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Abstract

In many real-world problems of real-time monitoring high-dimensional streaming data, one wants 

to detect an undesired event or change quickly once it occurs, but under the sampling control 

constraint in the sense that one might be able to only observe or use selected components data for 

decision-making per time step in the resource-constrained environments. In this paper, we propose 

to incorporate multi-armed bandit approaches into sequential change-point detection to develop 

an efficient bandit change-point detection algorithm based on the limiting Bayesian approach to 

incorporate a prior knowledge of potential changes. Our proposed algorithm, termed Thompson-

Sampling-Shiryaev-Roberts-Pollak (TSSRP), consists of two policies per time step: the adaptive 

sampling policy applies the Thompson Sampling algorithm to balance between exploration for 

acquiring long-term knowledge and exploitation for immediate reward gain, and the statistical 

decision policy fuses the local Shiryaev-Roberts-Pollak statistics to determine whether to raise 

a global alarm by sum shrinkage techniques. Extensive numerical simulations and case studies 

demonstrate the statistical and computational efficiency of our proposed TSSRP algorithm.

Keywords
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1 Introduction

Real-time monitoring high-dimensional streaming data under sampling control constraints 

appears in many important applications such as intrusion detection in computer networks 

(Bass, 1999), event detection in social networks (Viswanath et al., 2014), epidemic disease 

outbreak monitoring (Yang et al., 2015), anomaly detection in manufacture processes (Ding 

et al., 2006). In these applications, one often can only observe or use selected components of 

the data for decision-making due to the capacity limitation in data acquisition, transmission, 

wanrongzhang@fas.harvard.edu . 
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processing, or storage. For instance, the sensor devices might have limited battery powers; 

thus, one might want to use a subset of sensors per time step over a long period instead 

of using full sensors simultaneously over a short period. Likewise, while sensing is usually 

cheap, the communication bandwidth is often limited from remote sensors to the fusion 

center that makes a global decision. The fusion center might prioritize certain local sensors 

to send local information for decision making. Also, in many applications such as quality 

engineering or biosurveillance, one faces the design issue and needs to decide which 

variables or patients to be measured to detect the defect or disease outbreak more efficiently.

In this work, we investigate how to efficiently real-time monitor high-dimensional streaming 

data under resource constraints. We assume that the full data from a system is a K-

dimensional random vector Xt = (X1,t, …, Xk,t) at each time step, but we can only observe 

q out of K components per time step. Here the component Xk,t, with k = 1,…, K and t = 

1,2,…, can be either the raw data from local sensors or the derived features such as wavelet 

coefficients, principal components. Initially, the system is in control in the sense that Xk,t 

follows a probability density function fk. At some unknown time v, an event may occur 

and change the distributions of a sparse subset of the components. Our goal is to design 

an efficient algorithm to adaptively decide which variable to sample at each time step, and 

when to raise a global alarm to indicate the possible occurrence of the change.

Without resource constraints, monitoring fully observed streaming data has raised much 

attention in the statistical quality control (SPC) and sequential change-point detection 

literature, see Zou and Qiu (2009); Li (2019, 2020); Li et al. (2020); Zou et al. (2015). 

The existing work generally falls into two frameworks: the cumulative sum (CUSUM) type 

method, which is based on the generalized likelihood ratio (GLR) framework; and the 

Shiryaev-Roberts type method, which is based on the Bayesian framework. For classical 

research on one-dimensional data streams, see

Shiryaev (1963); Lorden (1971); Pollak (1985); Lai (1995, 1998); Basseville and Nikiforov 

(1993); Poor and Hadjiliadis (2008); Tartakovsky et al. (2014). For recent research on 

high-dimensional data streams with fully observed data, see Zhang and Siegmund (2012); 

Xie and Siegmund (2013); Wang and Mei (2015); Cho and Fryzlewicz (2015); Chan (2017); 

Chu and Chen (2019). Additionally, another framework is to monitor each data stream 

separately by computing respective local detection statistics and then fuse local statistics 

into a global-level monitoring statistic, see Mei (2010, 2011); Liu et al. (2019); Li (2020). 

This framework can balance the tradeoff between computational efficiency and statistical 

efficiency.

Real-time monitoring high-dimensional partially observed data streams under the sampling 

control has been studied in the literature of statistical process control in applied statistics. 

A prominent line of work is based on the CUSUM procedure for observed local streams 

with an artificially introduced compensation parameter for the unobserved local stream, see 

Liu et al. (2015); Xian et al. (2018); Wang et al. (2018); Xian et al. (2021). While the 

compensation parameter can increase the chance of exploring unobserved local streams, 

tuning the parameter is challenging. Another line of work leverages extra information such 

as the correlation structure to approximate unobserved local streams and then to plug in the 
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standard monitoring methods of fully observed data, see Zhang and Hoi (2019); Nabhan et 

al. (2021).

We propose a bandit change-point detection algorithm for efficient real-time monitoring 

of high-dimensional streaming data under the sampling control. Our contributions are 

twofold: (i) We incorporate prior knowledge of potential changes to update unobserved 

local streams by treating the likelihood ratios of unobserved data as one. (ii) We incorporate 

the Thompson Sampling algorithm in the multi-armed bandit (MAB) problem into the 

Shiryaev-Roberts-Pollak procedure in the sequential change-point detection literature. While 

Bayesian methods often involve extensive computations, our method, termed as Thompson-

Sampling-Shiryaev-Roberts-Pollak (TSSRP) algorithm, is computationally efficient when 

monitoring high-dimensional data when the data streams are mutually independent and 

we have some prior knowledge on the post-change distribution. The limiting Bayesian 

framework allows our algorithm to have a natural interpretation and avoid the tuning of 

artificial tuning parameters such as the compensation parameters for unobserved data. It 

can balance the tradeoff between exploiting the observed local components that maximize 

the immediate detection performance and exploring not-been-monitored local components 

that might provide new information to improve future detection performance. In particular, 

our proposed TSSRP algorithm performs similar to random sampling in the in-control 

state when no changes occurring, but becomes a greedy sampling on those affected local 

components in the out-of-control state when a change occurs. Numerical simulations and 

case studies show the efficiency of our proposed TSSRP algorithm.

