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Model-Based Approach Shows ON Pathway Afferents Elicit a
Transient Decrease of V1 Responses
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Neurons in the primary visual cortex (V1) receive excitation and inhibition from distinct parallel pathways processing light-
ness (ON) and darkness (OFF). V1 neurons overall respond more strongly to dark than light stimuli, consistent with a pre-
ponderance of darker regions in natural images, as well as human psychophysics. However, it has been unclear whether this
“dark-dominance” is because of more excitation from the OFF pathway or more inhibition from the ON pathway. To under-
stand the mechanisms behind dark-dominance, we record electrophysiological responses of individual simple-type V1 neurons
to natural image stimuli and then train biologically inspired convolutional neural networks to predict the neurons’ responses.
Analyzing a sample of 71 neurons (in anesthetized, paralyzed cats of either sex) has revealed their responses to be more
driven by dark than light stimuli, consistent with previous investigations. We show that this asymmetry is predominantly
because of slower inhibition to dark stimuli rather than to stronger excitation from the thalamocortical OFF pathway.
Consistent with dark-dominant neurons having faster responses than light-dominant neurons, we find dark-dominance to
solely occur in the early latencies of neurons’ responses. Neurons that are strongly dark-dominated also tend to be less orien-
tation-selective. This novel approach gives us new insight into the dark-dominance phenomenon and provides an avenue to
address new questions about excitatory and inhibitory integration in cortical neurons.
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Significance Statement

Neurons in the early visual cortex respond on average more strongly to dark than to light stimuli, but the mechanisms behind
this bias have been unclear. Here we address this issue by combining single-unit electrophysiology with a novel machine
learning model to analyze neurons’ responses to natural image stimuli in primary visual cortex. Using these techniques, we
find slower inhibition to light than to dark stimuli to be the leading mechanism behind stronger dark responses. This slower
inhibition to light might help explain other empirical findings, such as why orientation selectivity is weaker at earlier response
latencies. These results demonstrate how imbalances in excitation versus inhibition can give rise to response asymmetries in
cortical neuron responses.

Introduction
The early thalamocortical visual system is separated into two dis-
tinct pathways: an ON pathway, which responds more to lighter
parts of images; and an OFF pathway, which encodes darker
image regions. Neurons in primary visual cortex (V1) combine
inputs from these two pathways, but the nature of this integra-
tion is still poorly understood.

V1 neurons evidently receive asymmetrical inputs from the
two pathways, since they are on average more responsive to dark
than light stimuli (Jin et al., 2008; Yeh et al., 2009), especially at
low spatial frequencies (Kremkow et al., 2014; Jansen et al., 2019)
and shorter time latencies (Komban et al., 2014). This asymmetry
is presumably adaptive because of the preponderance of dark
regions in natural images (Ratliff et al., 2010), which is also more
pronounced at lower spatial frequencies (Cooper and Norcia,
2015). These asymmetries may influence human perception,
since dark stimuli are processed faster and more reliably than
light stimuli (Buchner and Baumgartner, 2007; Komban et al.,
2011).

There are more OFF than ON excitatory inputs from the
LGN to layer 4 of V1, which could help explain why responses to
dark stimuli are stronger in V1 (Jin et al., 2008). However, this
does not explain why more dark-dominant neurons are found in
layers 2/3 than in layer 4 (Yeh et al., 2009). This discrepancy
could be explained by stronger ON than OFF intracortical
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inhibition within V1 (Tucker and Fitzpatrick, 2006; Xing et al.,
2014; Taylor et al., 2018). Hence, whether dark-dominance is
mostly because of excitation to dark stimuli or inhibition to light
stimuli remains unclear. Here we develop a novel machine
learning approach to disambiguate excitation from inhibition in
extracellular recordings, which allows us to make quantitative
inferences about how cortical neurons integrate ON and OFF
inputs.

To better understand how visual stimuli drive V1 responses,
we predict the responses of recorded neurons to natural images
with a simple, biologically inspired convolutional neural network.
This neural network processes the natural images’ light (ON) and
dark (OFF) information in two distinct pathways. The first layer
of each pathway consists of a convolution with a parametrized 2D
Gaussian spatial filter, which represents the responses of LGN
neurons (omitting the weaker surrounds) (Croner and Kaplan,
1995). The second layer is a linear-weighted sum of the excitatory
or inhibitory contributions of each pathway, which then sum to
provide the model’s output. From these estimated weights, we
can infer functional excitation and inhibition from each pathway;
that is, how light and dark stimuli increase or decrease a neu-
ron’s firing rate at every spatial location and temporal lag of a
V1 cell’s receptive field. While functional excitation and inhi-
bition might not necessarily represent a neuron’s synaptic
inputs (see Discussion), they reflect how a neuron integrates
ON and OFF thalamocortical inputs.

Using this approach, we find the dark-dominance phenom-
enon in V1 neurons to only occur at the early response latencies.
We show these stronger dark responses to be predominantly
driven by a lack of functional inhibition to dark stimuli at early
latencies. We also find that this slower inhibition to dark stimuli
is associated with less orientation selectivity (OS) in neurons’
early responses (Ringach et al., 1997; Shapley et al., 2003). These
findings suggest that slower functional inhibition to dark than to
light stimuli plays a crucial role in the dark-dominance found in
primary visual cortex.

Materials and Methods
Animal preparation. Anesthesia in adult cats was induced by isoflur-

ane-oxygen (3%-5%) inhalation, followed by intravenous cannulation
and bolus injection of propofol (5mg/kg). Surgical anesthesia was main-
tained with supplemental doses of propofol. Glycopyrrolate (30mg) and
dexamethasone (1.8mg) were administered, and a tracheal cannula or
intubation tube was inserted. Throughout the surgery, body temperature
was thermostatically maintained and heart rate was monitored (Vet/Ox
Plus 4700).

The animal was then positioned in a stereotaxic apparatus and
connected to a ventilator (Ugo Basile 6025). Cortical Area 17 was
exposed by a craniotomy (P3/L1) and a small durotomy, and the cort-
ical surface protected with 2% agarose capped with petroleum jelly.
Local injections of bupivacaine (0.50%) were administered at all sur-
gical sites. During recording, anesthesia was maintained by infusion
of propofol (5.3mg·kg�1·h�1), and in addition, remifentanil (initial
bolus injection, 1.25mg·kg�1, then infusion, 3.7 mg·kg�1·h�1) and
O2/N2O (30:70 ratio) delivered through the ventilator. Paralysis was
produced with a bolus intravenous injection of gallamine triethiodide
(to effect), followed by infusion (10mg·kg�1·h�1). Throughout subse-
quent recording, expired CO2, EEG, ECG, body temperature, blood ox-
ygen, heart rate, and airway pressure were monitored and maintained
at appropriate levels. Intramuscular glycopyrrolate (16mg) and dexa-
methasone (1.8mg) were also administered daily.

Corneas were initially protected with topical carboxymethylcellulose
(1%) and subsequently with neutral contact lenses. Spectacle lenses were
selected with slit retinoscopy to produce emmetropia at 57 cm, and
artificial pupils (2.5 mm) were provided. Topical phenylephrine

hydrochloride (2.5%) and atropine sulfate (1%), or cyclopentolate (1.0%)
in later experiments, were administered daily.

All animal procedures were approved by the McGill University
Animal Care Committee and are in accordance with the guidelines of
the Canadian Council on Animal Care.

