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Abstract

Motivation: Language models pre-trained on biomedical corpora, such as BioBERT, have recently shown promising
results on downstream biomedical tasks. Many existing pre-trained models, on the other hand, are resource-
intensive and computationally heavy owing to factors such as embedding size, hidden dimension and number
of layers. The natural language processing community has developed numerous strategies to compress these mod-
els utilizing techniques such as pruning, quantization and knowledge distillation, resulting in models that are
considerably faster, smaller and subsequently easier to use in practice. By the same token, in this article, we
introduce six lightweight models, namely, BioDistilBERT, BioTinyBERT, BioMobileBERT, DistilBioBERT,
TinyBioBERT and CompactBioBERT which are obtained either by knowledge distillation from a biomedical teacher
or continual learning on the Pubmed dataset. We evaluate all of our models on three biomedical tasks and compare
them with BioBERT-v1.1 to create the best efficient lightweight models that perform on par with their larger
counterparts.

Results: We trained six different models in total, with the largest model having 65 million in parameters and the
smallest having 15 million; a far lower range of parameters compared with BioBERT’s 110M. Based on our experi-
ments on three different biomedical tasks, we found that models distilled from a biomedical teacher and models
that have been additionally pre-trained on the PubMed dataset can retain up to 98.8% and 98.6% of the performance
of the BioBERT-v1.1, respectively. Overall, our best model below 30 M parameters is BioMobileBERT, while our best
models over 30 M parameters are DistilBioBERT and CompactBioBERT, which can keep up to 98.2% and 98.8% of
the performance of the BioBERT-v1.1, respectively.

Availability and implementation: Codes are available at: https://github.com/nlpie-research/Compact-Biomedical-
Transformers. Trained models can be accessed at: https://huggingface.co/nlpie.

Contact: omid.rohanian@eng.ox.ac.uk or m.nouriborji@nlpie.com

1 Introduction

There has been an ever-increasing abundance of medical texts in re-
cent years, both in private and public domains, which provide
researchers with the opportunity to automatically process and ex-
tract useful information to help develop better diagnostic and ana-
lytic tools (Locke et al., 2021). Medical corpora can come in various
forms, each with its own specific context. These include electronic
health records, medical texts on social media, online knowledge
bases and scientific literature (Kalyan and Sangeetha, 2020).

With the advent of the transformers architecture (Vaswani et al.,
2017), the natural language processing (NLP) community has

moved towards utilizing pre-trained models that could be used as a
strong baseline for different tasks and also serve as a backbone to
other sophisticated models. The standard procedure is to use a gen-
eral model pre-trained on a very large amount of unstructured text
and then fine-tune the model and adapt it to the specific characteris-
tics of each task. Most state-of-the-art NLP models are based on this
procedure.

A related alternative to the standard pre-train and fine-tune ap-
proach is domain-adaptive pretraining, which has been shown to be
effective on different textual domains. In this paradigm, instead of
fine-tuning the pre-trained model on the task-specific labelled data,
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pre-training continues on the unlabelled training set. This allows a
smaller pre-training corpus, but one that is assumed to be more rele-
vant to the final task (Gururangan et al., 2020). This method is also
known as continual learning, which refers to the idea of incremen-
tally training models on new streams of data while retaining prior
knowledge (Parisi et al., 2019).

NLP researchers working with biomedical data have naturally
started to incorporate these techniques into their models. Apart
from vanilla fine-tuning on medical texts, specialized BERT-based
models have also been developed that are specifically trained on
medical and clinical corpora. ClinicalBERT (Huang et al., 2019),
SciBERT (Beltagy et al., 2019) and BioBERT (Lee et al., 2020) are
successful attempts at developing pre-trained models that would be
relevant to biomedical NLP tasks. They are regularly used in the lit-
erature to develop the latest best performing models on a wide range
of tasks.

Regardless of the successes of these architectures, their applic-
ability is limited because of the large number of parameters they
have and the amount of resources required to employ them in a real
setting. For this reason, there is a separate line of research in the lit-
erature to create compressed versions of larger pre-trained models
with minimal performance loss. DistilBERT (Sanh et al., 2019),
MobileBERT (Sun et al., 2020) and TinyBERT (Jiao et al., 2020)
are prominent examples of such attempts, which aim to produce a
lightweight version of BERT that closely mimics its performance
while having significantly less trainable parameters. The process
used in creating such models is called distillation (Hinton et al.,
2015).