The classical MAB problem focuses on developing algorithms to balance the tradeoff 

between exploration for acquiring long-term knowledge and exploitation for immediate 

reward gain, see Lai and Robbins (1985); Robbins (1985); Scott (2010); Gittins et al. 

(2011); Bubeck and Cesa-Bianchi (2012); Agrawal and Goyal (2012); Cao et al. (2019); 

Zhao (2019) and references therein. Our work and the classical MAB problem both deal 

with the dynamical/adaptive sampling strategy that samples those local streams with the 

largest values of some suitable local statistics. Nevertherless, our work is different from 

the existing research on the MAB with non-stationary or piecewise constant rewarding 

functions, see Cao et al. (2019); Ghatak (2020), because our primary objective is to 

minimize the average detection delay subject to controlling false alarm rate, whereas the 

bandit problems minimize cumulative regret. In summary, we apply the bandit ideas to 

develop a new sequential change-point detection algorithm for monitoring partially observed 

data.

The remainder of this paper is organized as follows. In Section 2, we provide the 

mathematical formulation of our problem and also review the background of the multi-

armed bandit problem and the sequential change-point detection problem. Next, we 

introduce our proposed method and develop its theoretical properties in Section 3. Then we 

evaluate the performance of our proposed algorithm through simulation studies and real data 

case studies in Section 4 and 5, respectively. Concluding remarks are included in Section 6. 

We provide the detailed proofs of all theorems in the Supplementary Materials, which also 

include additional numerical experiments.
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2 Problem Formulation and Backgrounds

In this section, we present the mathematical formulation of real-time monitoring high-

dimensional streaming data in resource-constrained environments in Subsection 2.1. Then 

we provide a brief review of the Thompson Sampling algorithm for the multi-armed bandit 

problem in Subsection 2.2, followed by the review of the Bayesian approach for sequential 

change-point detection in Subsection 2.3.

2.1 Problem Formulation

Suppose we are monitoring K independent data streams in a system. Let Xk,t denote the 

observation of the k-th data stream at time t for t = 1,2,… and k = 1,2,…, K. Here each data 

stream Xk,t can be the raw data itself or its derived features such as wavelet coefficients, 

principal components. Samples from data streams are assumed mutually independent. 

Each data stream generates identically distributed data from a specific distribution fθk. At 

some unknown change time, v ∈{1,2,...}, an undesirable event occurs and changes the 

distributions of some data streams abruptly in the sense of changing the values of the 

parameters θk. Conditional on the change time v > 1, for those affected data streams, the 

observation Xk,t,…, Xk,v−1 are independent and identically distributed (iid) with density fθk, 0

while Xk,t, Xk,v+1,… are iid with another density fθk, 1, where θk,1 > θk,0, and the case where 

θk,1 < θk,0 can be handled similarly. For those unaffected data streams, all observations Xk,1, 

Xk,2,… are iid with density fθk, 0. Here we do not know which subset of the local streams 

changed, and we assume that the affected local streams are sparse. In practice, practitioners 

usually specify fθk, 1 as the interested-smallest magnitude of a change to be detected.

Under sampling control, we can only observe or use selected partial data for decision 

making. We assume that only q < K data streams can be selected to collect data at each time 

t. Mathematically, let δk,1 be the indicator function that δk,1 = 1 if and only if the k-th data 

stream Xk,1 is selected at time step t. The resource constraint implies that ∑k = 1
K δk, t = q at 

each time step t =1,2,…. Imagine that we put q sensors onto K locations, then the δk,1 can 

be thought as whether to put a sensor to the k-th data stream at time t. Let St denote the 

locations where δk,1 = 1, and we refer to it as the sensor layouts. Under our notation, the 

observed data can be represented as {Xk, t
* } = Xk, tδk, t , k = 1, 2, …, K.

For the change-point detection problem under sampling control, a statistical scheme 

consists of two policies per time step. One is the adaptive sampling policy δ that 

decides the observable location δk,1, and the other is the statistical decision policy, often 

defined as a stopping time T, that raises an alarm based on the observations available 

{Xk, t
* } = Xk, tδk, t 1 ≤ k ≤ K, 1 ≤ t ≤ T. Our objective is to design a scalable and efficient statistical 

scheme of (δ, T) that minimizes the average detection delay

D(T ) = sup
1 ≤ v < ∞

Ev(T − v ∣ T ≥ v), (1)

subject to the Average Run length (ARL) to False Alarm constraint
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E(T ∣ v = ∞) ≥ γ, (2)

where γ is a pre-specified constant.

It is worth noting that our problem connects to the multi-armed bandit problem in the 

sampling policy; however, they are fundamentally different due to different performance 

criteria.

2.2 Thompson Sampling for Multi-Armed Bandit

In this subsection, we briefly review the multi-armed bandit (MAB) problem, first 

introduced by Robbins (1952), and one of the most popular algorithms, Thompson Sampling 

(Thompson, 1933). Under a classical setting of MAB, a gambler can play one of K slot 

machines (or arms) for K ≥ 2, but she or he has no prior knowledge about which machine 

has a potentially higher reward. The only way to learn rewards is to play the machines. 

The problem of interest is how the gambler decides which arm to play at each time step, to 

maximize the total rewards through N plays.

One of the most popular MAB algorithms is Thompson Sampling, which is a natural 

Bayesian algorithm. It has been widely used for personalized advertisements and product 

recommendation (Agrawal and Goyal, 2013), as its efficiency has been well demonstrated in 

many real-world applications, especially in the high-dimensional setting. See Scott (2010), 

Chapelle and Li (2011). In particular, Agrawal and Goyal (2012) showed that the Thompson 

Sampling algorithm asymptotically minimizes the expected regret.

