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Abstract
Background  Gastric cancer (GC) is a life-threatening malignant tumor with high incidence rate. Despite great progress, 
there are still many GC sufferers that cannot benefit from the existing anti-GC treatments. Therefore, it is still necessary to 
develop novel medicines against GC. Emetine, a natural small molecule isolated from Psychotria ipecacuanha, has been 
broadly used for medicinal purposes including cancer treatment. Here, we conducted a comprehensive study on the anti-GC 
effects of emetine and the related mechanisms of action.
Methods  The cell viability was evaluated by MTT and colony formation assay. Cellular proliferation and apoptosis were 
analyzed by edu incorporation assay and Annexin V-PI staining, respectively. Moreover, wound healing assay and transwell 
invasion assay were conducted to detect cell migration and invasion after treatment with emetine. To elucidate the molecular 
mechanism involved in the anti-GC effects of emetine, RNA sequencing and functional enrichment analysis were carried 
out on MGC803 cells. Then, the western blot analysis was performed to further verify the anti-GC mechanism of emetine. 
In vivo anti-tumor efficacy of emetine was evaluated in the MGC803 xenograft model.
Results  MTT and colony formation assay exhibited a strong potency of emetine against GC cell growth, with IC50 values 
of 0.0497 μM and 0.0244 μM on MGC803 and HGC-27 cells, respectively. Further pharmacodynamic studies revealed that 
emetine restrained the growth of GC cells mainly via proliferation inhibition and apoptosis induction. Meanwhile, emetine 
also had the ability to block GC cell migration and invasion. The results of RNA sequencing and western blot showed that 
emetine acted through regulating multiple signaling pathways, including not only MAPKs and Wnt/β-catenin signaling axes, 
but also PI3K/AKT and Hippo/YAP signaling cascades that were not found in other tumor types. Notably, the antitumor 
efficacy of emetine could also be observed in MGC803 xenograft models.
Conclusion  Our data demonstrate that emetine is a promising lead compound and even a potential drug candidate for GC 
treatment, deserving further structural optimization and development.
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Introduction

Gastric cancer (GC) remains one of the most important 
malignancies worldwide. There were over one million new 
GC cases and approximately 769,000 GC-caused deaths 
in 2020 globally, making GC the fifth incidence rate and 
fourth mortality cancer in the world [1]. There are great 
regional and gender differences in GC incidence, and ade-
nocarcinoma accounts for about 95% of all types of GC [1, 
2]. GC patients with early-stage disease could be treated 
and even cured by surgical resection [3, 4]. However, due 
to the inconspicuous symptoms of early GC, many suffer-
ers are diagnosed at advanced stages and systemic treat-
ment must be adopted for such patients. Chemotherapy, 
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radiotherapy, targeted therapy and immunotherapy are the 
main systemic therapies for patients with advanced GC 
[5–8]. Despite great progress in GC treatments recently, 
primary resistance and tumor relapse limited the efficacies 
of the therapeutic agents or approaches [9–12]. Therefore, 
it is still necessary to develop anti-GC medicines to benefit 
more patients with advanced GC.

Emetine (Fig. 1A) is an alkaloid that exists only in three 
plant families Rubiaceae, Icacinaceae, and Alangiaceae 
[13]. It is mainly isolated from Cephaelis ipecacuanha 
Rich (Rubiaceae) which is also known as Psychotria ipe-
cacuanha Stokes [13]. Since introduced into Europe, ipe-
cacuanha alkaloids have been extensively used for medici-
nal purposes. As one of the major active alkaloids from 
Psychotria ipecacuanha, emetine has a long history for 
inducing emesis against toxic substances, treating amoebi-
asis (a protozoan infection), and eliminating phlegm [14]. 
Recently, it is also reported to be potent against multiple 
viruses, including Zika virus, Ebola virus and SARS-
CoV-2 virus [15, 16].