Compact models allow faster training and inference which is
highly desirable in low-power settings such as mobile devices or
when processing large volumes of data that would take much longer
with a full-sized model. Low-resource hospitals or clinics, especially
in the developing world, can benefit from capable and lightweight
models that could be used in diagnosis support or risk prediction,
and the reduced computational and memory requirements of a com-
pact model may be worth the trade-off in accuracy in such environ-
ments. For biomedical applications, there are cases where the
performance of a compact language model may be sufficient for a
given task, even if performance may not be as high as a larger model.
For example, a compact model may be able to achieve acceptable ac-
curacy for a binary classification task, even if it does not perform as
well as a larger model on more complex tasks. Techniques such as
distillation from larger language models which is explored in this
work mitigate the performance trade-off associated with using a
compact model.

In this work, we first train three distilled versions of the
BioBERT-v1.1 using different distillation techniques, namely,
DistilBioBERT, CompactBioBERT and TinyBioBERT. Following
that, we pre-train three well-known compact models (DistilBERT,
TinyBERT and MobileBERT) on the PubMed dataset using contin-
ual learning. The resultant models are called BioDistilBERT,
BioTinyBERT and BioMobileBERT. Finally, we compare our mod-
els to BioBERT-v1.1 through a series of extensive experiments on a
diverse set of biomedical datasets and tasks. The analyses show that
our models are efficient compressed models that can be trained sig-
nificantly faster and with far fewer parameters compared with their
larger counterparts, with minimal performance drops on different
biomedical tasks. To the best of our knowledge, this is the first at-
tempt to specifically focus on training compact models on biomed-
ical corpora and by making the models publicly available we
provide the community with a resource to implement powerful spe-
cialized models in an accessible fashion.

The contributions of this article can be summarized as follows:

• We are the first to specifically focus on training compact biomed-

ical models using distillation and continual learning.
• Utilizing continual learning via the masked language modelling

(MLM) objective, we further train three widely used pre-trained

compact models, namely DistilBERT, MobileBERT and

TinyBERT for 200 K steps on the PubMed dataset.

• We distil three students from a biomedical teacher (BioBERT-

v1.1) using three different distillation procedures, which gener-

ated the following models: DistilBioBERT, TinyBioBERT and

CompactBioBERT.
• We evaluate our models on a wide range of biomedical NLP

tasks that include Named Entity Recognition (NER), Question

Answering (QA) and Relation Extraction (RE).
• We make all of our six compact models freely available on

Huggingface and Github. These models cover a wide range of

parameter sizes, from 15 M parameters for the smallest model to

65 M for the largest.

2 Background

Pre-training followed by fine-tuning has become a standard proced-
ure in many areas of NLP and forms the backbone for most state-of-
the-art models such as BERT (Devlin et al., 2019) and GPT-3
(Brown et al., 2020). The goal of language model pre-training is to
acquire effective in-context representations of words based on a
large corpus of text, such as Wikipedia. This process is often self-
supervised, which means that the representations are learnt without
using human-provided labels. There are two main strategies for self-
supervised pre-training, namely, MLM and causal language model-
ling (CLM). In this work, we focus on models pre-trained with the
MLM objective.

2.1 Masked language modelling
MLM is the process of randomly omitting portions of a given text
and having the model predict the omitted portions. The masking
percentage is normally 15%, with an 80% probability that the
selected word will be substituted with a specific mask token (e.g.
<MASK>) and a 20% chance that it will be replaced with another
random word (Devlin et al., 2019). Contextualized representations
generated using these pre-trained language models are referred to as
bidirectional, which means that information from previous and fol-
lowing contexts is used to construct representations for each given
word.

2.2 BERT: Bidirectional encoder representation from

transformers
The most prominent transformer pre-trained with MLM is BERT.
BERT is an encoder-only transformer that relies on the multi-head
attention mechanism for learning in-context representations. BERT
has different variations such as BERTbase and BERTlarge which vary
in the number of layers and the size of the hidden dimension.
Original BERT is trained on English Wikipedia and BooksCorpus
datasets for about 1 million training steps, making it a strong model
for various downstream NLP tasks.