The idea of Thompson Sampling is to sample arms based on the largest values of the random 

realizations of the posterior distributions instead of the posterior means. Specifically, at each 

time step, after updating the posterior distribution of the mean θk for each arm, we randomly 

sample a realization from the posterior distributions, denoted by θ k from the k-th arm. Then 

we select the arm with the largest random realization, i.e., argmax1 ≤ k ≤ Kθ k. This allows us 

to have better chances to sample those arms with fewer observations, thereby balancing the 

tradeoff between the exploration for acquiring long-term knowledge and the exploitation for 

immediate reward gain.

In the multi-armed bandit problem, when we are allowed to observe q arms each time, 

it is natural to extend the original Thompson Sampling algorithm to select the q-largest 

realizations. Such an approach often holds nice properties under reasonable conditions, see 

Anantharam et al. (1987); Pandelis and Teneketzis (1999); Kaufmann et al. (2016). Thus we 

will adopt the Thompson sampling with q-largest realizations in our context.

2.3 Shiryaev-Roberts Procedure

We now review the Bayesian approach for the simplest sequential change-point detection 

problem pioneered by Shiryaev (1963), as well as the corresponding limiting Bayesian 

approach. See Roberts (1966); Pollak (1985, 1987). Consider the simplest univariate case 

when we observe a sequence of independent observations X1, X2,…, whose distribution 

might change from fθ0 to fθ1 at some unknown time ν. Since the goal is to detect the change 
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time ν quickly, the statistical procedure is defined as a stopping time T with respect to the 

observed data {Xt}t≥1, where {T = t} means that we raise the alarm at time t to indicate that 

a change has occurred up to time t.

Under the Bayesian formulation, it is assumed that the change-point ν has a geometric prior 

distribution:

P (v = t) = p(1 − p)t − 1 for t = 1, 2, 3, ⋯ (3)

where 0 < p < 1 is a pre-specified constant. Moreover, conditional on the (unknown) 

change-point v, the pre-change observations, X1, …, Xv−1,are iid with density fθ0 and are 

independent of the post-change observations, Xv, Xv+1, … which are iid with density fθ1. 

Assume that the cost of per post-change observation is c > 0. Then the Bayesian formulation 

of sequential change-point detection is to find a statistical procedure T that minimizes the 

Bayes risk P (T < v) + cE(T − v)+.

Shiryaev (1963) first solved this problem, and the Bayesian solution is to raise an alarm at 

the first time when the posterior probability of change having occurred, i.e., P(v ≤ t | X1, …, 

Xt), is greater than a certain threshold. Under the limiting Bayes framework, one considers 

the test statistic of the form P(v ≤ t | X1, …, Xt) / P(1−P(v ≤ t | X1, …, Xt)) as p goes to zero. 

This yields the so-called Shiryaev-Roberts procedure (Roberts (1966)) that raises an alarm at 

time

TA = inf t ∣ Rt ≥ A , (4)

where Rt is the Shiryaev-Roberts statistic defined as

Rt = ∑
j = 1

t
∏
i = j

t fθ1 Xi

fθ0 Xi
, (5)

and the threshold A is a pre-specified constant. Pollak (1985, 1987) showed that this 

procedure enjoys nice asymptotic minimax properties, i.e., minimize the worst average 

detection delay in (1) up to within an o(1) term subject to the ARL to false alarm constraint 

in (2), as γ goes to ∞.

3 Bandit Change-Point Detection

In this section, we present our proposed TSSRP algorithm for the real-time monitoring 

high-dimensional streaming data under sampling control. Our proposed algorithm can be 

thought of as the limit of Bayesian procedures that adapt the Thompson sampling policy of 

sampling local streams based on the random realizations of the posterior distributions.

We assume the data contains K independent data streams. The local change time νk of the 

k-th local data stream has a prior Geometric(p) distribution. The k-th local stream has an 

initial prior probability Πk,0 of change and Πk,0’s are mutually independent, and identically 

distributed from a common prior G = Gp. We can extend the idea to other non-homogeneous 
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scenarios, e.g., in quality control of K-stages manufacturing process where some stages are 

more prone to defect. Specifically, the distribution of the local change time νk is as follows:

P vk = 0 = Πk, 0, P vk = t = 1 − Πk, 0 p(1 − p)t − 1 for t = 1, 2, 3, ⋯, (6)

where Πk,0 can be either a constant, e.g., Πk,0 ≡ 0, or a random variable that has a 

distribution Gp.

After taking observations at the time step t, we update the posterior distribution of vk, 

denoted by Πk,t = P(vk ≤ t | Observed Data). This computation is straightforward since the 

raw data Xk,t is distributed as fθk, 0I vk < t + fθk, 1I vk ≥ t , although it is observable if and 

only if the sampling indicator δk,t = 1. Next, we combine the local posterior distributions 

Πk,t’s together to decide if we would raise a global alarm. If yes, then we stop taking any 

observations. If no, then we will proceed to the next time step — as in the Thompson 

sampling algorithm, we decide to observe those local streams in time step t + 1 with the 

largest values of the posterior values Πk,t’s if the initial values Πk,0 are constant, or their 

random realizations if the initial values Πk,0 are random variables.

Implementing the Bayesian algorithm in a naive way is computationally infeasible. Our 

algorithm overcomes this challenge by leveraging the property that the limit of the 

Bayesian algorithms as p goes to 0 has a mathematical equivalent representation that is 

computationally scalable. Therefore, our algorithm is both statistically and computationally 

efficient.

We present our proposed TSSRP methodology in Subsection 3.1 and discuss the choice of 

parameters and prior distribution in Subsection 3.2. We develop the theoretical properties 

of our proposed TSSRP algorithm including its connection to the Bayesian procedures in 

Subsection 3.3.