Extracellular recording. Recordings were performed using 32-
channel silicon probes (NeuroNexus), in most cases polytrodes
(A1x32-Poly2-5 mm-50s-177) or occasionally linear arrays (A1x32-
6 mm-100-177), advanced with a stepping motor microdrive (M. Walsh
Electronics, uD-800A). Raw electrophysiological signals were acquired
with a Plexon Recorder (3Hz to 8 kHz; sampling rate, 40 kHz), along
with supplementary signals from a small photocell placed over one cor-
ner of the visual stimulus CRT, which were used for temporal registra-
tion of stimuli and spikes, and to verify the absence of dropped frames.
Spike waveforms were carefully classified from the recorded multichan-
nel data into single units, using Spikesorter (Swindale and Spacek, 2014).
Only clearly sorted units were used for further analysis.

In total, 110 single units from 37 penetrations in 8 cats (4 males, 4
females) were analyzed. These recording experiments involved labora-
tory personnel working on other projects. Of these neurons, 6 were
rejected because part of their receptive fields was outside the screen, and
33 were rejected because the predictive performance of the fitted model
was too low (see Model architecture). The sample size included the
remaining 71 neurons.

Visual stimuli. Visual stimuli were presented on a g -corrected
CRT monitor (NEC FP1350, 20 inches, 640� 480 pixels, 150 Hz,
36 cd/m2) at a viewing distance of 57 cm. Stimuli were produced by
an Apple Macintosh computer (MacPro, 2.66 GHz, 6 GB, MacOSX
version 10.6.8, NVIDIA GeForce GT 120) using custom software
written in MATLAB (version 2012b) with the Psychophysics Toolbox
(version 3.0.10) (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). We
selected a channel with good spike responses to hand-held bar stim-
uli, which we used to determine the dominant eye (with the nondo-
minant eye subsequently occluded), and to position the CRT monitor
to be approximately centered around the population receptive field.

Visual stimuli were ensembles of 375 natural images taken from the
McGill Calibrated Color Image Database (Olmos and Kingdom, 2004),
cropped to 480� 480, converted to monochrome 8-bit integers, as in
Talebi and Baker (2012) but with a higher RMS contrast. We randomly
presented each ensemble at 75 images per second (i.e., every 13.33ms) in
short movies of 5 s each. These stimuli were not “natural movies,” to
avoid their strong temporal correlations, which would lead to substan-
tially biased receptive field estimates using our methodology. We have
observed such biases in simulated experiments on known models, which
can even lead to spatiotemporal receptive field estimates with responses
at negative latencies (see, e.g., Parker et al., 2022). We separated the
ensembles into three sets, to evaluate predictive performance independ-
ently from overfitting. The training set had 20 movies which were pre-
sented 5 times each, while the validation and testing sets each had 5
movies which were presented 20 times each. The validation and testing
sets were presented more often to provide less noisy estimates of the fit-
ted model’s predictive performance. Instances of these three subsets of
movies were quasi-randomly interleaved throughout the 45 min record-
ing session.

For the subsequent data analysis (described below), all images were
resized from 480� 480 to 40� 40 before training (see below) to avoid
overparameterization of the fitted model. Resizing was done using the
Image module from the Python Image Library (Umesh, 2012).

Model architecture. The model architecture we use here is abstracted
from known visual circuitry (see Fig. 1), and has parameters optimized
to best predict a recorded cortical neuron’s mean spiking responses to
the natural image ensembles. We model LGN receptive fields as parame-
trized 2D isotropic gaussians, acting convolutionally on the stimulus
images. The antagonistic surrounds are neglected, so there is only a pair
of Gaussian width parameters, for the ON and OFF pathways, to be esti-
mated. The connections between the Gaussian operators and the model
cortical neuron are a pair of linear-weighted sums, or spatiotemporal fil-
ters, of rectified responses of the Gaussian operators, across a series of
time lags. Each of these spatiotemporal filter acts like a “dense layer” in
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machine learning, but there is not a subsequent rectification. The output
of each spatiotemporal filter might be thought of as a presynaptic mem-
brane potential contribution, from its respective ON or OFF pathway.

The inputs to the model are the pixel luminance values of the natural
image stimuli (cropped, and spatially downsampled to 40� 40 pixels, as
described below). The mean of the inputs is centered at zero by subtract-
ing the overall mean across all images within an ensemble. To model the
neuron’s temporal processing, the inputs to the estimated model (see
below) are composed of the preceding 7 images, each of which was pre-
sented for 13.33ms. The model output is the neuron’s response, with
spike times collected into time bins of 13.33ms each (duration of each
stimulus image frame).

The stimulus images are then convolved with a pair of parametrized 2D
Gaussian filters (with positive or negative polarity for the ON and OFF
pathways, respectively), each followed with a half-wave rectification. The
2D gaussians represent receptive fields of LGN neurons in which the weaker
surrounds (Croner and Kaplan, 1995) are neglected, as follows:

gðh; v; p; tÞ ¼ apffiffiffiffiffiffiffiffiffiffiffiffi
2ps 2

p

q e
� h2 1 v2

s2p

� �
(1)

where h and v are the horizontal and vertical distances between a pixel
and the center of the Gaussian, respectively, and s represents the SD
(i.e., width) and a the amplitude (i.e., the height) of the 2D Gaussian.
The s parameter is estimated separately for each pathway (p). To allow
each pathway to selectively process light or dark information, a is set to
1 for the ON pathway and �1 for the OFF pathway. The convolution of
the 2D Gaussian with the inputs is half-wave rectified to mimic spike fre-
quency responses of LGN neurons (Persi et al., 2011) as follows:

cði; j; t; p; kÞ ¼ maxð0;
X6

h¼�5

X6

v¼�5

xi1 h;j1 v;k;t � gðh; v; p; tÞÞ (2)

where i and j are the horizontal and vertical coordinates of the center
of the 12� 12 2D Gaussian, x is the luminance of a specific pixel (resized
to a grid of 40� 40), t is the number of time bins between the shown
image and the recorded response (latency), and k is the time bin of the
neuron’s response. The convolution with the 2D gaussians is imple-
mented with zero-padding and a “stride” of 1. Because of the first
rectification, the ON-pathway encodes luminance above (lighter
than) the mean, and the OFF-pathway luminance below (darker
than) the mean.

For each of the ON- or OFF-pathways, the model then takes a linear-
weighted sum of the convolution outputs from the respective rectified

gaussians, with each weight notionally representing the excitatory or
inhibitory inputs from an array of LGN cells to the cortical neuron.
The sum of responses from these spatiotemporal filters is followed by a
rectified power law output nonlinearity, which forms the final output
of the model and the prediction of the neuron’s mean spiking response
as follows:

ŷpreðkÞ ¼ maxð0;
X2

p¼1

X7

t¼1

X40
i¼1

X40
j¼1

cði; j; p; t; kÞwi;j;p;tÞ (3)

ŷðkÞ ¼ aŷbpreðkÞ (4)

where w represents the spatiotemporal filter weights; ŷðkÞ is the predic-
tion of a neuron’s response for the kth time bin, b is the exponent of the
rectified power nonlinearity, and a is a scale (gain) factor.

To estimate the proportion of the variance in a neuron’s response
that is accounted for by the model’s predictions, we calculate a variance-
accounted-for (VAF) index by taking the square of the Pearson correla-
tion coefficient between y (neuron’s response) and ŷ (model’s predic-
tions). To ensure that the estimated weights are representative of each
neuron’s responses to visual stimuli, we excluded neurons with a VAF
,10% in the testing set (see below). Based on this criterion, we excluded
33 neurons, which resulted in a sample size of 71 neurons for the
remaining analysis.

Multifilter models (Gollisch and Meister, 2008) have also previously
been used to infer ON and OFF inputs from neurons’ responses. The
machine learning model we use is conceptually similar; the main differ-
ences are that the convolution filters are parametrized as positive or neg-
ative 2D gaussians instead of being composed of free parameters, and
that we use backpropagation instead of spike-triggered covariance to
estimate the model’s parameters. These differences have two key
advantages compared with multifilter models. The first advantage is
that backpropagation can more readily handle responses to natural
images compared with spike-triggered covariance. The second
advantage is that our model can estimate a significantly larger num-
ber of parameters because of the parameterization of the convolu-
tion filters and the use of regularization techniques, such as L2 and
dropout.