2.3 BioBERT and other biomedical models
While generic pre-trained language models can perform reasonably
well on a variety of downstream tasks even in domains other than
those on which they have been trained, in recent years researchers
have shown that continual learning and pre-training of language
models on domain-specific corpora lead to noticeable performance
boosts compared with simple fine-tuning. BioBERT is an example of
such a domain-specific BERT-based model and the first that is
trained on biomedical corpora.

BioBERT takes its initial weights from BERTbase (pre-trained on
Wikipedia þ Books) and is further pre-trained using the MLM ob-
jective on the PubMed and optionally PMC datasets. BioBERT has
shown promising performance in many biomedical tasks including
NER, RE and QA. Aside from BioBERT, numerous additional mod-
els have been trained entirely or partially on biomedical data,
including ClinicalBERT (Huang et al., 2019), SciBERT (Beltagy
et al., 2019), BioMedRoBERTa (Gururangan et al., 2020) and
BioELECTRA (Kanakarajan et al., 2021).
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2.4 Knowledge distillation
Knowledge distillation (Hinton et al., 2015) is the process of trans-
ferring knowledge from a larger model called ‘teacher’ to a smaller
one called ‘student’ using the larger model’s outputs as soft labels.
Distillation can be done in a task-specific way where the pre-trained
model is first fine-tuned on a task and then the student attempts to
imitate the teacher network. This is an effective method; however,
fine-tuning of a pre-trained model can be computationally expen-
sive. Task-agnostic distillation, on the other hand, allows the stu-
dent to mimic the teacher by looking at its masked language
predictions or intermediate representations. The student can subse-
quently be directly fine-tuned on the final task (Wang et al., 2020;
Yao et al., 2021).

DistilBERT is a prominent example of a compressed model that
uses knowledge distillation to transfer the knowledge within the
BERTbase model to a much smaller student network which is about
40% smaller and 60% faster. It uses a triple loss which is a linear
combination of language modelling, distillation and cosine-distance
losses.

3 Approach

In this work, we focus on training compact transformers on biomed-
ical corpora. Among the available compact models in the literature,
we use DistilBERT, MobileBERT and TinyBERT models which
have shown promising results in NLP. We train compact models
using two different techniques as shown in Figure 1. The first is con-
tinual learning of pre-trained compact models on biomedical cor-
pora. In this strategy, each model is further pre-trained on the
PubMed dataset for 200 K steps via the MLM objective. The

obtained models are named BioDistilBERT, BioMobileBERT and
BioTinyBERT.

For the second strategy, we employ three distinct techniques: the
DistilBERT and TinyBERT distillation processes, as well as a mix-
ture of the two. The obtained models are named DistilBioBERT,

TinyBioBERT and CompactBioBERT. We test our models on three
commonly researched biomedical tasks and compare them with

BioBERT-v1.1 as shown in Tables 2–7.

4 Materials and methods

In this section, we describe the internal architecture of each compact
model that is explored in the article, the method used to initialize its

weights and the distillation procedure employed to train it.

4.1 DistilBioBERT
For distillation, this model employs three losses: MLM, output and
alignment. The MLM is a typical MLM loss, as defined below:

LmlmðX;YÞ ¼ �
XN
n¼1

XjVj
i¼1

Yn
i lnðfsðXÞni Þ; (1)

where X is the input, Y is the collection of MLM labels, N is the

number of input tokens and jVj is the vocabulary size of the model.
Finally, fsðXÞ represents the student model whose output is N prob-

ability distribution vectors with size jVj. The output loss is defined
as a KL divergence between the output distributions of the teacher
and student:

Fig. 1. The two general strategies proposed for training compact biomedical models. The first approach is to directly distil a compact model from a biomedical teacher which

in our work is BioBERT-v1.1. The distillation depicted in this figure is the same technique used for obtaining DistilBioBERT. TinyBioBERT and CompactBioBERT, on the

other hand, employ different approaches, which are not shown here. The second method involves additionally pre-training a compact model on biomedical corpora. For this

approach, we use compact models which have been distilled from powerful teachers, namely, DistilBERT (Sanh et al., 2019), TinyBERT (Jiao et al., 2020) and MobileBERT

(Sun et al., 2020)

On the effectiveness of compact biomedical transformers 3



LoutputðXÞ ¼
XN
n¼1

WnDKLðfsðXÞn jj ftðXÞnÞ; (2)

where ftðXÞ represents the teacher and Wn is a coefficient that
ensures that only masked tokens contribute to the computation of
loss. The alignment loss is a cosine embedding loss between the last
hidden states of the student and the teacher which is mathematically
defined as below:

LalignðXÞ ¼
1

N

XN
n¼1

1� /ðhsðXÞn;htðXÞnÞ; (3)

where hsðXÞ and htðXÞ output the last hidden states belonging to the
student and teacher, respectively, and /ð:Þ is the cosine similarity
function. Finally, the overall distillation loss used in this work can
be defined as follows:

LðX;YÞ ¼ k1LmlmðX;YÞ
þk2LoutputðXÞ
þk3LalignðXÞ

; (4)

where k1 to k3 are hyperparameters, controlling the importance of
each component of the loss.