3.1 Methodology Development

In the context of real-time monitoring high-dimensional streaming data under sampling 

control, a statistical procedure consists of two policies per time step: (1) the adaptive 

sampling policy to decide the observation location; (2) the statistical decision policy to raise 

a global alarm based on the observed data. A common challenge in both components or 

policies is how to construct local statistics for each local stream that can guide us to make 

efficient decisions for both adaptive sampling and statistical decision policies. Our proposed 

method’s key novelty is to recursively update two-dimensional local statistics over time that 

allow conveniently implement the Thompson Sampling.

3.1.1 Local Statistics—We propose to recursively compute two-dimensional local 

statistics, denoted by Rk,t and Lk,t, at the k-th local data steam at each time step t = 

1,2,…,where Rk,t mimics the classical Shiryaev-Robert statistics

Rk, t = Rk, t − 1 + 1 fθk, 1 Xk, t

fθk, 0 Xk, t
, if δk, t = 1;

Rk, t − 1 + 1, if δk, t = 0.
(7)
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with initial value Rk,t=0 = 0, and the statistics Lk,t mimics the likelihood ratio function and

Lk, t = Lk, t − 1
fθk, 1 Xk, t

fθk, 0 Xk, t
, if δk, t = 1;

Lk, t − 1, if δk, t = 0.
(8)

with initial value Lk,t=0 = 1.

At a high-level, the local statistic Rk,t mainly provides the evidence how likely a local 

change has occurred, whereas the other local statistic Lk,t is related to the number of samples 

taken at a given local data stream. If δk,t = 1, i.e., if one takes observations from that specific 

local data streams, then the update on Rk,t and Lk,t follows the classical Shiryaev-Robert or 

likelihood statistics, respectively. On the other hand, if δk,t = 0, i.e., if we do not take local 

observations, then we Rk,t and Lk,t by adding or multiplying the constant 1, respectively. The 

intuition is to treat 
fθk, 1 Xk, t

fθk, 0 Xk, t
 as 1 if Xk,t is missing. Note that the definition or computation 

of (Rk,t, Lk,t) depends on which local sensors will be observed, i.e., the values of sampling 

indicator variables δk,t’s, which will be defined in the next subsection.

3.1.2 Adaptive Sampling Policy—Our proposed adaptive sampling policy is as 

follows.

At each time step t = 0,1,2…, we compute the two-dimensional local statistics, (Rk,t, Lk,t), 

based on the observed data streams, and we also sample a randomized value Rk, t from a 

pre-specified prior distribution G. The Rk, t can be treated as the “initial values.”

When G is a point mass density of 0, Rk, t ≡ 0 for all k = 1, …, K. Otherwise, Rk, t can be 

different across sensors, which can be viewed as the prior knowledge of how likely a local 

data stream is likely affected by the change. Next, we compute a real-valued local statistic 

that determines the sampling policies:

Rk, t
* = Rk, t + Lk, tRk, t . (9)

Finally, at time step t + 1, we follow the Thompson Sampling to adaptively choose the local 

data streams with the largest q values of R(k), t
* , in (9). Let l(k),t+1 denote the corresponding 

index of the kth largest values, then the new sensor layout will be St+1 = {l(1),t+1,…, l(q),t+1)} 

at time t + 1.

Let us provide a high-level rationale for our proposed adaptive sampling policy. First, note 

that Rk, t
*  in (9) can be thought of as a randomized version Rk,t and allows us to balance better 

the tradeoff between those local streams having larger observed Rk,t and those local streams 

having fewer observations. Second, our sampling policy is computationally efficient, since it 

is based on the recursive updates of the two-dimensional local statistics, (Rk,t, Lk,t). Finally, 

our sampling policy is the Thompson sampling method under the limiting Bayes framework, 

since the larger the Rk, t
*  value, the larger the realization of the posterior distribution of a local 

change.
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3.1.3 Global Decision—Our proposed global decision policy is to raise a global alarm 

based on the largest r values of the local statistics Rk,t in (7), and is defined as the stopping 

time

T = inf{t ≥ 1: ∑
k = 1

r
R(k), t ≥ A}, (10)

where r is a pre-specified parameter, and A is a pre-specified constant so as to satisfy the 

false alarm constraint in (2). Here R(1),t ≥ … ≥ R(k),t ≥ …≥ R(K),t denote the decreasing order 

of the local statistics Rk,t in (7).

We should acknowledge that there are many other ways to raise a global decision. For 

instance, for local statistics in the summation, we can use the randomized version R(k), t
*  or 

the logarithm version log R(k),t. Moreover, there are different ways to use the shrinkage 

transformation to combine local statistics to raise a global alarm; see Mei (2011) and Liu 

et al. (2019). Based on our extensive simulation experiences, the stopping time in (10) is 

stable and outperforms other stopping rules in most cases. The discussion on comparison 

with other stopping rules is deferred to the supplementary material Section 3.

3.1.4 Summary of Proposed Algorithm—We summarize the proposed Thompson-

Sampling-Shiryaev-Roberts-Pollak (TSSRP) in Algorithm 1.

Algorithm 1

Thompson-Sampling-Shiryaev-Roberts-Pollak (TSSRP) algorithm

Parameters: the number r, the number of observed sensors q, a prior distribution G and the stopping threshold A.

Input:K data streams

Initialize: Set Rk,t = 0, Lk,t = 1, and sample Rk, t from G for all k = 1, 2, …, K. Randomly sample q data streams as the 
initial layout S1

Algorithm: In each round t ← 1, 2, … do the following:

(1) based on the current sensor layout St, recursively update two-dimensional local statistics (Rk,t, Lk,t) in (7) and (8)

(2) For each data stream k, sample the “initial” value Rk, t from G, and calculate the local sampling statistics Rk, t
*

 in (9)

(3) Order the local sampling statistics Rk, t
* k = 1, 2, …, K, from the largest to the smallest, and let l(k),t denote the 

variable index of the order statistics R(k), t
*

(4) Update the sensor layout = {l(1),t, …, l(q),t}

(5) Check if the criterion of the stopping time in (10) is reached. If yes, stop and raise a global alarm. If not, proceed to 
the next iteration.