Evidence for the anti-tumor effects of emetine was first 
reported early in 1900s [17]. Subsequently, emetine was 
evaluated in the treatment of a variety of malignant tumors, 
including leukemia, lung cancer, hepatocytes and breast 
cancer [18–20]. In 2011, Akinboye ES et al. summarized 
in their review that emetine exerted anti-cancer activity 
mainly by promoting apoptosis; regulation of pro-apoptotic 
factors, DNA interaction, and suppression of protein biosyn-
thesis were the major mechanisms of action involved [21]. 
In the last decade, studies investigating the role of emetine 
in intervening in various functions of tumor cells and the 
corresponding molecular mechanisms were widely con-
ducted. In the identification of agents that could interrupt 
bone marrow stromal cells (BMSCs)-mediated protection 
for chronic lymphocytic leukemia (CLL) cells, emetine was 
found to be active against the interaction between CLL cells 
and BMSCs. It acted via reducing HIF-1α expression and 
disrupting intracellular redox homeostasis [22]. Sun et al. 
revealed that the upstream components of Wnt/β-catenin 
signaling (including LRP6 and DVL) could be targeted by 

Fig. 1   Emetine effectively inhibited GC cell growth in  vitro. A 
Chemical structure of emetine. B Anti-viability activity of emetine 
was determined using MTT assay after treatment with different con-

centrations of emetine for 72  h. Data were presented as mean ± SD 
(n = 3). C Colony formation assay in MGC803 and HGC-27 cells 
treated with serial dilutions of emetine for 10 days
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emetine in breast cancer cells, which resulted in the blockade 
of this signaling pathway. This pharmacological action of 
emetine enabled it to be effective in inhibiting cell viability 
and stemness, as well as inducing apoptosis of breast can-
cer cells [23]. Additionally, emetine also showed inhibitory 
effects on the growth of non-small cell lung cancer (NSCLC) 
cells through targeting mitogen-activated protein kinases 
(MAPKs) and Wnt/β-catenin signaling [24, 25]. The combi-
nation of emetine with cisplatin exhibited synergistic effects 
against NSCLC cells and cisplatin-resistant cells [24].

In this study, we found GC cell lines were very sensi-
tive to emetine, with half inhibitory concentrations at the 
nanomolar level, and the molecular mechanisms involved 
blocking multiple signaling pathways including inhibition 
of Hippo/YAP and PI3K/AKT signaling cascades, which 
are not reported in other studies. In this paper, we reported 
the comprehensive anti-GC effects of emetine in vitro and 
in vivo, as well as the related mechanisms of action.

Materials and methods

Chemicals and reagents

Emetine hydrochloride and positive agent 5-Fu were 
acquired from a commercial source. The antibodies against 
β‐catenin, LEF1, Cyclin D1, Axin 2, GSK3 beta, YAP1 and 
Survivin were obtained from Abcam. The antibodies against 
p-p38 MAPK (T180/Y182), p-p44/42 MAPK (ERK1/2 
T202/T204), p‐JNK (T183/Y185), non-phospho (active) β‐
catenin (S37/T41), p38 MAPK, ERK1/2, JNK, AKT were 
purchased from Cell Signaling Technology. Antibodies for 
p‐AKT (Ser473), CTGF and the secondary antibody were 
obtained from Proteintech.

Cell culture and reagents

The human MGC803 and HGC-27 cells were acquired 
from the National Platform of Experimental Cell Resources 
for Sci-Tech (China) and were grown in the recommended 
medium supplemented with 10% fetal bovine serum (FBS) 
and 1% penicillin/streptomycin. All cell lines were cultured 
at 37 ̊°C in an incubator supplied with 5% (v/v) CO2 and 
experimented within 3 months of receipt or resuscitation.

Cell viability assay

MGC803 and HGC-27 cells were seeded in 96-well plates 
at 2000–3000 cells/well and cultured overnight in the incu-
bator. Then, the cells were treated with emetine or 5-Fu at 
different concentrations for 72 h. After treatment, MTT rea-
gent (5 mg/mL, 20 μL/well) was added to the plates, which 
were then incubated at 37 °C for another 3 h. The formazan 

crystals were dissolved overnight with 50 μL of acidified 
SDS (20%, w/v). The absorbance was detected at 570 nm 
with SpectraMax iD5-multifunctional microplate reader, 
and IC50 values were calculated using GraphPad Prism v9.0 
software.