4.1.1 Architecture

In this model, the size of the hidden dimension and the embedding
layer both set to 768. The vocabulary size is 28 996 for the cased
version which is the one employed in our experiments. The number
of transformer layers is 6 and the expansion rate of the feed-forward
layer is 4. Overall, this model has around 65 million parameters.

4.1.2 Initialization of the student

Effective initialization of the student model is critical due to the size
of the model and the computational cost of distillation. As a result,
there are numerous techniques available for initializing the student.
One method introduced by Turc et al. (2019) is to initialize the stu-
dent via MLM pre-training and then perform distillation. Another
approach, which we have followed in this work, is to take a subset
of the larger model by using the same embedding weights and initial-
izing the student from the teacher by taking weights from every
other layer (Sanh et al., 2019). With this approach, the hidden di-
mension of the student is restricted to that of the teacher model.

4.2 TinyBioBERT
This model uses a unique distillation method called ‘transformer-
layer distillation’ which is applied on each layer of the student to
align the attention maps and the hidden states of the student with
those of the teacher. It employs three losses in total: layer-to-layer
alignment loss, output loss and an optional embedding loss. The
layer-to-layer alignment loss is used to align the hidden layers of the
student and teacher, and it is mathematically defined as follows:

LlayerðXÞ ¼
XL

l¼1

klðMSEðhl
sðXÞWp; h

gðlÞ
t ðXÞÞ

þMSEðal
sðXÞ; a

gðlÞ
t ðXÞÞÞ

; (5)

where L is the number of hidden layers in the student model, kl is a
hyperparameter that controls the importance of alignment loss in
the lth layer, gð:Þ is a mapping function that maps each student layer
to a specific layer of the teacher and MSEð:Þ is the mean-squared
error. hl

sðXÞ, al
sðXÞ, h

gðlÞ
t ðXÞ and a

gðlÞ
t ðXÞ output the hidden states

and the attention maps belonging to the lth layer of the student and
the gðlÞth layer of the teacher. Finally, Wp is a projection weight
used when the hidden dimensions of the teacher and the student are
different. The output loss used in this work is similar to Equation
(2). However, instead of KL divergence, the cross entropy loss is
employed here, hence this equation is denoted as L�outputðXÞ. The op-
tional embedding loss used when the hidden dimension of the teach-
er and student differ is defined as follows:

LembedðXÞ ¼MSEðesðXÞWp; etðXÞÞ; (6)

where esðXÞ and etðXÞ output the embedding vectors belonging to
student and teacher, respectively. The combined loss used for distill-
ing this model can be formulated as

LðXÞ ¼ k0LembedðXÞ
þLlayerðXÞ
þkðLþ1ÞL

�
outputðXÞ

; (7)

where k0 and kLþ1 are hyperparameters.

4.2.1 Architecture

This model is a 4-layer transformer that uses a hidden dimension
and embedding size of 312. The general TinyBERT trained on the
Wikipedia uses an uncased tokenizer with a vocabulary size of
around 30.5 K words. Hence, for continual learning of the
TinyBERT, the uncased tokenizer is used. However, as BioBERT
showed the cased tokenizer works better in the biomedical domain,
we use a cased tokenizer with a vocabulary size of 28 996 for distill-
ing this model. Overall, both versions have around 15 M
parameters.

4.2.2 Initialization of the student

The weight initialization of this model is random since the hidden
and the embedding size of this model differ from its teacher.
However, the weight initialization of the DistilBERT can be used
when the hidden and embedding size of the student are the same as
the ones in the teacher which to the best of our knowledge was not
tried in the original paper.