Our proposed TSSRP method is not only statistical efficient as a limiting Bayesian 

procedure that is able to incorporate prior knowledge of potential changes, but also 

computationally scalable. First, it requires only 3K registers for retaining relevant 

information of Rk, t, Lk, t, Rk, t  about the K local processes: the first two are on the observed 

data regarding the local change, and the last is on the prior knowledge of the local change. 

Second, since the two-dimensional local statistics (Rk,t, Lk,t) can be computed recursively 

and the “initial” values Rk, t can be sampled directly from the prior distribution G at each time 
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step, the computational cost of our TSSRP method is linear to the number K of local data 

streams. Thus our method can be easily implemented for real-time monitoring.

3.2 Choice of Parameters

The TSSRP algorithm involves several parameters. Below we will discuss the choice of 

these parameters.

Choice of the prior distribution: In practice, we could choose the prior distribution 

according to our prior knowledge. For example, in the manufacturing process, we may 

know that certain production lines could have a higher chance of being out of control. 

Alternatively, if no prior knowledge is present, we could choose some non-informative 

priors such as the uniform distribution or the point mass 0 distribution, i.e., P Rk, t = 0 = 1. 

In the latter case, it reduces to a greedy sampling algorithm without randomization. In our 

numerical simulation studies in Section 4, we compare the performance of TSSRP with 

four different priors. The results suggest that the TSSRP significantly reduces the average 

detection delay regardless of the choice of the priors and that a valid prior can further 

improve the performance.

We note that Pollak (1985) also investigates the choice of the prior distribution G, but under 

a different context in which the randomized Shiryaev-Roberts statistics leads to an equalizer 

stopping time T in that sense that Ev(T − v ∣ T ≥ v) is constant as a function of candidate 

change-point v. Unfortunately, it is generally challenging to find an explicit solution for such 

prior distribution. Nevertheless, our purpose of the randomization is different from Pollak 

(1985): ours is for balancing the exploration and exploitation, while theirs is for almost 

minimax property.

Choice of r: Intuitively, the tuning parameter r in the stopping time (10) decides how many 

local sensors should be involved in the final decision making. Thus an ideal choice should 

be a plausible approximation of the actual number of changed data streams. If r is much 

smaller than the actual number of changed data streams, our final decision will not use all 

information that the data might provide. If r is much larger, our final decision will involve 

unnecessary noisy local statistics and lead to poor performance. Meanwhile, from the in-

control performance viewpoint, as discussed in Wu (2019), the Shiryaev-Roberts statistic is 

heavy-tailed under the in-control hypothesis, and thus there is no practice difference between 

a smaller value of r (e.g., r = 3) to a larger value of r (e.g., r = q). Thus, when the total 

number of changed data streams is unknown, one might simply choose r = q.

Choice of A: The parameter A is the stopping threshold that controls the average run 

length to false alarm of our method, which is analogous to controlling the type I error. In 

practice, the threshold A is usually determined by Monte-Carlo simulation. One often uses 

the bisection method to find the smallest A so that the proposed method satisfies the false 

alarm constraint in (2).
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3.3 Theoretical Properties of TSSRP

In this subsection, we provide some theoretical properties of the TSSRP algorithm: Theorem 

1 establishes the close relationship between our algorithm and the Bayesian procedures. 

Theorem 2 investigates the in-control average run length properties, whereas Theorem 3 and 

Theorem 4 provide a deep understanding of the sensor layouts.

First, the following theorem provides theoretical bases for the proposed adaptive sampling in 

our TSSRP algorithm.

Theorem 1.

Assume that the change time νk for the k-th data stream has a prior Geometric(p) 
distribution in (3), where the initial prior probability Πk,0 has a prior Gp distribution. 
Suppose that Gp / p → G in distribution, then Rk, t

*  in (9) with its random component Rk, t G
has the same distribution as

lim
p 0

Πk, t

p 1 − Πk, t
, (11)

where Πk, t = P(vk ≤ t ∣ Xk, 1
* , ⋯, Xk, t

* ) is the posterior estimation how likely a local change 

occurs, and Xk, t
* = Xk, tδk, t denotes the observed data.

The detailed proof of Theorem 1 is presented in the Appendix A.1 in online supplementary 

material. By this theorem, sampling based on the largest values of local statistics Rk, t
*  in (9) 

is mathematically equivalent to sampling based on the largest values of random realizations 

of the posterior distribution Πk,t as p → 0, since u
p(1 − u)  is a monotonic increasing function of 

u. Hence, the adaptive sampling policy in the TSSRP algorithm is the limit of the Thompson 

Sampling policy.

Second, we investigate the ARL to false alarm of the proposed TSSRP algorithm in the 

following theorem.

Theorem 2

(Average Run Length to False Alarm). E∞(T ) ≥ A/K. Moreover, E∞(T ) = O(A), where O(A) / 

A is bounded as A → ∞.

Theorem 2 provides us guidance to select conservative upper and lower bounds of A. 

Specifically, K·ARL can serve as the upper bound in the bisection search to speed up the 

threshold choosing procedure. The detailed proof of Theorem 2 is given in Appendix A.2 

in online supplementary material. Unfortunately, it remains an open problem to derive the 

bounds on the average detection delays.

Next, we investigate the properties for sensor layouts. Theorem 3 shows that the sensor 

layout will go through all the data streams eventually when the system is in control.
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Theorem 3.

Let St be the sensor layout at time t. Then under H0 : v = ∞, there exsits a t′ > t such that 

P(k ∈ St′) > 0, for each t > 0 and each k, 1 ≤ k ≤ K.

Theorem 3 implies that each variable has a chance to be explored, regardless of the sensor 

deployments in previous steps when no changes occur. In other words, the algorithm 

performs similar to random sampling in the in-control state.