Colony formation assay

MGC803 and HGC-27 cells were seeded in 12-well plates 
at a density of 5000 cells/well and cultured overnight. The 
next day, different concentrations of emetine were added 
to the plates. Cells were then incubated at 37 °C, and the 
medium containing emetine was replaced every 3 days. After 
treatment for 10 days, the cells were washed with PBS and 
then fixed with methanol for 20 min and stained with crystal 
violet solution (0.05%, w/v) for another 20 min. Pictures 
were taken with a camera after natural drying.

Edu incorporation assay

MGC803 and HGC-27 cells were cultured in 96-well plates. 
Serial dilutions of emetine were added to the plates when 
the cells reached about 80% confluence. After treatment for 
18 h, cell proliferation detection was conducted according 
to the instruction of BeyoClick™ EdU Cell Proliferation Kit 
with DAB. Pictures were taken using an OLYMPUS light 
microscope.

Flow cytometry for apoptosis analysis

MGC803 and HGC-27 cells were seeded in 6-well plates and 
treated with indicated concentrations of emetine the next day 
for 24 h. The cells were then harvested and washed twice 
with precooled PBS, followed by staining with Annexin 
V-fluorescein isothiocyanate (FITC) and propidium iodide 
(PI) according to the manufacturer’s instructions. The cell 
suspension was incubated for 15 min in the dark at room 
temperature. Cellular apoptosis was analyzed by flow cytom-
etry (NovoCyto 2070R) within 1 h.

Wound healing assay

MGC803 and HGC-27 cells were seeded in 12-well plates 
and cultured to a density of about 90%. Then a straight 
scratch was made on the monolayer cells using a sterilized 
pipette tip, and the floating cells were softly rinsed with 
PBS. Serial dilutions of emetine were added to the plate to 
treat GC cells for 12 h. The wound healing was observed and 
photographed with an OLYMPUS microscope.
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Transwell invasion assay

The Corning transwell chambers precoated with diluted 
matrigel were inserted into a 24-well plate and placed at 
37 °C to allow the matrigel to solidify. Then, GC cells resus-
pended with serum-free medium were seeded in the upper 
chamber and treated with emetine. The complete medium 
was added to the outer bottom of the chamber to induce cell 
invasion. After treatment for 12 h at 37 °C, the invaded cells 
were fixed with methanol for 20 min and stained with crystal 
violet (0.05%, w/v) for another 20 min. Pictures were taken 
under an OLYMPUS upright microscope.

RNA sequencing and differentially expressed genes 
analysis

MGC803 cells seeded in a 6-well plate were treated with 
0.1 μM emetine for 18 h and then harvested. Total RNA 
was extracted according to the protocol of mirVana miRNA 
Isolation Kit (Ambion). The libraries were constructed with 
TruSeq Stranded mRNA LTSample Prep Kit (Illumina, 
USA) and sequenced on Illumina HiSeq X Ten sequenc-
ing platform. The DEGs between emetine-treated and con-
trol groups were analyzed using the DESeq R package. We 
set the adjusted p value < 0.05 and fold change > 2 or fold 
change < 0.5 as the threshold of significant difference in gene 
expression. Hierarchical cluster analysis of DEGs was per-
formed to analyze the gene expression pattern in different 
groups. KEGG enrichment analysis of DEGs was carried out 
using R based on the hypergeometric distribution.

Western blotting

GC cells were treated with indicated concentrations of eme-
tine for 18 h and then lysed with RIPA buffer (Solarbio, 
China) containing phosphatase and protease inhibitors. The 
proteins extracted from cells were separated using 10% SDS-
PAGE, and then transferred to PVDF membranes (Millipore, 
USA). After blocking in 5% nonfat milk for 2 h, the PVDF 
membranes were incubated with the diluted specific primary 
antibodies overnight at 4 °C and then incubated with the 
secondary antibody for 1 h at 37 °C. Then the membranes 
were washed 3 times with TBST and developed using ECL 
Enhanced Kit (Biosharp, China). Specific proteins were 
detected by the ChemiScope 6000 Fluorescence Chemilu-
minescence Imaging System (CLiNX, China).