Optimization and regularization. To characterize a neuron’s receptive
field, we find the model parameters which minimize the difference between
its recorded responses and the responses predicted by the model of
Equation 3, which requires fitting a total of 2 � 40 � 40 � 7=22,400 spa-
tiotemporal filter weights, and 2 parameters (sONandsOFF) for the 2D
gaussians (fitting of the two parameters for the output nonlinearity, Eq. 4, is
described below). To minimize overfitting because of the large number of

Figure 1. Model architecture for responses of a cortical neuron to visual stimuli, such as natural images. Light (ON pathway) and dark (OFF pathway) image regions are encoded as rectified responses
of convolution with positive (light) and negative (dark) spatial gaussians, respectively. The output of this convolutional layer is then multiplied with a spatiotemporal filter of the same pathway that repre-
sents excitatory (red) and inhibitory (blue) weights for each spatiotemporal location. These linear-weighted sums are separately taken for each pathway and summed, followed by a half-power pointwise
nonlinearity. A machine learning algorithm estimates the sizes of the parameterized Gaussian operators, and the two sets of spatiotemporal filters, for each of a series of latencies.
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parameters, we use L2 regularization by penalizing the squared amplitude
of the spatiotemporal filter weights (Hoel and Kennard, 1970), implemented
by minimizing a loss function in which the first term is the squared error of
the model prediction and the second term the regularization penalty as
follows:

L ¼
Xn

k¼1

ðyk � ŷkÞ2 1 l
X2

p¼1

X7

t¼1

X40
i¼1

X40
j¼1

wi;j;p;t (5)

where yk is the neuron’s recorded response, ŷk the model’s pre-
dicted response for the kth time bin, wi,j,t,p the spatiotemporal filter
weights (for the p-th On/Off stream, t-th latency, and i,j-th spatial
position), and l the L2 regularization hyperparameter. Based on
pilot results from a representative subset of neurons, the hyper-
parameter l is set to 5� 10�6 in a first pass and 2� 10�6 in a sec-
ond pass (see below, three-pass training procedure). In the third
pass, we train the model with different l values of [1, 2, 4, 8, 16] �
10�6, and choose the l value giving the best model performance
on the validation dataset for each neuron.

This loss function is minimized using the Adam optimization algo-
rithm (Kingma and Ba, 2014) with mini-batch gradient descent (M. Li et
al., 2014). To further reduce overfitting, we apply dropout during train-
ing to both the convolutional and spatiotemporal filters with a probabil-
ity of 50% (Srivastava et al., 2014).

The data are separated into training, validation, and test sets, corre-
sponding to the three sets of stimulus movies. The model parameters are
fit to the training set using a mini-batch size of 100 stimulus–response
pairs. As an additional regularization measure, training is stopped
if there is no improvement on the validation set in the preceding
50 epochs; then we use the model at its peak performance (i.e., 50
epochs before training stops) in subsequent analyses. We use a
third, separate test set to obtain an unbiased estimate of predictive
performance.

Three-pass training procedure. Because V1 receptive fields usually only
occupy a small subset of the displayed visual stimulus images, it would be
detrimental to optimize each neuron’s model based on the full extent of the
images. Doing so would entail a very high overparameterization, or a loss of
spatial resolution because of excessive downsampling of the stimulus
images, in either case yielding poorer predictive performance. To address
this issue, we use a three-pass training procedure, with each pass improving
the spatial resolution of the receptive field estimate. In the first pass, we opti-
mize the model parameters using the full 480� 480 stimulus images down-
sampled to 40� 40. We then manually designate a square cropping
window that encloses an area slightly larger than the apparent receptive
field. Next, we crop the stimulus images within that window, and rescale
each image within it to 40� 40. Because of the resizing, this cropped image
then has much better spatial resolution than the 40� 40 image from
the first pass. This image is used to retrain the model in the second
pass, where we repeat the procedure, but with the cropped image. In
the third pass, we further adjust the cropping window based on the
model estimate obtained in the second pass. This third pass provides
much higher accuracy in identifying the boundaries of the receptive
field, and gives us the final model fits that we use for the remaining
analysis. This three-pass training procedure allows us to character-
ize a neuron’s receptive field with high resolution and substantially
increases predictive performance.

Output nonlinearity. A cortical neuron’s spike frequency response
has often been modeled with a final output nonlinearity, consisting of a
rectified power law (Heeger, 1991; Anzai et al., 1999; Persi et al., 2011).
However, it has proven problematic to simultaneously estimate the
power law exponent with the other parameters using the backpropaga-
tion algorithm employed here. This problem is most likely due in part to
the “exploding gradient” problem (Pascanu et al., 2012). To resolve
this issue, we initially set a power-law exponent value of unity
(1.0), and wait 100 epochs into the training algorithm, to get a
rough estimate of the other parameter values. We then pause the
model optimization, to fit the two parameters of the output nonli-
nearity to the predicted versus measured neuron responses, and

then resume full model parameter optimization, keeping the out-
put nonlinearity parameters fixed.

To address the heavily uneven distribution of the measured firing
rates, we bin the predicted responses into 100 bins of 75 responses each,
and compute the mean measured response for each bin, a modification
of the method used by Anzai et al. (1999). We then fit a scaling factor ‘a’
and an exponent ‘b’ (Eq. 4) to minimize the difference between the
binned predicted responses ŷ and the measured spike rates y, using
python scipy’s ‘optimize.curve_fit’.

Estimating functional excitation and inhibition. The spatiotemporal
properties of each of the ON and OFF pathways in the fitted model
depend on both the spatiotemporal filter weights and estimated 2D gaus-
sians (which may differ in width for the ON and OFF pathways). To
incorporate both in our analysis, for each of the ON and OFF pathways,
we convolve the 2D Gaussian with the corresponding dense weights, to
produce a 40 � 40 � 7 spatiotemporal filter for each pathway (ONRecon

and OFFRecon). This “reconstructed” receptive field represents the neu-
ron’s responsiveness to either light or dark stimuli. For further analyses,
we estimate the overall amount of functional excitation and inhibition
from the filter for each pathway and time lag, by taking the sum of all pos-
itive or negative values in either the ON or OFF reconstructed receptive
field. This procedure provides an inference of the total amount of ON ex-
citation, ON inhibition, OFF excitation, and OFF inhibition contributing
to each neuron’s response as follows:

ONexcitðtÞ ¼
X40
j¼1

X40
i¼1

maxð0;ONReconði; j; tÞÞ (6)

OFFexcitðtÞ ¼
X40
j¼1

X40
i¼1

maxð0;OFFReconði; j; tÞÞ (7)

ONinhibðtÞ ¼ �
X40
j¼1

X40
i¼1

minð0;ONReconði; j; tÞÞ (8)

OFFinhibðtÞ ¼ �
X40
j¼1

X40
i¼1

minð0;OFFReconði; j; tÞÞ (9)

where ONRecon represents the contribution of the ON pathway to the esti-
mated relationship between (light) stimuli and the neuron’s responses (and
similarly for OFFRecon). ONRecon and OFFRecon are estimated from the con-
volution of the spatiotemporal weights, wp,t, with the Gaussian layer, gp,t for
p=1 (and similarly for OFFRecon for p=2) as follows:

ONReconðtÞ ¼ wp¼1;t � gp¼1;t (10)

OFFReconðtÞ ¼ wp¼2;t � gp¼2;t (11)