Finally, Theorem 4 below implies that the sensor layout of the TSSRP algorithm will 

eventually converge to the changed data streams when the system is out of control.

Theorem 4.

Let St be the sensor layout at time t. Then under H1 : v = ∞, we have 
P k ∈ St, ∀t > t0 ∣ k ∈ St0 > 0 for all changed data stream k, and all t0 >v.

We have shown that the sensor layout will not stay on any unchanged data streams forever 

in Theorem 3. The sensors will eventually be redistributed to the affected data streams at 

a certain time. Theorem 4 states that once a sensor is deployed to the out-of-control data 

stream, then there is a nonzero probability that the sensor will stay on this data stream 

forever. This property ensures that the sensors will eventually keep monitoring the affected 

data streams. The proofs of Theorem 3 and Theorem 4 are given in Appendix A.3 in online 

supplementary material.

In summary, our TSSRP algorithm admits a nice property that it does more exploration 

when the system is in control, while more exploitation when the system is out of control. 

Intuitively, such nice property comes from the structure of the local statistics. When we 

observe a new data, the recursive formula for local statistics involves the likelihood ratio 

fθk, 1 xk, t /fθk, 0 xk, t . Under the in-control state, the expectation of the increment of all local 

statistics at time t is 1, i.e., E[Rk, t
* ] = t, ∀k, t. Thus our adaptive sampling is similar to 

random sampling under the in-control state. Under the out-of-control state, the likelihood 

ratio under the post-change distribution will be more likely to be greater than one. Therefore, 

the affected data streams’ local statistics will increase faster than those of unaffected data 

streams, which enables the sensor layout to converge to those affected local components.

4 Simulation Experiments

In this section, we report the numerical performance of the proposed TSSRP algorithm and 

compare it with the existing algorithms. The general setting for our simulations is as follows. 

We consider monitoring K = 100 independent data streams. We assume that q = 10 out of K 
= 100 data streams can be monitored at each time step. The nominal value for the ARL to a 

false alarm is fixed as E∞T = γ = 1000. We follow the classic approach (Xie and Siegmund, 

2013; Xie et al., 2013; Mei, 2010) and report the average detection delay when the change 

occurs at time ν = 1. It is the most challenging setting because it is more difficult to detect 

when the change occurred at the very beginning.
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We report our simulation results in two subsections, depending on different true generative 

models of the data. Subsection 4.1 focuses on the statistical efficiency of the TSSRP 

algorithm when our prior knowledge on the candidate affected local streams and the 

Gaussian distribution of the data are valid, and Subsection 4.2 considers the robustness of 

our algorithm under the mis-specified models. In our simulation studies below, all numerical 

results are based on 1000 Monte Carlo replications.

For our proposed TSSRP algorithm, we consider four choices for the prior distribution G on 

the initial statistics Rk, t = 0, which is the prior knowledge of how likely a local stream might be 

affected by the change:

i. G0 : Uniform U[0.5,1] for the first ten local streams, and Uniform U[0, 0.5] for 

the remaining local streams;

ii. G1 : Uniform U[0.5,1] for the first five local streams, and Uniform U[0, 0.5] for 

the remaining local streams;

iii. G2: Uniform U[0,1] for all local streams;

iv. G3: the point mass 0 for all local streams, i.e., P0 = P Rk, t = 0 = 1.

We referred them to as TSSRP(G0), TSSRP(G1), TSSRP(G2) and TSSRP(G3), respectively.

We compare our TSSRP algorithms with the baseline Top-r Based Adaptive Sampling 

(TRAS) algorithm proposed by Liu et al. (2015). The TRAS algorithm first constructs a 

local CUSUM statistic for each observed variable. For the unobserved variables, the local 

statistics are updated by adding a compensation parameter Δ. That is, under our notation, 

each local stream computes a local statistic

W k, t = max(W k, t − 1 + logfθk, 1 Xk, t

fθk, 0 Xk, t
, 0), if δk, t = 1;

wk, t − 1 + Δ, if δk, t = 0.
(12)

where Δ is the so-called compensation parameter for unobserved data streams. Next, the 

TRAS algorithm combines the top-r local statistics to determine whether to raise an alarm, 

i.e., the stopping time of the TRAS algorithm is given by

τ(a) = inf t ≥ 1: ∑
k = 1

r
W (k), t ≥ a , (13)

where W(k),t’s are the order statistics of W(k),t’s in (12). Moreover, the TRAS algorithm 

adaptively deploys the sensors to the data streams with q largest local statistics W(k),t’s in 

(12) at the next time step t + 1. As reported in Liu et al. (2015), the average detection delay 

performance of the TRAS algorithm is sensitive to the choice of the compensation parameter 

Δ, and it remains an open problem to decide how to choose it suitably. In our simulations 

below, we present results obtained by three different choices of Δ = 0.03,0.05,0.1.
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4.1 Statistical Efficiency

In this subsection, we focus on the statistical efficiency of the TSSRP algorithms when the 

prior knowledge is valid. We consider the scenario where we monitor K = 100 independent 

Gaussian data streams whose pre-change distributions are N(0, 1), and the first r local 

streams change to the post-change distribution N(1.5,1). We compare our TSSRP algorithm 

against other procedures with the four choices of initial distribution G and the correct 

post-change mean μ1 = 1.5. We vary the number of changed data streams ranging from 1 

to 10. As mentioned in Section 3.2, the parameter r in the global stopping time defined 

in (10) ideally should be the number of changed data steams. The latter, however, is 

usually unknown in practice. We report the simulation results of different global monitoring 

schemes under a large r = 10 in Table 1. Additional simulation results under a small r = 3 

is deferred to Table 5 in supplementary material. The corresponding standard errors are also 

included in these tables to characterize the average detection delay distribution.

