions of 
H. pylori with other microorganisms and host dis-
ease risk may be elucidated. Future studies compar-
ing WMS versus culture and 16S rRNA profiling in 
larger sample populations are warranted to opti-
mize WMS as a novel approach to detect and 
characterize non-H. pylori taxa present in the sto-
mach. By integrating next-generation sequencing 
approaches with traditional culture techniques, 
future studies will have the potential to identify 
specific microbes associated with augmented or 
suppressed risk for stomach disease in human 
patients.

Methods

Study population, samples, and histopathology

As previously cited, subjects between 40 and 60  
years of age with dyspeptic symptoms that war-
ranted upper gastrointestinal tract endoscopy 
were recruited in Tumaco (LGCR) and Túquerres 
(HGCR) in 201014,15. Subjects that had received 
proton pump inhibitors, H2-receptor antagonists, 
or antimicrobials during the 30-day period pre-
vious to the endoscopic procedure were excluded 
from this study. Other exclusion criteria were 
major diseases or previous gastrectomy. 
Participation was voluntary and informed consent 
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was obtained from all participants. The Ethics 
Committees of the participating hospitals in 
Nariño and the Universidad del Valle in Cali, 
Colombia, and the Institutional Review Board of 
Vanderbilt University approved all study protocols, 
and all experiments were performed in accordance 
with the relevant guidelines and regulations. A total 
of 163 participants were recruited (81 from the 
HGCR and 82 from the LGCR) and a sample popu-
lation of 20 patients (10 from HGCR, 10 from 
LGCR) consisting of 10 males and 10 females was 
selected for this study. Four biopsy samples (2 
antrum, 1 incisura, and 1 corpus) were used for 
histopathology, one frozen antral biopsy was used 
for H. pylori culture, and another frozen antral 
biopsy for both DNA extraction and culture. By 
histologic diagnosis, 17 patients had non-atrophic 
gastritis (NAG) and 3 had multifocal atrophic gas-
tritis with intestinal metaplasia (MAG-IM) 
(Table 1, supplemental table S19). Thirteen of the 
patients were H. pylori-positive by a modified 
Steiner stain and antral culture (Table 1).

16S rRNA sequencing and WMS

DNA was extracted from antral gastric biopsy sam-
ples using the DNeasy PowerLyzer PowerSoil Kit 
(Qiagen, Germantown, MD) following the manu-
facture’s protocol. DNA was stored at −20°C until 
use. 16S rRNA library preparations and sequencing 
were performed as previously described56. WMS 
libraries were prepared from>5 ug of DNA per 
sample using NexteraFlex and sequenced by 2 ×  
250 bp paired reads on an Illumina Novaseq SP500.

Bioinformatic analysis

All scripts for the bioinformatic workflow were 
performed using default parameters unless stated 
otherwise and have also been deposited in GitHub 
(https://github.com/TonyMannion/WMS_ 
Gastric_Biopsies). 16S rRNA and WMS reads were 
decontaminated for low-quality base pairs and 
adapter sequence using BBDuk version 38.90 (sour 
ceforge.net/projects/bbmap/) before taxonomic 
classification. Decontaminated 16S rRNA reads 
were analyzed using Kraken257 against the SILVA 
138 database, a highly curated and comprehensive 
database of 16S rRNA gene sequences (available at 