Parts of our analysis are based on each neuron’s peak latency of
responsiveness, determined as the latency having the greatest variance in
the sum of the reconstructions from each pathway as follows:

VarReconðtÞ ¼
P40

j¼1

P40
i¼1 ðReconði; j; tÞ �MeanReconðtÞÞ2

1600
(12)

where

Reconði; j; tÞ ¼ ONReconði; j; tÞ1OFFReconði; j; tÞ (13)

MeanReconðtÞ ¼
P40

j¼1

P40
i¼1 Reconði; j; tÞ
1600

(14)

The latency t with the highest VarRecon will be referred to as T.
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The model architecture we use assumes no luminance adaptation; we
define lights (positive values) and darks (negative values) by normalizing
the inputs to a mean of 0 across all (cropped) images. Since this normal-
ization determines what values are positives and negative, it also influen-
ces parameter estimation (e.g., ONexcit vs OFFexcitÞ:

The primary reason we did not model light adaptation is because it
seems likely that the temporal dynamics of adaptation are much slower
than 13.3ms, with even fast adaptation having a decay time of ;100ms
(Geisler, 1983). Since each stimulus is only shown for 13.3ms, each neuron
should adapt over the mean luminance of several past stimuli; because
images are sampled randomly, the average of these previous images should
be somewhat close to zero.

However, if this assumption is incorrect and these neurons do
adapt quickly to changes in local luminance, this would have the poten-
tial to influence our results, especially because of the asymmetric distri-
bution between lights and darks in natural images (Ratliff et al., 2010).
To address this possibility, we reran the analysis with a simple model
of adaptation, in which we normalize each cropped image (which is
roughly the size of each neuron’s receptive field) relative to its mean.
The results we get are very similar to the ones shown below (see Figs. 2–7).
Therefore, we think it is very unlikely that our findings are because of
adaptation and the uneven distribution of lights and shadows in natural
images.

Light/dark balance (LDB). To quantify the extent to which individual
neurons are light- or dark-dominated, we use an LDB index to indicate the
relative influence of a neuron’s light and dark weights as follows:

LDBðtÞ ¼
�
BLightðtÞ � BDarkðtÞ

�
�
BLightðtÞ1BDarkðtÞ

� (15)

where

BLightðtÞ ¼ ONexcitðtÞ1 OFFinhibðtÞ (16)

BDarkðtÞ ¼ OFFexcitðtÞ1 ONinhibðtÞ (17)

This index varies from �1.0 to 1.0, with positive LDB values indicating
a neuron is light-dominated, and negative values that it is dark-dominated.

Excitation/inhibition balance (EIB). The EIB index is similar to LDB
but contrasts excitation with inhibition instead of light with dark as follows:

EIBðtÞ ¼
�
BexcitðtÞ � BinhibðtÞ

�
�
BexcitðtÞ1BinhibðtÞ

� (18)

where

BexcitðtÞ ¼ ONexcitðtÞ1OFFexcitðtÞ (19)

BinhibðtÞ ¼ ONinhibðtÞ1OFFinhibðtÞ (20)

This index varies from �1 to 1, with positive EIB values indicating
a neuron’s response reflects relatively stronger excitation, and negative
EIB values stronger inhibition. One neuron was excluded from this
analysis for having an EIB value .3 SDs away from the mean.

Simulated responses to artificial stimuli. To better understand how
dark-dominance influences neurons’ responses to visual stimuli, we simu-
lated the estimated models’ responses to four different stimulus conditions.
The 40� 40 stimuli were tailored to each neuron’s spatial receptive field,
which we estimated by using Recon(i,j,T) (Eq. 13) at each neuron’s peak la-
tency T (see above). The four stimulus conditions (see Fig. 6) are the follow-
ing: light falling on light-driven regions (LL), dark on dark-driven regions
(DD), light on light-driven and half of dark-driven regions (LLHD), and
dark on dark-driven and half of light-driven regions (DDHL) as follows:

LLði; jÞ ¼ 1;Reconði; j;TÞ.0
0;Reconði; j;TÞ � 0

�

DDði; jÞ ¼ �1;Reconði; j;TÞ,0
0;Reconði; j;TÞ � 0

�

Figure 2. Gaussian and spatiotemporal filters estimated for four example neurons, one in each row. Left, Elements of ON pathway. Right, Elements of OFF pathway. Each spatiotemporal fil-
ter is shown as a series of latencies ranging from 0–13 to 80–93ms, with neurons being most responsive at the 13–27 and 27–40ms latencies. Red represents positive values (excitation).
Blue represents negative values (inhibition). OS and VAF are indicated for each neuron, and LDB values for each latency. A, B, Both neurons respond more strongly to dark stimuli (LDB, 0) at
the 13–27ms latency, and become more balanced (LDB; 0) at the 27–40ms latency. C, Neuron is also dark-dominant at the 13–27ms latency but responds more strongly to light at the
27–40ms latency. D, Neuron that is instead light-dominant at the 13–27ms latency, and balanced at the 27–40ms latency.

1924 • J. Neurosci., March 15, 2023 • 43(11):1920–1932 St-Amand and Baker · V1 Responses Dark Dominance from Light-Driven Inhibition



LLHDði; jÞ ¼ 1; Reconði; j;TÞ.0
�bð0:5Þ;Reconði; j;TÞ � 0

�

DDHLði; jÞ ¼ �1; Reconði; j;TÞ,0
bð0:5Þ;Reconði; j;TÞ � 0

�

where i and j index the spatial location of the image pixels, T is each neu-
ron’s peak latency, and b is a random value (either 0 or 1) drawn from
an equiprobable Bernoulli distribution. The first two stimulus conditions
(LL and DD) are designed to only recruit excitation, while the latter two
conditions recruit a mixture of both excitation and half as much inhibi-
tion. We used the estimated model of each neuron to simulate its
response to each of these four stimulus conditions at different latencies.
(This procedure is equivalent to simulating the neuron’s impulse
response to each stimulus.) The average simulated responses across the
entire sample at each latency are shown in Figure 6.

OS. To better understand the relationship between dark-dominance
and OS, we simulated the estimated models’ responses to static sinewave
gratings at each of 36 orientations (with increments of 5 degrees), 56 spa-
tial frequencies (equally spaced from 0.0667 to 0.143 cycles per image),
and 36 phases (increments of 5 degrees). These responses were used to
compute the OS of each neuron using a vector summation method
(Wörgötter and Eysel, 1987; Swindale, 1998) as follows:

OS ¼ ða2 1 b2Þ1=2PN�1
i¼0 RðxiÞ

(21)

with

a ¼
XN�1

i¼0

RðxiÞcosð2xiÞ (22)

b ¼
XN�1

i¼0

RðxiÞsinð2xiÞ (23)

where N is the number of sinewave gratings, xi is the orientation angle,
and R(xi) represents the simulated responses. The OS index was com-
puted separately for each latency in individual neurons.

Experimental design and statistical analyses. Most statistical tests
here are paired t tests, to compare whether there is a significant differ-
ence between the means of two groups. We also use one-sample t tests
to assess whether means differ significantly from zero, and perform
linear regression to test the correlation between two sets of values.
We adjust for multiple comparisons with Bonferroni corrections,
where the significance threshold a of 0.05 is divided by the number of
comparisons (e.g., Fig. 3C has 6 comparisons: a = 0.05/6 = 0.0083).
Because visual responses are much weaker for latencies longer than
40ms (see Fig. 2), statistical tests are only performed for the first
three latencies in Figures 5 and 7, with the correction for multiple
comparisons adjusted accordingly.