Xenograft studies

All animal studies were approved and guided by the Ani-
mal Care and Use Committee of Sichuan Academy of 
Medical Sciences and Sichuan Provincial People’s Hospital 
(Chengdu, Sichuan, China). Five-week-old BALB/c nude 

mice were adaptively fed for 1 week. MGC803 cells were 
collected and washed 3 times with serum-free medium, 
and then subcutaneously injected into the posterior axil-
lary region of each mouse at a concentration of 5 × 106 
cells/100 μL. When the xenograft tumors grew to about 100 
mm3, the mice were randomly divided into three groups 
(n = 5 each): vehicle treatment group, emetine 10  mg/
kg treatment group, and 5-FU 30 mg/kg treatment group. 
All agents were administered by intraperitoneal injection 
every other day. The tumor volumes and body weights of 
the mice were also monitored every 2 days. After treatment 
for 3 weeks, mice were killed, and tumors as well as main 
organs were obtained for further analysis. Tumor volume 
was calculated as (a2 × b)/2 (a = width, b = length). The 
tumor growth inhibition rate was calculated using this for-
mula: 100% × {1−[(tumor volumefinal−tumor volumeinitial) 
for the drug-treated group]/[(tumor volumefinal−tumor 
volumeinitial) for the vehicle-treated group]}.

H&E staining and immunohistochemistry staining

The tumors and major organs obtained from the animal 
experiment were fixed in 4% paraformaldehyde and then 
embedded in Paraffin. Sections of the main organs were 
subjected to H&E staining according to the standard pro-
tocols. Immunohistochemical analysis was performed on 
tumor tissue sections to detect the expression of Ki67 and 
TUNEL. Representative images were captured under a Leica 
microscope.

Statistical analysis

GraphPad Prism v9.0 was used for statistical analysis. All 
experiments were repeated at least three times and data 
were shown as mean ± standard deviation (SD). For statisti-
cal analysis, Student’s t test was used to assess comparison 
between two groups, and one-way ANOVA was performed 
to assess comparison among multiple groups. Statisti-
cal significance was presented as *p < 0.05, **p < 0.01, 
***p < 0.001.

Results

Emetine inhibits GC cell viability in vitro

Two representative GC cell lines MGC803 (low differenti-
ated adenocarcinoma) and HGC-27 (poorly differentiated) 
were selected for the anti-GC pharmacodynamic study of 
emetine. MTT assay was conducted to detect the anti-viabil-
ity activity of emetine on GC cells. As indicated in Fig. 1B, 
emetine effectively restrained the viability of MGC803 
and HGC-27 cell lines, with IC50 values of 0.0497 μM and 
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0.0244 μM, respectively. As a positive control, the anti-via-
bility activities of the chemotherapeutic agent 5-fluorouracil 
(5-FU) were 11.3763 μM and 6.4358 μM on MGC803 and 
HGC-27, respectively, displaying a weaker toxicity to GC 
cells compared with emetine. To further visually evaluate 
the effect of long-term emetine treatment on GC cells, a 
colony formation assay was carried out on MGC803 and 
HGC-27 cells. As shown in Fig. 1C, emetine remarkably 
reduced the colonies of both MGC803 and HGC-27 cells 
at concentrations greater than 0.03 μM. These data showed 
that emetine could potently inhibit GC cell growth in vitro.