https://benlangmead.github.io/aws-indexes/k2). 
Decontaminated WMS reads analyzed by 
Kraken258 followed by Bracken59 for taxonomic 
classification and abundance against more than 
34,000 RefSeq genomes from archaea, bacteria, 
fungi, protozoa, eukaryota, human, and viral spe-
cies (PlusPF: standard plus protozoa & fungi and 
EuPathDB46: eukaryotic pathogen genomes with 
contaminants removed; available at https://benlang 
mead.github.io/aws-indexes/k2). This database 
includes more than 60 different strains of 
H. pylori. Bacterial reads were extracted using 
Kraken2 from decontaminated WMS reads and 
assembled into contigs using metaSPAdes60. 
BBMap version 38.90 (sourceforge.net/projects/ 
bbmap/) was used to estimate contig coverage by 
mapping bacterial reads to assembled contig 
sequences, and no contigs were excluded based on 
coverage prior to gene annotation with RAST 
hosted by PATRIC61. DIAMOND62 analysis 
against the nr database was used to predict taxon-
omy for protein gene annotations. InterProScan 
version 5.52–86.063 and KAAS64 (program: 
GHOSTX; method: BBG; GENES data set: hsa, 
dme, ath, sce, pfa, eco, sty, hin, pae, nme, hpy, 
rpr, mlo, bsu, sau, lla, spn, cac, mge, mtu, ctr, 
bbu, syn, aae, mja, afu, pho, ape) were used to 
analyze gene annotations for protein domains and 
KEGG pathways, respectively. GO terms were 
included in the outputs from InterProScan domain 
analysis. Protein gene annotations with ≥90% per-
cent identity to the Helicobacter pylori 26695 gen-
ome (Genbank: AE000511) based DIAMOND 
analysis were mapped and visualized on the circu-
lar chromosome using PATRIC.

Bacterial culture methods for gastric biopsies from 
patients

Antral biopsies were frozen at −80°C in thioglyco-
late containing 20% glycerol. The biopsies were 
thawed in an anaerobic atmosphere (10% CO2, 10% 
H2, 80% N2), and were homogenized in Brain Heart 
Infusion (BHI) with 20% glycerol with tissue grin-
ders. The homogenate was divided into aliquots to 
isolate bacteria under diverse culture conditions. 
For aerobic culture, the homogenates were plated 
onto chocolate agar, blood agar, MacConkey agar, 
and Brucella broth medium containing 10% FCS. 
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The plates were incubated at 37°C in 5% CO2 for 
24–48 hours. For anaerobic culture, the homoge-
nates were plated onto pre-reduced Brucella blood 
agar plates (BBL) and inoculated into thioglycolate 
broth. The cultures were incubated at 37°C in an 
anaerobic chamber (Coy Lab Products) with mixed 
gas (10% CO2, 10% H2, 80% N2) for 48 hours. For 
microaerobic culture to detect the growth of 
H. pylori, the homogenates were plated onto 
H. pylori-selective plates and Brucella blood agar 
plates after passing through 0.65 µm syringe filter. 
The plates were placed into a vented jar filled with 
mixed gas (10% CO2, 10% H2, 80% N2) and incu-
bated at 37°C for up to 3 weeks. The plates were 
checked every 2–3 days for growth. All bacterial 
strains isolated from the different culture conditions 
were identified by 16S rRNA sequencing.

Statistical analysis

The Phyloseq, Vegan, and Microbiome packages in 
R were used to plot and statistically analyze 16S 
rRNA and shotgun metagenomic data, as described 
previously56. Briefly, alpha diversity was analyzed 
by the Observed and Chao1 metrics to describe the 
species richness (i.e., “how many microbes in 
a sample?”) and the Shannon and Simpson metrics 
to describe species evenness (i.e., “how are 
microbes balanced to each other in a sample?”). 
For beta diversity analyses, the Aitchison distance 
(i.e., the Euclian distance between samples after 
centered log-ratio (clr) transformation of 
abundances)65 was plotted on PCA plots and per-
mutational ANOVA (PERMANOVA) using the 
adonis function in Vegan. To identify differentially 
abundant features, the Welch’s t-test and general-
ized linear model (GLM) on clr transformed abun-
dances with a false discovery rate (FDR) correction 
for P-values using the Benjamini-Hochberg (BH) 
method. A P-value or FDR≤0.05 was considered 
statistically significant. All scripts for these analyses 
were performed using default parameters unless 
stated otherwise and have also been deposited in 
GitHub (https://github.com/TonyMannion/ 
WMS_Gastric_Biopsies).
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