We make two key observations from Table 1. First, all four variants of our proposed 

TSSRP algorithms are statistically efficient in the sense of having significantly smaller 

average detection delays compared to other procedures. When incorporating the correct 

prior information, i.e., with the prior G0 and G1 on the initial statistics Rk, t = 0, the 

TSSRP algorithm achieves the smallest average detection delays, since it appropriately 

incorporates the Bayesian information on the spatial locations of changes. Even if we 

use non-informative priors such as G2 or G3, the TSSRP algorithm still provides good 

performance as compared to the baseline TRAS algorithm, suggesting that the choice of 

priors in the TSSRP algorithm can be flexible. Second, fewer tuning efforts are required for 

the TSSRP algorithm, because we set the likelihood of the unobserved or missing data to 

be 1 under the Bayesian framework. Moreover, the performance of the TSSRP algorithm is 

relatively stable to the tuning parameter r, e.g., the number of local sensors involved in the 

final decision making, see table 5 in the supplementary material. This is consistent with our 

intuition that the Shiryaev-Roberts statistics is the exponent of the CUSUM statistics, and 

the sum of top-r Shiryaev-Roberts statistics mainly captures the maximum local statistics 

across all the data streams, since ∑i = 1
r exp ai exp a1  for large values of ordered sequences 

a1 > a2 > … > ar. Therefore, our TSSRP algorithm is not only statistically efficient but also 

easy to tune and use in practice.

4.2 Robustness

In this subsection, we focus on the robustness of the TSSRP algorithm when the underlying 

generative model is mis-specified. We focus on two cases: (i) TSSRP algorithm is 

constructed for the post-change mean lower bound μ1 = 1.5 when the true post-change mean 

of Gaussian distribution is μ1,true = 2 and (ii) TSSRP algorithm is constructed for Gaussian 

distributions when the data follows t distributions with degree of freedom df = 5.

The results for the first case are shown in Table 2, which summarizes the average average 

detection delay and the corresponding standard errors for TSSRP under four choices of 

priors and TRAS under Δ = 0.03,0.05,0.1. As in the case in subsection 4.1, we see that 

TSSRP outperforms TRAS and that performance of TSSRP generally improves as the prior 

information gets correct. Moreover, compared with the results in Table 1, we see that a 
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larger magnitude of change is easier to detect, suggesting that we can use the smallest 

magnitude of change to specify the post-change parameters if they are unknown.

For the latter case, we determine the stopping threshold A by 1000 Monte Carlo simulations 

under the t distribution with mean 0, and we choose r = 10 to construct the global statistics. 

Figure 1 plots the average detection delays against the number of changed data streams for 

TSSRP and TRAS, with varying priors (G1 and G2) and tuning parameters (Δ = 0.03,0.05). 

We observe a similar pattern as before, again reinforcing the usefulness of incorporating 

Bayesian information. Our results suggest that our TSSRP algorithm can be robust when 

the distributional assumption is somewhat violated, and our TSSRP still outperforms the 

TRAS algorithm. This experiment further bolsters the stability of our algorithm, indicating 

that the hypothesized distributions can be slightly different from the underlying distributions 

of the data, and our algorithm will still raise an alarm quickly. In theory, the robustness of 

the TSSRP algorithm depends heavily on the robustness of the likelihood 
f1
f0

. As a result, 

when the underlying models are significantly mis-specified, our TSSRP algorithm can be 

less efficient as compared to other robust methods such as the RSADA algorithm in Xian et 

al. (2021) that is based on ranks. In such a case, our algorithm can be extended to a more 

robust variant by considering the likelihood of sequential ranks as in Gordon and Pollak 

(1995), which is beyond the scope of this article, and we will leave it as future work.

5 Case Study

In this section, we evaluate the performance of the TSSRP algorithm on a real case example: 

the hot forming process. We also give an additional solar flare detection example on the 

high-dimensional case in Appendix B in supplementary material.

We consider the Hot Forming Process example in Li and Jin (2010). We want to detect 

anomalies in this physical system. Figure 2 (Left) illustrates a two-dimensional (2-D) 

physical illustration of the hot forming process. Li and Jin (2010) identified the causal 

relationship of the five variables in this process: the final dimension of workpiece X1, the 

tension in workpiece X2, the material flow stress X3, temperature X4 and Blank Holding 

Force X5, which can be represented as a Bayesian network. All the variables are proven to 

follow standard normal distribution when the system is under normal operating conditions. 

Li and Jin (2010) gave the parameterization model of the Bayesian network, and Figure 2 

Right illustrates the dependence across the five variables:

Xi = ∑
Xj ∈ p Xi

wj, iXj + ϵi (14)

where p(X) = {Y : Y → X ∈ Edge Set} denotes the parents of X; and w(Xj, Xi) is the 

weight of the edge Xj → Xi, which refers to the causal influence from Xj to Xi; ϵi N 0, σi
2  is 

the independent Gaussian noise.

In this study, we assume that the Bayesian network is unknown to us. We will only use the 

network structure to generate data under different scenarios. We generate the changed root 

variables by setting the true mean change as two, and the remaining variables according 
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to the Bayesian network. In the algorithm, we set the post-change mean as the interested 

smallest shift magnitude μk,1 = 1.5 according to the characteristics of the actual system. 

We set the in-control ARL to be 100 and r = 2 as in Liu et al. (2015). In each replicate, 

the changed data streams and the initial sensor layouts are selected randomly. We evaluate 

the average detection delay D(T) as the average average detection delay under any change 

possibilities.

Table 3 summarizes the average detection delay comparisons between the TSSRP algorithm 

and the TRAS algorithm in the single change and two changes cases. It implies that the 

performance of our TSSRP algorithm is better than that of the baseline TRAS algorithm in 

this hot forming procedure.

We are interested in studying how the sensor layouts update over the time under the 

in-control and out-of-control states empirically to validate Theorem 3 and Theorem 4. We 

summarize the average percentages of each data stream being observed under the two states 

in Table 4, based on 1000 replicates. Specifically, it is defined as

percentage of being observed = #time steps being observed
#total time steps until raising an alarm .