Emetine suppresses the growth of GC cells 
via proliferation inhibition and apoptosis induction

To explore the specific pharmacodynamic mechanisms of 
action of emetine in suppressing the growth of GC cells, we 

measured the influence of emetine on cellular proliferation, 
apoptosis, and cell cycle. In the Edu cell proliferation assay 
with DAB, emetine decreased the number of Edu-labeled 
brown cells (proliferative cells) in a dose-dependent man-
ner, which was consistent with its anti-viability activity 
(Fig. 2A). In flow cytometry assays, the number of Annexin 
V-positive cells (apoptotic cells) were significantly elevated 
in emetine-treated groups, with apoptosis rate of 7.63% 
(0.1 μM), 10.43% (0.3 μM) and 19.63% (1 μM) in MGC803 
cells, and 16.27% (0.1 μM), 19.31% (0.3 μM) and 23.17% 
(1 μM) in HGC-27 cells (Fig. 2B). Notably, we did not find 
apparent effect of emetine on cell cycle arrest in flow cytom-
etry analysis (Supplementary Fig. 1). This is different from 
the results observed in emetine-treated breast cancer cells 
[26]. Taken together, these data indicated that emetine could 
inhibit GC cell growth through suppression of cellular pro-
liferation and induction of apoptosis.

Fig. 2   Anti-proliferative and pro-apoptotic effects of emetine in GC 
cells. A Edu incorporation assay in MGC803 and HGC-27 cells after 
emetine treatment for 18 h (100 ×). The number of proliferative GC 
cells (Edu-labeled brown cells) in different treatment groups was 
counted for statistics, and data were shown as mean ± SD (n = 3). 

B Annexin V-FITC/PI apoptosis assay in MGC803 and HGC-27 
cells treated with emetine for 24  h. Apoptotic rates (the percent-
age of Annexin V-positive cells) in different treatment groups were 
quantified for statistics, and data were shown as mean ± SD (n = 3). 
**p < 0.01 vs vehicle, ***p < 0.001 vs vehicle
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Emetine inhibits the migration and invasion of GC 
cells in vitro

To assess the influence of emetine on cellular migration and 
invasion (the critical biological processes of cancer metas-
tasis), wound healing assay and transwell invasion assay 
were carried out. As presented in Fig. 3A, emetine potently 
repressed the migration of GC cells in a concentration-
dependent manner. Meanwhile, cellular invasion could also 
be dramatically suppressed after treatment with emetine at 
concentrations higher than 0.01 μM (Fig. 3B). As compared 
with vehicle group, there were significant differences in the 
number of both migrated cells and invaded cells in emetine-
treated groups.

Identification of differentially expressed genes 
(DEGs) and functional enrichment analysis 
in emetine‑treated GC cells

To further elucidate the molecular mechanism involved in 
the anti-GC effects of emetine, RNA sequencing was car-
ried out in MGC803 cells treated with emetine for 18 h. As 
shown in Fig. 4A, there is a prominent difference between 
emetine-treated and untreated (control) GC cells according 
to the results of principal component analysis (PCA). After 
analyzing the sequencing data, we finally got 4958 DEGs. 
The volcano plots described the distribution of DEGs, 
including 2505 elevated genes and 2453 down-regulated 
genes (Fig. 4B). The heatmap revealed that DEGs could 
precisely cluster samples into emetine and control groups 
(Fig. 4C).

Functional enrichment analysis was further conducted 
to better understand the interactions among DEGs. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway clas-
sification analysis showed that DEGs were mainly distrib-
uted in the related pathways of signal transduction, cancers 
and viral infectious disease (Fig. 4D). In the top 20 KEGG 
enrichment pathways, nearly half of them were related to 
cancers. Of these, the pathways associated with tumor cell 
signal transduction mainly included Hippo, PI3K/AKT and 
MAPKs signaling cascades (Fig. 4E). In addition, signifi-
cant enrichment of Wnt signaling was also observed in the 

KEGG enrichment analysis for gastric cancer (Supplemen-
tary Fig. 2).