4.3 CompactBioBERT
This model has the same overall architecture as DistilBioBERT, with
the difference that here we combine the distillation approaches of
DistilBioBERT and TinyBioBERT. We utilize the same initialization
technique as in DistilBioBERT and apply a layer-to-layer distillation
with three major components, namely, MLM, compact and output
distillation. The compact loss, which distinguishes this model from
DistilBERT, is mathematically stated as follows:

Lcompact Xð Þ ¼
XL

l¼1

1

N

XN
n¼1

1� / hl
sðXÞ

n; h
gðlÞ
t ðXÞn

� � 

þ 1

HN

XH
h¼1

XN
n¼1

DKL al
sðXÞ

h
n jj a

gðlÞ
t ðXÞhn

� �!
; (8)

where H is the number of attention heads in the student and teacher.
This model’s combined distillation loss is defined as follows:

LðX;YÞ ¼ k1LmlmðX;YÞ
þk2LcompactðXÞ
þk3LoutputðXÞ

(9)

where k1 to k3 are hyperparameters, controlling the importance of
each component of the distillation loss.

4.4 BioMobileBERT
MobileBERT (Sun et al., 2020) is a compact model that uses a
unique design comprised of different components to reduce the
model’s width (hidden size) while maintaining the same depth as
BERTlarge (24 transformer layers). MobileBERT has proved to be
competitive in many NLP tasks while also being efficient in terms of
both computational and parameter complexity. For distillation,
MobileBERT uses a layer-to-layer approach which is intended to
align the attention maps and hidden states of each student layer with
its associated teacher.

4 O.Rohanian et al.



4.4.1 Architecture and initialization

MobileBERT uses a 128-dimensional embedding layer followed by
1D convolutions to up-project its output to the desired hidden di-
mension expected by the transformer blocks. For each of these
blocks, MobileBERT uses linear down-projection at the beginning
of the transformer block and up-projection at its end, followed by a
residual connection originating from the input of the block before
down-projection. Because of these linear projections, MobileBERT
can reduce the hidden size and hence the computational cost of
multi-head attention and feed-forward blocks. This model addition-
ally incorporates up to four feed-forward blocks in order to enhance
its representation learning capabilities. Thanks to the strategically
placed linear projections, a 24-layer MobileBERT (which is used in
this work) has around 25 M parameters. To the best of our know-
ledge, MobileBERT is initialized from scratch.

5 Experiments and results

5.1 Task definitions
We test our models in three standard NLP tasks: NER, RE and QA.
For each task, a brief description is provided below.

NER is a standard task in NLP and biomedical text mining. In
this task, a model is given a sentence and must predict the type of en-
tity that each word in the sentence represents. These entities could
denote people, organizations, locations and more. In the biomedical
domain, entities may include diseases, genes, species and others.

RE involves predicting the relationship between two entities in a
given sentence. In the biomedical domain, examples of RE include
identifying the relationship between a gene and a disease or the rela-
tionship between a chemical and a protein.

QA is a widely studied task in NLP that involves generating a re-
sponse to a question posed in natural language. It can be tackled in a
generative setting where a question is given to a generative model
like GPT-3 (Brown et al., 2020) and it generates an answer based on
the data it have been trained on. However, since we do not use gen-
erative models in this work, QA here is framed as an extractive task,
where a question and a context that contain the answer are provided
to the model. The model then learns to predict the span of the con-
text that contains the answer to the question.

5.2 Datasets
For biomedical NER, we use eight established datasets, namely,
NCBI-disease (Do�gan et al., 2014), BC5CDR (disease and chem) (Li
et al., 2016), BC4CHEMD (Krallinger et al., 2015), BC2GM (Smith
et al., 2008), JNLPBA (Kim et al., 2004), LINNAEUS (Gerner et al.,
2010) and Species-800 (Pafilis et al., 2013) which will test the bio-
medical knowledge of the models in different categories such as dis-
ease, drug/chem, gene/protein and species.

For RE, we use the GAD (Bravo et al., 2015) and CHEMPROT
(Krallinger et al., 2017) datasets and follow the same pre-processing
used in Lee et al. (2020). For the GAD dataset, we randomly select
10% of the data for the test set using a constant seed and use the rest
for training.

For QA, we train and test on the BioASQ 7b dataset (Tsatsaronis
et al., 2015) and follow the same pre-processing steps as Lee et al.
(2020).

Additional details about these datasets, such as their size and the
type of annotations they contain, can be found in Table 1.