Results
As described in Materials and Methods, a simple neural network
model (Fig. 1) was fit to responses from individual neurons, to
estimate 2D gaussians and 3D spatiotemporal filters separately
for ON and OFF inputs, as well as a power law output nonlinear-
ity. Figure 2 shows these estimated model parameters for four
example neurons, which all had peak responses at the 13–27 or
27–40ms latency. As we observed more generally, the early ON
and OFF Gaussian filters for a given neuron were about the same
size, but opposite in polarity. And for each neuron, the spatio-
temporal filters were largely similar, both spatially and tempo-
rally, but opposite in polarity.

Many of the neurons had Gabor-like receptive fields that
are orientation-selective (Hubel and Wiesel, 1962), like the
one shown in Figure 2A (with OS = 0.55). At the 27–40ms la-
tency, this neuron has balanced light and dark responses for
both the ON (left) and OFF (right) pathways (LDB= 0.04).
This balance does not occur at the 13–27ms latency, where
the neuron responds more strongly to dark stimuli (LDB =
�0.2). This bias is because of the OFF pathway having stron-
ger functional excitation (red) than inhibition (blue), with the
ON pathway being balanced.

Another neuron (Fig. 2B) is also orientation-selective
(OS = 0.64), balanced (LDB = 0.02) at the 27-40ms latency,
and exhibits a bias toward dark responses (LDB = �0.3) at the
13–27ms latency. However, for this neuron, the 27–40ms la-
tency is imbalanced because of both the ON and OFF path-
ways, with the ON pathway having weaker excitation and the
OFF pathway having weaker inhibition.

The neuron shown in Figure 2C differs from the previous
examples in that it has low OS (0.09) because of its isotropic
receptive field, which has a dark center and an opposite-polarity
surround. At the 13–27ms latency, this neuron is dark-dominant
(LDB = �0.34) because of its weaker surround, especially in the
OFF pathway. Contrary to the above two example neurons, at
the 27-40ms latency, this neuron is not balanced but light-domi-
nant because of stronger functional inhibition than excitation in
the OFF pathway.

Not all neurons are dark-dominant; for example, the neuron
in Figure 2D is light-dominant at the 13–27ms latency
(LDB=0.29) because of its Gaussian-like receptive field with a
light-responsive center and a weak surround. Similar to previous
results, this neuron is balanced at the 27–40ms latency (LDB =
�0.02). However, as we shall see below, there is a tendency for
most neurons to, on average, have stronger responses to dark
stimuli at the 13–27ms latency, and to have stronger responses
to light stimuli or to be balanced at the 27–40ms latency.

It is interesting to note that the 13.3–40ms peak response
times we find are faster than the ;60ms found in some previ-
ous studies of cat primary visual cortex (e.g., DeAngelis et al.,
1993). This discrepancy might be because of our very short
presentation of each natural image (13.3ms), which could cir-
cumvent neurons’ temporal integration from reaching maxi-
mal peak responses. In contrast, DeAngelis et al. (1993) used
reverse correlation with a longer stimulus presentation of
40ms. Other studies (Komban et al., 2014; Talebi and Baker,
2016) that use shorter image presentations (13.3–16.7ms)
with temporally uncorrelated stimuli, such as white noise or
natural images, find peak responses times that are more simi-
lar to ours (; 30ms).

Population responses
Figure 3A shows a histogram of VAF values, which represents
the proportion of variance in a neuron’s response the model pre-
dicts on the testing set. We excluded 33 neurons that were poorly
predicted by the model (VAF, 10%) to get a more accurate esti-
mate of functional excitation and inhibition across the popula-
tion of neurons. The performance of the estimated models on
the remaining 71 neurons was good, with an average VAF of
31.02%, with values ranging from 10.5% to 65.3%. This range of
performance is similar to those in previous system identification
studies of V1 neurons (e.g., David et al., 2004; Fournier et al.,
2014; Vintch et al., 2015).

To investigate the patterns of light and dark response
strength across the sample of 71 neurons, we computed the
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sums of the four types of inputs for each neuron’s optimal
time lag (see Materials and Methods). Neurons had an opti-
mal time latency of either 13.3–26.7ms (38 neurons), 26.7–
40ms (32 neurons), or 53.3–66.7 ms (1 neuron). As described
in Materials and Methods, we estimated the overall amount
of functional excitation and inhibition from the ON and OFF
pathways, and also used these values to calculate an index of
light-vs-dark balance, LDB. We classified each neuron as
dark-dominated (LDB, 0) or light-dominated (LDB. 0)
depending on whether it was more responsive to dark (OFF
excitation and ON inhibition) or light (ON excitation and
OFF inhibition) at its optimal time latency. Across our population
of 71 neurons, we found 46 neurons (64.78%) to be dark-domi-
nated (LDB, 0) and 25 neurons (35.21%) to be light-dominated
(LDB. 0) at their optimal latencies, similar to Yeh et al. (2009).
The neurons in our sample had a wide range of LDB values (Fig.
3B; minimum = �0.62, maximum=0.57, median = �0.12), but
were on average dark-dominated, with an average LDB of �0.098
(Fig. 3B; one-sample t test: t =�3.48, df = 70, p=0.00087).

To better understand why cortical neurons are on average
more responsive to dark than light stimuli, we next compare the
four types of inputs at each neuron’s optimal latency (Fig.
3C). ON pathway inhibition is the strongest type of input on
average, and is significantly stronger than the other three.
ON inhibition is on average significantly stronger than ON
excitation (paired t tests with Bonferroni correction: t = 4.61,
df = 70, p = 1.79� 10�5), OFF excitation (paired t test:
t = 3.50, df = 70, p = 0.000812), and OFF inhibition (paired t
test: t = 3.86, df = 70, p = 0.00025). In contrast, OFF inhibition

is on average the weakest type of input. While it has previ-
ously been suggested that stronger OFF than ON excitation
could underlie stronger dark responses (Jin et al., 2008), the
overall dark-dominance effect we observe at the optimal la-
tency instead seems to be because of a strong imbalance
between ON and OFF inhibition: while inhibition is on aver-
age 39.3% stronger from the ON than from the OFF pathway
(Fig. 3D), there is no significant difference between excita-
tion from the ON and OFF pathways (Fig. 3E; paired t test:
t = 0.62, df = 70, p = 0.54). The difference between ON and
OFF inhibition (Fig. 3D) is also significantly stronger (paired
t test: t = 3.05, df = 70, p = 0.0033) than the difference between
ON and OFF excitation (Fig. 3E).

In addition, whether a given neuron is light- or dark-domi-
nated is strongly related to whether ON inhibition exceeds OFF
inhibition (Fig. 3C, yellow points above 1:1 line vs blue points
below). However, the imbalance of ON versus OFF excitation
poorly predicts whether a neuron is light or dark-dominant (Fig.
3D). Overall, these results suggest the dark-dominance effect to
be more driven by an imbalance in ON/OFF inhibition than by
an imbalance in ON/OFF excitation.