Emetine suppresses GC cell growth via regulation 
of multiple signaling pathways

Due to the enrichment of DEGs in Hippo, PI3K/AKT, 
MAPKs, and Wnt signals that play important roles in tumor 
biological regulation, western blotting was conducted to fur-
ther verify the effects of emetine on such signaling pathways. 
As exhibited in Fig. 5A, emetine effectively down-regulated 
the amounts of pivotal proteins in the Wnt/β-catenin sign-
aling cascade (including GSK-3β, active-β-catenin, Axin2, 
LEF1, and the downstream target protein Cyclin D1), par-
ticularly in HGC-27 cells, in which Wnt pathway was signif-
icantly inhibited by emetine even at a low dose of 0.03 μM. 
For the Hippo signaling pathway, emetine suppressed the 
expression of its downstream effector YAP1 in a concen-
tration-dependent manner (Fig. 5B). YAP1 is considered as 
an oncoprotein in various malignancies and functions as a 
transcriptional co-activator that regulates the transcription 
of multiple target genes related to cancer cell survival, such 
as CTGF, Cyr61, Survival etc. The inhibitory effects were 
also observed in the expression of CTGF and Survivin in 
emetine-treated cells (Fig. 5B). Additionally, emetine also 
had inhibitory activity against MAPKs and PI3K/AKT cas-
cades, the classical signaling pathways involved in cancer 
(Fig. 5C). It potently reduced the phosphorylated ERK and 
AKT in both cell lines, and had no impact on the total ERK 
and AKT. Notably, the phosphorylation of another MAPK 
family members p38 and JNK were elevated after treatment 
with emetine. This phenomenon also occurred in other 
cells, and activation of p38 and JNK was also beneficial for 
inducing cellular apoptosis [27, 28]. Taken together, these 
data indicated that emetine exerted anti-GC effects through 
regulation of multiple signaling cascades, including Wnt/β-
catenin, Hippo/YAP, MAPKs, and PI3K/AKT signaling 
pathways.

Antitumor effects of emetine in MGC803 xenograft 
model

The in vivo anti-GC efficacy of emetine was evaluated in 
the MGC803 xenograft model. Tumor growth was effica-
ciously blocked by emetine at 10 mg/kg administered every 
other day, with a tumor growth inhibition rate of 57.52% 
(Fig. 6A). As a positive control, 5-FU treatment (30 mg/kg, 
qod) also obviously inhibited the growth of MGC803 xeno-
graft tumors, with a tumor growth inhibition rate of 43.59%, 
which is more potent compared with its anti-viability activ-
ity in vitro. The enhanced anti-tumor activity of 5-FU in vivo 
may be attributed to its mechanism of action; it will be more 
cytotoxic and inhibits DNA synthesis after metabolism and 

Fig. 3   Emetine restrained the migration and invasion of GC cells. A 
Representative images (100 ×) of scratch migration assay in emetine-
treated MGC803 and HGC-27 cells. Images were captured at 0 and 
12 h after treatments. The statistical chart displayed the amounts of 
migrated cells in different treatment groups, and data were shown 
as mean ± SD (n = 3). B Representative images (100 ×) of transwell 
invasion assay in emetine-treated MGC803 and HGC-27 cells. 
Images were captured after 12 h treatments. The statistical chart pre-
sented the amounts of invaded cells in different treatment groups, 
and data were shown as mean ± SD (n = 3). **p < 0.01 vs vehicle, 
***p < 0.001 vs vehicle

◂
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transformation in vivo [29]. The anti-tumor effect of emetine 
can also be seen intuitively from the tumor weight statistics 
(Fig. 6B) and tumor picture (Fig. 6C). At the end of the treat-
ment, the average tumor weight in the emetine group was 
only half that of the vehicle group. Emetine (10 mg/kg) and 
5-FU (30 mg/kg) alike did not result in significant weight 
loss in mice during the treatment (Fig. 6D). Meanwhile, no 
pathological phenotypes were observed in the HE staining of 
major organs including heart, liver, spleen, lung, and kidney, 
demonstrating the low toxicities of the treatment agents at 
such dosages (Fig. 6E). Immunohistochemical assays were 
conducted to test the effects of emetine on cellular pro-
liferation and apoptosis in vivo. As shown in Fig. 6F, the 
Ki67-positive proliferative cells were remarkably reduced 

in both emetine and 5-FU treatment groups, as compared 
with vehicle group. Moreover, treatment with both emetine 
and 5-FU significantly increased the number of TUNEL-
positive apoptotic cells in xenografts (Fig. 6G). To sum up, 
emetine could still exhibit anti-GC effects by inhibiting cell 
proliferation and inducing apoptosis in vivo.