Here, the out-of-control state is when X1 and X2 change at the very beginning. The 

simulations further confirm that our TSSRP algorithm works similar to random sampling 

when the system is in control, and greedily selects the changed data streams when the 

system is out-of-control.

6 Conclusions and Discussion

Processing high-velocity streams of high-dimensional data in resource-constrained 

environments is a big challenge. In this paper, we propose a bandit change-point detection 

approach to adaptively sample useful local components and determine a global stopping 

time for real-time monitoring of high-dimensional streaming data. Our proposed algorithm, 

termed Thompson-Sampling Shiryaev-Roberts-Pollak (TSSRP) algorithm, can balance 

between exploiting those observed local components that maximize the immediate detection 

performance and exploring not-been-monitored local components that might accumulate 

new information to improve future detection performance. Our numerical simulations and 

case studies show that the TSSRP algorithm can significantly reduce the average detection 

delay compared to the existing methods.

This work can be extended in several directions. First, based on the numerical simulation 

studies, we conjecture that our proposed TSSRP algorithm is first-order asymptotically 

optimal under a general setting. Still, it remains an open problem to prove it, as it is highly 

non-trivial to analyze the expected average detection delay of the proposed method. Second, 

instead of a fixed number of active sensors, one could consider changing the number of 

active sensors per time step, and increase the number of sensors if a change likely occurs. 

Third, it is also interesting to find an optimal value of the number of active sensors that can 

adaptively adjust to make the best use of the resource.
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Finally, we remark that our TSSRP algorithm is a computationally scalable representation 

of the limit of Bayesian procedures under the simplest model assumption where the data 

is i.i.d. and the post-change parameters are known. It can be extended to handle the case 

when the post-change parameters are unknown if we introduce a prior distribution on the 

post-change parameters. Furthermore, for more complicated models where the data streams 

have a spatial or temporal correlation structure, the proposed Bayesian and Thompson 

sampling framework can still be applicable if we can update the posterior distribution 

efficiently, say, via Markov chain Monte Carlo (MCMC). Therefore, our work opens a new 

research direction on statistical process control and sequential change-point detection when 

monitoring high-dimensional data streams under the sampling control.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
average detection delay versus the number of changed data streams for robustness 

experiments when the distribution is mis-specified. The data streams follows the t 
distribution.
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Fig. 2. 
Left: 2-D illustration of the hot forming process. Right: Bayesian network for the hot 

forming process
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Table 1

average detection delay under various number of changed data streams for the evaluation of the statistical 

efficiency experiments when the data is independent multivariate Gaussian distributed. All the experiments are 

conducted under r = 10.

The number of changes 1 3 5 8 10

TSSRP(G0) 12.15(0.23) 7.67(0.07) 6.66(0.05) 6.05(0.04) 5.81(0.03)

TSSRP(G1) 12.06(0.23) 7.59(0.07) 6.75(0.05) 6.57(0.04) 6.49(0.04)

TSSRP(G2) 18.84(0.33) 11.93(0.14) 10.05(0.11) 8.67(0.08) 8.22(0.07)

TSSRP(G3) 19.43(0.35) 11.79(0.14) 9.84(0.11) 8.74(0.08) 8.04(0.07)

TRAS(Δ = 0.03) 36.12(0.60) 21.10(0.25) 17.01(0.20) 13.43(0.15) 11.87(0.13)

TRAS(Δ = 0.05) 36.79(0.54) 22.84(0.24) 18.52(0.18) 15.17(0.13) 13.52(0.12)

TRAS(Δ = 0.1) 63.43(0.44) 37.87(0.25) 30.47(0.18) 25.39(0.13) 22.89(0.12)

RSADA 71.87(1.63) 36.61(0.69) 26.94(0.51) 21.20(0.38) 18.54(0.34)
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Table 2

average detection delay under various number of changed data streams for robustness experiments when the 

post-change parameter is mis-specified. The data streams follows Gaussian distribution.

The number of changes 1 3 5 8 10

TSSRP(G0) 7.37(0.10) 5.43(0.03) 4.98(0.03) 4.54(0.02) 4.43(0.02)

TSSRP(G1) 7.33(0.10) 5.33(0.03) 4.87(0.03) 4.77(0.03) 4.72(0.02)

TSSRP(G2) 8.64(0.17) 5.84(0.07) 5.64(0.06) 5.49(0.05) 5.32(0.04)

TSSRP(G3) 12.77(0.18) 8.28(0.09) 7.18(0.07) 6.16(0.05) 5.87(0.05)

TRAS(Δ = 0.03) 27.03(0.42) 16.42(0.21) 12.69(0.15) 10.03(0.11) 8.87(0.10)

TRAS(Δ = 0.05) 27.79(0.34) 17.42(0.18) 14.38(0.15) 11.10(0.11) 9.91(0.09)

TRAS(Δ = 0.1) 44.93(0.28) 27.73(0.17) 22.40(0.13) 18.78(0.11) 17.11(0.10)
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Table 3

Comparisons of the average detection delay between the TSSRP algorithm and the TRAS algorithm under 

different numbers of changed root variables in the hot forming process example

The number of changes 1 2

TSSRP(U[0,1]) 5.84(0.10) 4.54(0.06)

TSSRP(P0) 6.48(0.09) 5.29(0.07)

TRAS(Δ = 0.01) 8.41(0.13) 7.39(0.11)

TRAS(Δ = 0.1) 8.17(0.13) 7.09(0.12)

TRAS(Δ = 0.5) 9.94(0.15) 8.78(0.14)
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Table 4

Sensor layouts distribution under the in-control and out-of-control states in the hot forming process example

Variable Percentage (In-control) Percentage (Out-of-control)

X1 0.408 0.718

X2 0.396 0.606

X3 0.400 0.226

X4 0.400 0.224

X5 0.396 0.226
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