Time dynamics
Since responses to dark stimuli have previously been found to
have shorter latencies than responses to light stimuli (Komban et
al., 2014), we suspected the above results might vary as a function
of response latency. The dependence of LDB is shown for each of
the measured latencies in Figure 4A, with data points for each
sampled neuron, and gray bars indicating their averages. The

Figure 3. Strengths of excitation and inhibition from the ON and OFF pathways at each neuron’s optimal time lag. A, Distribution of VAF values across the sample. Neurons
with a VAF ,10% were excluded from the rest of the analysis. B, Distribution of LDB index values for each neuron at its optimal latency. This index is on average negative,
which indicates neurons respond more strongly to dark than light stimuli. C, Strength of excitation and inhibition across the ON and OFF pathways for each neuron. Gray
bars represent average values. ON inhibition is the strongest input on average. Yellow dots represent light-dominant neurons. Blue dots represent dark-dominant neurons.
*p, 0.0083, significant paired t tests (with Bonferroni correction). D, Scatterplot of ON versus OFF inhibition, for each of the 71 neurons. Most neurons have stronger ON in-
hibition, and whether ON or OFF inhibition is stronger is correlated with light- and dark-dominance. E, same as in C, but for ON and OFF excitation. Unlike the result for inhi-
bition (C), ON and OFF excitation have relatively similar strength on average.
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dark-dominance effect is especially predominant at the 0–
13.3ms (one-sample t tests with Bonferroni correction: t =
�7.73, df = 70, p= 5.76� 10�11) and 13.3–26.7ms latencies
(one-sample t test: t = �4.19, df = 70, p =7.99� 10�5). The dark-
dominance effect disappears at the 26.7–40ms latency, with
slightly stronger average responses to light than dark, although
the difference is not significant (one-sample t test: t= 1.90,
df = 70, p= 0.069). At the longer latencies, there is no significant
average light- or dark-dominance (one-sample t tests: all
p. 0.12). These findings suggest that, while V1 neurons are on
average biased toward dark responses in their short latencies, the
dark-dominance effect disappears at the 27–40ms latency.

To understand why neurons are dark-dominated in their
early latencies, we investigate how the strength of each
input type varies as a function of time. Because neurons are
most responsive up until a latency of 40 ms, the following
sections focus on the first three latencies. As we can see in
Figure 4B, at a latency of 0-13.3 ms, OFF excitation is the
strongest input on average: it is 26.0% stronger than ON ex-
citation (paired t tests with Bonferroni correction: t = 5.03,
df = 70, p = 3.7� 10�6). Inhibition is significantly weaker than ex-
citation, both in the ON (paired t test: t=3.15, df=70, p=0.0024)
and OFF (paired t test: t=10.76, df=70, p, 2.2� 10�16) pathways.
This discrepancy is stronger in the OFF than in the ON pathway
(paired t test: t=7.32, df=70, p=3.28� 10�10). Inhibition is on av-
erage 41.6% stronger from the ON than from the OFF pathway
(paired t test: t=5.82, df=70, p=1.65� 10�7), thereby contributing
to stronger dark responses. Weaker inhibition than excitation at the
shortest latency could be explained by inhibition having to go
through at least one more synapse than excitation to reach V1 neu-
rons (Ferster and Lindström, 1983; Martin and Whitteridge, 1984;
Montero, 1986). These results are also consistent with findings from

Jin et al. (2008), who demonstrated stronger OFF than ON excita-
tion from the LGN to be an important mechanism contributing to
the dark-dominance phenomenon. However, while stronger OFF
than ON excitation might explain dark-dominance at the 0–13.3ms
latency, the overall dark/light dominance of neurons will be more
related to the considerably stronger responses at the 13.3–26.7 and
26.7–40ms latencies.

Responses at the 13.3–26.7ms latency are also stronger to
dark stimuli (Fig. 4C), but for a different reason. OFF excitation
is not significantly stronger than ON excitation at the 13.3–
26.7ms latency (paired t tests with Bonferroni correction; t=
1.53, df = 70, p=0.131). Instead, dark-dominance at this latency
is because of weaker OFF inhibition compared with the other
three types of inputs. Inhibition from the OFF pathway is on av-
erage 40.64% weaker than inhibition from the ON pathway
(paired t test; t= 4.88, df = 70, p=6.47� 10�6). OFF inhibition is
also on average 32.89% weaker than ON excitation (paired t test;
t= 7.52, df = 70, p= 1.37� 10�10) and on average 38.35% weaker
than OFF excitation (paired t test; t= 5.90, df = 70, p= 1.16�
10�7). No other pair of inputs are significantly different from
each other (paired t tests: all p. 0.065 with a threshold of a =
0.0083 because of the Bonferroni correction) at the 13.3–26.7ms
latency, further strengthening the idea that the imbalance
between light and dark responses at this latency is because of
weaker OFF inhibition. These results are consistent with the idea
that V1 neurons receive stronger inhibition to light than dark
stimuli (Xing et al., 2014).

Contrary to the results for the earlier latencies, the 26.7-
40 ms latency does not show dark-dominance (Fig. 4D).
The only significant differences are OFF excitation being
both 19.19% weaker than OFF inhibition (paired t tests with
Bonferroni correction: t = �3.23, df = 70, p = 0.0019) and

Figure 4. LDB index and strength of excitation/inhibition of ON and OFF pathways for all neurons, across different latencies. A, LDB index values, shown as bar graph of average values for
each latency, with superimposed data points for individual neurons. The 0-13.3 and 13.3-26.7 ms latencies exhibit dark-dominance, the 26.7-40ms latency shows a slight bias toward light-
dominance and the later latencies are relatively balanced. B, Excitation and inhibition from the ON and OFF pathways for each neuron at the 0-13.3 ms latency. OFF excitation is stronger than
ON excitation on average, and inhibition is significantly weaker than excitation at this latency. C, Same as in B, but for the 13.3-26.7 ms latency; note the relatively balanced values on average,
except for OFF inhibition, which is significantly weaker than the other three types of input. D, Same as in B, C, but for the 26.7-40 ms latency; note the significantly weaker OFF excitation on
average compared with the other three types of input. B–D, *p, 0.0083, significant paired t tests (with Bonferroni correction). All of the pairwise comparisons are significantly different in D.
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20.54% weaker than ON inhibition (paired t test: t = �4.00,
df = 70, p = 0.00,015). No other pair of inputs differ signifi-
cantly (paired t tests: p, 0.0083) at this latency. Thus, dif-
ferent types of input are relatively more balanced at this
latency compared with the previous ones.

To further understand the time dynamics of dark and light
responses, we next analyze how the strength of each type of input
changes across latencies (Fig. 5). Because all input types are
much weaker at the 0-13.3ms latency compared with the 13.3–
26.7 and 26.7–40ms latencies (Fig. 5), we focus our analysis on
comparing the two latencies with the strongest responses (13.3–
26.7 and 26.7–40ms). Consistent with the above results, OFF in-
hibition is 40.4% weaker at 13.3–26.7ms than at 26.7–40ms (Fig.
5A; paired t tests with Bonferroni correction: t= 7.06, df = 70,
p=9.75� 10�10), and is the only input type to differ significantly
in strength between these two latencies. OFF excitation is 16.4%

weaker at 26.7–40ms than at 13.3–26.7ms, but this difference is
not significant (Fig. 5B; paired t test: t= 1.99, df = 70, p= 0.05).
There are no significant differences between the 13.3–26.7 and
26.7–40ms latencies for both ON inhibition (Fig. 5C; paired t
test: t=0.133, df = 70, p=0.895) and ON excitation (Fig. 5D;
paired t test: t=1.08, df = 70, p=0.283). These findings suggest
that inhibition is slower to dark than light stimuli, which leads to
dark-dominance at the 13.3–26.7ms latency.

The results so far suggest that dark-dominance occurs at the
13-27ms latency because of more functional inhibition to light
than dark stimuli. Because of those results, we hypothesized that
the dark-dominance effect would depend on howmuch functional
inhibition a neuron receives, which in turn depends on the rela-
tionship between the stimuli and a neuron’s receptive field. There
should be little or no dark-dominance from excitation alone, for
example, if we compare the responses to light stimuli falling on

Figure 5. Temporal dependence of contributions from ON/OFF excitation and inhibition. A, Bar graph of average OFF inhibition strength across time lags, with data points indicating values
for individual neurons. OFF inhibition is weaker at the 13.3-26.7 ms latency than at the 26.7-40 ms latency. B, Same as in A, but for OFF excitation. C, Same as in A, B, but for ON inhibition. D,
Same as in A–C, but for OFF excitation. *p, 0.0167, significant paired t tests between the first three latencies. OFF inhibition (A) is the only input type to significantly vary in strength
between the 13.3-26.7 and 26.7-40 ms latencies. Input strength at the 0-13.3 ms latency is always significantly weaker than at the 13.3-26.7 and 26.7-40 ms latencies.
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the ON-excitation region to dark stimuli on the OFF-excitation
region. Dark-dominance also cannot occur from inhibition
alone, since the spontaneous firing rate is close to zero. Instead,
dark-dominance should occur when a stimulus triggers both ex-
citation and inhibition, for example when either light or dark
stimuli fall on both the light and dark-driven regions of a neu-
ron’s receptive field.