Discussion

The anti-tumor effects of emetine have been assessed in 
several solid tumors, including ovarian cancer, lung cancer, 
bladder cancer, prostate cancer, osteosarcoma, and breast 
cancer, but not GC [30, 31]. In the present study, we found 

Fig. 4   Differentially expressed genes (DEGs) and functional enrich-
ment analysis. MGC803 cells were treated with emetine for 18  h 
and then used for RNA sequencing analysis. A Principal component 
analysis (PCA) was performed based on gene expression. B Volcano 
plot revealed the significantly elevated (red dots) and down-regulated 

(green dots) genes in emetine-treated cells. C Heatmap of DEGs 
between emetine and control groups. Two groups were well clustered. 
D KEGG pathway classification of DEGs. E KEGG enrichment anal-
ysis (Top 20) of DEGs
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emetine was highly potent against GC cells, with IC50 values 
at nanomolar range in cell viability assay. It could block 
GC cell growth both in vitro and in vivo by inhibiting cel-
lular proliferation and inducing apoptosis. Meanwhile, it also 
had the ability to repress the migration and invasion of GC 
cells, even at concentrations lower than 0.1 μM, indicating 
a potential anti-metastasis effect of emetine.

The molecular mechanisms concerning the antitumor 
activity of emetine are complicated and differ in diverse 
types of tumors. In the present study, the sequencing analy-
sis and immunoblot revealed that emetine exhibited anti-GC 
effects via regulation of multiple signaling pathways, includ-
ing MAPKs, Wnt/β‑catenin, Hippo and PI3K/AKT signal-
ing axes. Of these, the regulation of emetine on MAPKs 
and Wnt/β‑catenin signaling was also observed in previous 
studies conducted in other types of tumors [23–25, 31], but 
the results were slightly different. First, emetine inhibited 
the phosphorylation of ERK and JNK, and activated p38 in 
human U2OS osteosarcoma cells [31]; whereas in emetine-
treated GC cells, only ERK activity was restrained, and 
phosphorylated p38 and JNK levels increased. As the three 
major MAPKs, down-regulated ERK activity as well as 
enhanced activity of p38 and JNK can be coupled with pro-
liferation inhibition and apoptosis induction in GC cells [27, 

28, 32]. Therefore, the regulation of emetine on MAPKs is 
one of the important mechanisms by which it exerts anti-GC 
activity (Fig. 7). Second, emetine efficaciously depressed the 
signal transduction of Wnt/β‑catenin pathway in GC cells. 
However, it could not produce a synergistic effect by tar-
geting such signaling when combined with 5-Fu (data not 
shown), which is inconsistent with that observed in NSCLC 
cells [24]. The synergistic effect may depend on tumor types 
and drugs used for combination. Due to the promoting effect 
of Wnt/β‑catenin signaling in GC cell proliferation, migra-
tion, and invasion [33, 34], it is implied that targeting this 
pathway also contributes to the comprehensive anti-GC 
effects of emetine (Fig. 7).

In addition to MAPKs and Wnt/β‑catenin signaling, eme-
tine also displayed inhibitory activity against PI3K/AKT and 
Hippo/YAP signaling cascades in GC cells, which has not 
been reported in other cancers treated by emetine. Activated 
PI3K/AKT axis can trigger a series of intracellular processes 
in GC cells, which drive oncogenicity of GC cells, mainly 
manifested by inhibition of apoptosis and promotion of pro-
liferation, invasion, metastasis as well as drug resistance 
[35, 36]. Inhibiting PI3K/AKT signaling has always been 
regarded as an effective strategy for the treatment of GC. 
Several small molecule antagonists targeting PI3K/AKT axis 