5.3 Experimental setup
We evaluate our models on three biomedical tasks, namely, NER,
QE and RE. For a fair comparison, we fine-tune all of our models
using a constant shuffling seed.1 Note that the results obtained in
this work are for comparison with BioBERT-v1.1 in a similar setting
and we are not focusing on reproducing or outperforming state-of-
the-art on any of the datasets since that is not the objective of this
work.

We distil our students solely from BioBERT and also compare
our continually learnt models with it. While there are other recent

biomedical transformers available in the literature (Section 1),
BioBERT is the most general (trained on large biomedical corpora
for 1 M steps) and is widely used as a backbone for building new
architectures. Direct comparison with one major model helps us to
keep the work focused on compression techniques and assessing
their efficiency in preserving information from a well-performing
and reliable teacher. These experiments can in the future be
expanded to cover other biomedical models.

For NER, all of our models were trained for five epochs with a
batch size of 16 and a learning rate of 5e� 5. In a few cases, a learn-
ing rate of 3e� 5 and a batch size of 32 were also used. Because our
models contain word-piece tokenizers which may split a single word
into several sub-word units, we assigned each word’s label to all of
its sub-words and then fine-tuned our models based on the new
labels. As shown in Table 2, DistilBioBERT and CompactBioBERT
outperformed other distilled models on all the datasets. Among the
continually learnt models, BioDistilBERT and BioMobileBERT
fared best (Table 3), while TinyBioBERT and BioTinyBERT were
the fastest and most efficient models.

For RE, we trained all of our models for three epochs with learn-
ing rates of 5e� 5 or 3e� 5 and a batch size of 16.
CompactBioBERT achieved the best results in both tasks among the
distilled models (Table 4), and similarly, BioDistilBERT outper-
formed all of our continually trained models in both tasks (Table 5).

For QA, all the models were trained with a batch size of 16. For
TinyBERT, TinyBioBERT and BioTinyBERT, a learning rate of
5e� 5 was used while for the remaining models this value was set to
3e� 5. As seen in Table 6, among our distilled models
CompactBioBERT and TinyBioBERT performed best and among
our continually learnt models BioMobileBERT and BioDistilBERT
outperformed other distilled models (Table 7).

6 Discussion

In this study, we investigated two approaches for compressing bio-
logical language models. The first strategy was to distil a model
from a biomedical teacher and the second was to use MLM pre-
training to adapt an already distilled model to a biomedical domain.
Due to computational and time constraints, we trained our distilled
models for 100 K steps and our continually learnt models for 200 K
steps; as a result, directly comparing these two types of models may
be unfair. We observed that distilling a compact model from a bio-
medical teacher increases its capacity to perform better on complex
biomedical tasks while decreasing its general language understand-
ing and reasoning. This means that while our distilled models per-
form exceptionally well on biomedical NER and RE (Tables 2 and
4), they perform comparatively poorly on tasks that require more
general knowledge and language understanding such as biomedical
QA (Table 6).

Weaker results on QA (compared with continually learnt mod-
els) suggest that by distilling a model from scratch using a biomed-
ical teacher, the model may lose some of its ability to capture
complex grammatical and semantic features while becoming more
powerful in identifying and understanding biomedical correlations
in a given context (as seen in Table 4). On the other hand, adapting
already compact models to the biomedical domain via continual
learning seems to preserve general knowledge regarding natural lan-
guage structure and semantics in the model (Table 7). It should be
noted that the distilled models are only trained for 100 K steps and
this analysis is based on the current results obtained by these
models.

Furthermore, despite having nearly half as many parameters,
BioMobileBERT outscored BioDistilBERT on QA. As previously
stated, MobileBERT employs a unique structure that allows it to get
as deep as 24 layers while maintaining less than 30 M parameters.
On the other hand, BioDistilBERT is only six layers deep. Because
of this architectural difference, we hypothesize that the increased
number of layers in BioMobileBERT allows it to capture more com-
plex grammatical and semantic features, resulting in superior per-
formance in biomedical QA, which requires not only biomedical
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Table 2. Test results for the models that were directly distilled from the BioBERT-v1.1 on NER datasets

Type Dataset Metrics DistilBERT DistilBioBERT CompactBioBERT TinyBioBERTa BioBERT-v1.1