To test this hypothesis, we simulated responses of the estimated
models to four different stimulus conditions tailored to the receptive
field of each neuron (seeMaterials andMethods): (1) light stimuli on
light-driven regions; (2) dark stimuli on dark-driven regions; (3) light
stimuli on light and (half of) dark-driven regions; and (4) dark stim-
uli on dark and (half of) light-driven regions (Fig. 6, top parts). The
averages of the four responses were taken across the entire
sample of 71 neurons (Fig. 6, bottom plots). As expected, the
simulation shows little or no dark-dominance when only the excita-
tory region is stimulated (Conditions 1 and 2; Fig. 6A). But as we
hypothesized, we do obtain dark-dominance at the 13-27ms latency
with stimuli that both excite and inhibit the neuron’s response
(Conditions 3 and 4; Fig. 6B). These results support the idea that
dark-dominance occurs when measured with stimuli that recruit
both the excitatory and inhibitory regions of a neuron’s receptive
field.

OS
Previous studies demonstrated that V1 neurons are less orienta-
tion-selective in their early responses (Ringach et al., 1997;
Shapley et al., 2003). Since we have found early latencies to
respond more strongly to dark stimuli, we wondered whether
the stronger dark-dominance might be related to weaker OS. To

infer OS, we next simulate the responses
of the neurons’ fitted models to static
sinewave grating stimuli with a series of
orientations, spatial frequencies, and
phases. For each latency, we select the
sinewave grating with the best phase
and spatial frequency for each orienta-
tion. We then use each model’s simulated
responses to these sinewave gratings to
measure an index of OS, using a con-
ventional vector summation method
(Wörgötter and Eysel, 1987; Swindale,
1998) (see Materials and Methods), as a
function of latency. This OS index for a
given neuron typically peaks at the
26.7–40ms latency (Fig. 7A). More spe-
cifically, across the population, the OS
is significantly higher at 26.7–40ms
than at both 13.3-26.7ms (paired t test
with Bonferroni correction; t = 5.68,
df = 70, p = 2.8� 10�7) and 0-13.3ms
(paired t test: t=4.76, df = 70, p= 1.01�
10�5). There is no significant difference
in OS between the 0-13.3 and 13.3-
26.7ms latencies (paired t test: t= 0.83,
df = 70, p= 0.41). These results suggest
that OS is most prominent at the 26.7-
40ms latency, where it is also the first la-
tency where light and dark responses are
relatively balanced.

We next investigate the relationship
between OS and LDB at each neuron’s
optimal latency, which can be seen in
Figure 7B. Neurons having high dark

dominance (LDB� 0) or high light dominance (LDB� 0)
tend to have low OS, while those that are more orientation-
selective are more often LDBd (LDB ; 0). This apparent
relationship is confirmed statistically: there is a significant
negative relationship (r = �0.46) between OS and absolute
values of LDB (linear regression test: t = �4.35, df = 69,
p = 4.7� 10�5). These results suggest that a response bias to-
ward dark stimuli might reduce a neuron’s OS (Fig. 7B),
especially at the 0-13.3 and 13.3-26.7 ms latencies (Fig. 7A).

Another possible explanation for weaker OS at early
latencies could be faster excitation than inhibition (Ringach
et al., 1997; Shapley et al., 2003). Figure 7C shows the relative
amount of excitation versus inhibition (EIB index; see Materials
and Methods) at each latency. Excitation is stronger than inhi-
bition at the 0-13.3ms (paired t test: t=10.83, df =70, p,
2.2 � 10�16) and 13.3-26.7ms latencies (paired t test: t=4.88,
df = 70, p=6.54� 10�6), while there is no significant difference
between excitation and inhibition at the 26.7–40ms latency
(paired t test: t = �1.93, df = 70, p=0.058). This bias toward exci-
tation weakens over time, with lower EIB values for the 13.3–26.7
than for the 0–13.3ms latency (paired t test: t = �4.42, df = 70,
p=5.59� 10�5). EIB values are also lower for the 26.7–40 than
for the 13.3-26.7ms latency (paired t test: t = �6.86, df =70,
p=2.28� 10�9). Also consistent with Ringach et al. (1997) and
Shapley et al. (2003), we find a negative correlation of r = �0.26
between OS and EIB (Fig. 7D; linear regression test: t = �2.26,
df = 68, p=0.027). Overall, these results suggest that both dark-
dominance and stronger excitation contribute to weaker OS at
early latencies. However, another interpretation might be that

Figure 6. Average simulated temporal impulse responses to different stimuli. The stimuli were tailored to each neuron’s
receptive field and are presented here in a schematic form. A, Red represents the simulated responses to light stimuli on the
light-driven regions of each neuron’s receptive field. Blue represents the simulated response to dark stimuli on the dark-driven
regions of each receptive field. The two responses are similar, suggesting responses to light and dark stimuli are relatively bal-
anced across latencies. B, Red represents the simulated responses to light stimuli falling on the light-driven regions, and also
on half of the dark-driven regions. Blue represents the simulated responses to dark stimuli on the dark-driven regions, plus on
half of the light-driven regions. As expected, the responses are weaker than in A, and this decrease is much less pronounced
for the dark stimulus (blue line) at the 13–27ms latency. These results suggest that dark-dominance predominantly occurs
when measured with stimuli that recruit both the excitatory and inhibitory regions of a neuron’s receptive field.
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weaker OFF inhibition is responsible for all of the above phenom-
ena at early latencies: stronger dark responses, weaker overall inhi-
bition, and weaker OS (see Discussion).

Discussion
Using a novel model-fitting approach to natural image
responses, we find V1 neurons respond more strongly to
dark than to light stimuli at early but not at later latencies,
because of slower functional inhibition to dark than light
stimuli. Dark-dominance occurs when functional inhibition
is differentially recruited, for example, when there is a light
stimulus on the dark-driven region of a neuron’s receptive
field (or vice-versa). As can be seen in Figure 6, our results
suggest little difference in the average neuron’s firing rate
when a light stimulus only covers the light-excited region of
the receptive field (Fig. 6A, red) compared with when a
dark stimulus only covers the dark-excited region of the
receptive field (Fig. 6A, blue). At the 13.3–26.7 ms latency,
stronger responses to dark stimuli are instead observed
when light (Fig. 6B, red) or dark (Fig. 6B, blue) stimuli

cover both the light and dark regions of a neuron’s receptive
field. These results could help explain why dark-dominance
increases at lower spatial frequencies (Jansen et al., 2019),
since a given light or dark band of a low-frequency grating
may cover more than one region of a receptive field.

Inference of excitation and inhibition frommodel-fitting
We use a machine learning algorithm to fit a model based on
separate ON and OFF retinogeniculate inputs to V1, each
composed of linear filters followed by half-wave rectification.
The weaker surrounds of LGN neurons (e.g., Croner and
Kaplan, 1995) are omitted to enable robust convergence on a
set of fitted parameter values. Using this approach, we can
distinguish between functional excitation and inhibition to
light and dark stimuli across spatial receptive field locations
and temporal lags to investigate how ON and OFF pathways
contribute to the dark-dominance effect.