Fig. 5   Emetine acted via blockade of multiple signaling cascades. 
MGC803 and HGC-27 cells were treated with different concentra-
tions of emetine for 18  h, and then the proteins were extracted for 
western blot. A Western blot assay was used to verify the effects of 

emetine against Wnt/β-catenin signaling pathway. B Inhibitory effects 
of emetine on the downstream effector and target proteins of Hippo 
signaling pathway. C Regulation of emetine on the pivotal proteins of 
MAPKs and PI3K/AKT signaling axes
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Fig. 6   In vivo anti-GC effects of 
emetine in MGC803 xenograft 
model. A Tumor inhibition 
curves of emetine (10 mg/
kg, qod) and 5-Fu (30 mg/
kg, qod) in MGC803 xeno-
graft model. All agents were 
administered intraperitoneally. 
Data were presented as mean 
tumor volume ± SD (n = 5). 
B Statistical chart of tumor 
weight in each treatment group. 
Data were presented as mean 
tumor weight ± SD (n = 5). C 
Tumor image obtained after 
the pharmacodynamic studies. 
D Body weights of the mice 
in different treatment groups. 
Data were presented as mean 
body weight ± SD (n = 5). E 
Representative images (100 ×) 
of H&E staining of the main 
organs collected from each 
treatment group. F Representa-
tive images (200 ×) of Ki67 
immunohistochemical staining 
(brown color) conducted on 
the tumor sections of each 
treatment group. G Representa-
tive images (200 ×) of TUNEL 
immunofluorescence staining 
(green color) conducted on the 
tumor sections of each treat-
ment group. *p < 0.05 vs vehicle
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have advanced to clinical trials for GC therapy, such as ipata-
sertib, capivasertib, and afuresertib [35, 37, 38]. Moreover, 
Hippo pathway is also implicated in tumorigenesis and pro-
gression. As a downstream effector of Hippo pathway, YAP 
is considered to be an oncoprotein and its nuclear expression 
is closely associated with the poor prognosis of GC patients 
[39, 40]. Accumulating evidence indicated that YAP inhibi-
tion could create many pharmacological effects against GC, 
such as repression of cellular proliferation and self-renewal 
of GC stem cells, and conquering drug resistance [41–43]. 
Therefore, targeting PI3K/AKT and Hippo/YAP axes are 
also pivotal molecular mechanisms of emetine in suppress-
ing GC cell growth, migration, and invasion (Fig. 7).

Emetine is thus a multi‑target anticancer agent. Compared 
with target-specific inhibitors, multi‑target inhibitors have 
advantages in antitumor efficacy and conquering resist-
ance due to the biologically heterogeneous and complex-
ity of malignant tumors. However, side effect is a major 
challenge for such inhibitors and emetine is no exception. 
Although no obvious toxicity of emetine was observed in 
the animal experiment of this study, it cannot be confirmed 
that the side effects do not exist because of the limitations 
of the experimental design. Actually, emetine was assessed 
for tumor therapy in the clinic in the early 1970s [44, 45]. 
These clinical trials did not drive emetine to be approved 
since they revealed some side effects, such as cardiac toxic-
ity, and limited efficacy in the evaluated patients. Therefore, 
the researchers concluded that combination therapy was a 
potential approach for the application of emetine in cancer 
treatment, which may improve the curative effect, tolerance, 
and safety when using relatively low doses of emetine [44]. 

Alternatively, optimizing the chemical structure and identi-
fying the applicable tumor types and population are promis-
ing strategies to further explore the medicinal value of this 
natural small molecule in antitumor therapy.

Conclusion

In conclusion, the major findings of this study were that 
emetine effectively suppressed the viability, proliferation, 
migration, and invasion of GC cells, as well as induced cel-
lular apoptosis, resulting in anti-GC effects both in vitro and 
in vivo. It acted through the blockade of multiple signaling 
cascades, including not only MAPK/ERK and Wnt/β-catenin 
signaling networks that were also found in other tumor 
types, but also the newly revealed PI3K/AKT and Hippo/
YAP signaling pathways. The findings of this study together 
with the antitumor effects of emetine disclosed in the previ-
ous studies support it as a lead compound and even a drug 
candidate for GC therapy, which deserves further structural 
optimization and development.
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