It is important to note that the functional excitation and inhi-
bition we estimate do not necessarily reflect direct LGN inputs.
For example, V1 does not receive direct inhibitory inputs from
the LGN (Ferster and Lindström, 1983; Martin and Whitteridge,

Figure 7. Changes in OS and EIB across latencies. A, Average OS peaks at the 26.7–40ms latency, and is relatively low at the 0–13.3 and 13.3–26.7 ms latencies. B, Relationship between
OS (ordinate) and LDB (abscissa). Neurons with higher OS tend to be more balanced. C, EIB index as a function of latency. Excitation is stronger than inhibition at the 0–13.3 and 13.3–26.7 ms
latencies, while excitation and inhibition are relatively balanced at the 26.7–40ms latency. D, Relationship between OS (ordinate) and EIB (abscissa). Neurons with stronger excitation than inhi-
bition tend to be less orientation-selective. B, D, *p, 0.0167, significant paired t tests (with Bonferroni correction) between the first three latencies (0-40 ms).
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1984; Montero, 1986), but rather from local inhibitory interneur-
ons, which in turn may relay geniculate inputs or be driven by
other V1 neurons (Isaacson and Scanziani, 2011). Although V1
neurons directly receive geniculate excitation, there is also intra-
cortical excitation within V1 (Douglas et al., 1995). Moreover,
what we estimate does not necessarily reflect the synaptic excita-
tory or inhibitory inputs a neuron directly receives. For
example, a neuron could decrease its firing rate in response
to light because its excitatory inputs are inhibited by light.
Consequently, functional excitation and inhibition should
best be interpreted as a measure of how a neuron’s response
varies as a function of light and dark stimuli, and not simply
as synaptic weighting.

Distinguishing excitation to dark from inhibition to light
(and vice-versa) has been enabled by the use of rich stimuli, such
as natural images, combined with our simple model architecture.
Had we attempted to make the model more complex and biolog-
ically realistic, the results we obtain from the analysis might be
more dependent on the particular sort of model we use and thus
become problematic to interpret. Natural image stimuli lead to
more robust system identification than with synthetic stimuli
(Talebi and Baker, 2012), and perhaps more importantly, they
ensure that neurons simultaneously receive visual stimuli that
both increase and decrease their firing rate in different parts of
their receptive fields; this allows the machine learning algorithm
to distinguish between excitation from one pathway and inhibi-
tion from the other.

Dark-dominance because of weaker inhibition from dark
stimuli
Dark-dominance in V1 has previously been thought to originate
from relatively greater lateral geniculate excitation from the OFF
pathway (Jin et al., 2008). However, it has also been suggested
that intracortical inhibition is stronger to lights than darks
(Xing et al., 2014), which has recently been confirmed by
intracellular recordings (Taylor et al., 2018). At each neu-
ron’s optimal latency, our results show ON inhibition to be
much stronger than OFF inhibition, while we do not find a
significant difference between ON and OFF excitation.

These findings support the idea that dark-dominance is
strongest in layer 2/3 of primate V1 (Yeh et al., 2009). If dark-
dominance were principally because of stronger lateral geniculate
excitation from the OFF pathway, we would expect dark-domi-
nance to be at least as strong in layer 4 than in the other layers,
since this is where most LGN neurons synapse. While two-thirds
of the neurons in primate layer 4 show dark-dominance, this
effect is much stronger in layers 2/3 where almost every neuron
is dark-dominant (Yeh et al., 2009). This laminar difference
might be because of pyramidal neurons in primate layers 2/3
receiving extensive inhibition, as has been shown in the mouse
(Kätzel et al., 2011) and tree shew (Tucker and Fitzpatrick,
2006), with inhibition being stronger to light than dark stimuli
(Taylor et al., 2018).

Since this study used recordings from polytrodes that did not
extend across all the cortical layers, a laminar analysis was not
feasible. A useful future direction could be to replicate this
experiment with linear-array probes to obtain simultaneous re-
cording across all V1 layers, to investigate the laminar depend-
ence of dark-dominance.

Time dynamics of dark-dominance
A novel finding of this study is how the dark-dominance changes
as a function of latency. We observe the dark-dominance effect

at the 0–13.3 and 13.3–26.7 latencies, but instead find a slight
light-dominance at the 13.3–26.7 latency. We were able to find
this relationship between latency and dark-dominance because
we estimate light and dark responses at every latency for each
neuron. Other studies have focused on each neuron’s optimal la-
tency (e.g., Yeh et al., 2009), which here still clearly shows the
dark-dominance effect (Fig. 3), but neglect the effect of latency
on the strength of dark responses. Here we find dark-dominant
responses are specific to the earlier latencies.

This relationship between dark-dominance and latency
should not be too surprising, considering dark-dominant V1
neurons respond 3–6ms faster than light-dominant neurons
(Komban et al., 2014). These faster dark responses in V1 have
been attributed to faster OFF than ON LGN responses (Jin et al.,
2008, 2011). While we do find the 0–13.3ms latency to be dark-
dominant because of stronger OFF than ON excitation (Fig. 4B),
most neurons have poor responses at this latency. The dark-
dominance effect is most salient at the 13.3–26.7ms latency,
when response strength peaks and dark-dominance is because of
weaker functional inhibition to dark stimuli (Fig. 4C). These
results are consistent with findings from Taylor et al. (2018),
who found intracortical inhibition to be stronger for light than
for dark stimuli, and with Xing et al. (2014), who showed V1
neurons to have more transient responses to light than dark
stimuli. Therefore, we interpret the dark-dominance results at
each neuron’s optimal time lag from Yeh et al. (2009) and Jansen
et al. (2019) as mostly because of weaker functional inhibition
rather than stronger functional excitation to dark stimuli.

Relationship to OS
This study also brings a new perspective on the intracortical
mechanisms of OS, and helps explain why V1 neurons are less
orientation-selective in their early time lags (Ringach et al., 1997;
Shapley et al., 2003). Because of the absence of direct inhibition
from the LGN to V1 (Ferster and Lindström, 1983; Martin and
Whitteridge, 1984; Montero, 1986), the lagged onset of OS was
previously attributed to the delay imposed by the necessity of
intracortical inhibitory interneurons (Ringach et al., 1997;
Shapley et al., 2003). We do find inhibition strength to be posi-
tively correlated with OS (Fig. 7D) (see G. Li et al., 2008).
However, we also find neurons with higher OS to have more bal-
anced light/dark responses (Fig. 7B). Consistent with these
results, responses from 0–26.7ms, which are lower in OS (Fig.
7A), are also biased toward dark stimuli (Fig. 4A) and have
stronger excitation than inhibition (Fig. 7C). In contrast to the
first two latencies, the 26.7–40ms latency has high OS (Fig. 7A)
and relatively balanced responses between light and dark stimuli
(Fig. 4A,D). Because both dark-dominance and stronger inhibi-
tion at the 13.3–26.7 latency are because of slower inhibition to
dark stimuli (Fig. 4C), the reason why neurons are less orienta-
tion-selective at the 13.3–26.7 than at the 26.7–40ms latency
could be because of this slower inhibition to dark stimuli. These
results are consistent with theoretical models of cortical develop-
ment in V1 (Najafian et al., 2022), which have suggested that bal-
anced ON/OFF responses lead to higher OS.

In conclusion, we have used a novel machine learning approach
to bring new insights to the phenomenon of stronger dark
responses in visual cortex neurons. We find the dark-dominance
effect only occurs in the early latencies, and is because of slower in-
hibition to dark stimuli. We also show how weaker average inhibi-
tion to dark stimuli is related to reduced OS in the early latencies.
The nature of the slower inhibition to dark than to light stimuli,
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and whether these findings vary across laminae, could be fruitful
subjects of future investigation.
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