Disease NCBI disease F1 86.38 87.93 88.67 85.22 88.62

BC5CDR F1 82.01 85.42 85.38 81.28 86.67

Drug/chem. BC5CDR F1 92.50 94.53 94.31 92.20 94.73

BC4CHEMD F1 89.53 91.77 91.40 89.03 92.14

Gene/protein BC2GM F1 84.61 86.60 86.71 82.52 87.62

JNLPBA F1 79.14 79.97 79.88 78.75 80.33

Species LINNAEUS F1 80.73 83.29 82.90 78.29 83.96

Species-800 F1 72.03 74.72 75.70 69.59 77.87

aAny direct comparison should take into account the fact that other models include over 60 M parameters, whereas TinyBioBERT has only 15 M. Note that

the bold numbers denote the best results and the underscored numbers denote the second best results.

Table 3. NER test results for models that were pre-trained on the PubMed dataset via the MLM objective and continual learning

Dataset Metrics DistilBERT TinyBERT MobileBERT BioDistilBERT BioTinyBERT BioMobileBERT

NCBI disease F1 86.38 80.46 86.14 87.61 82.95 87.21

BC5CDR (disease) F1 82.01 77.45 81.99 85.61 81.16 84.62

BC5CDR (chem) F1 92.50 88.50 92.20 94.48 90.85 94.23

BC4CHEMD F1 89.53 83.76 89.60 91.59 87.37 91.31

BC2GM F1 84.61 76.93 82.86 86.97 80.57 85.26

JNLPBA F1 79.14 76.79 78.88 79.10 77.87 80.13

LINNAEUS F1 80.73 71.94 78.53 82.56 76.42 81.83

Species-800 F1 72.03 66.33 74.56 74.68 70.68 75.22

Note: The models beginning with the prefix ‘Bio’ are pre-trained, while the rest are baselines.

Bold numbers denote the best performance and underlined numbers denote the second-best performance.

Table 4. Test results of the models that were directly distilled from the BioBERT-v1.1 on RE datasets

Relation Dataset Metrics DistilBERT DistilBioBERT CompactBioBERT TinyBioBERTa BioBERT-v1.1

Gene–disease GAD F1 82.54 85.30 85.52 82.46 86.80

Protein–chemical CHEMPROT F1 47.52 49.79 52.46 30.33 52.32

a

Any direct comparison between TinyBioBERT and other models should account for the significant difference in model size (15 M versus 60 M). Scores for

GAD are in the binary mode and the metrics reported for CHEMPROT are macro-averaged.

Bold numbers denote the best performance and underlined numbers denote the second-best performance.

Table 5. Test results on RE datasets for the models that were pre-trained on PubMed via MLM objective and continual learning

Dataset Metrics DistilBERT TinyBERT MobileBERT BioDistilBERT BioTinyBERT BioMobileBERT

GAD F1 82.54 75.53 82.98 86.04 78.48 84.56

CHEMPROT F1 47.52 23.18 47.92 51.48 25.54 51.03

Notes: Model names beginning with the prefix ‘Bio’ are pre-trained and the others are baselines. Scores for GAD are in the binary mode and the metrics

reported for CHEMPROT are macro-averaged.

Bold numbers denote the best performance and underlined numbers denote the second-best performance.

Table 1. Description of the datasets used in the experiments

Dataset Task type Dataset size Description

NCBI-disease NER 7287 Dataset collected from 793 PubMed abstracts. It is annotated with disease mentions

and concepts.

BC5CDR (disease/chem) NER 13 938 Corpus constructed from 1500 PubMed articles containing annotations for chemicals

and chemical–disease interactions.

BC4CHEMD NER 87 685 A collection of abstracts from PubMed annotated for chemical entities.

BC2GM NER 20 131 Dataset consisting of sentences annotated for gene mentions.

JNLPBA NER 22 402 Dataset collected from MEDLINE abstracts containing annotations for gene entities.

LINNAEUS NER 23 155 A dataset for species name identification in biomedical domain.

Species-800 NER 8193 A corpus collected from 800 PubMed abstracts and annotated for species entities.

GAD RE 5330 GAD is a corpus of gene–disease associations.

CHEMPROT RE 10 065 Dataset from 1820 PubMed abstracts annotated for chemical–protein interactions.

BioASQ 7 b QA 2747 A QA dataset constructed from a collection of biomedical articles.
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knowledge but also some general understanding about natural
language.

We trained models of varied sizes and topologies, ranging from
small models with only 25 M parameters to larger models with up
to 65 M. In our experiments, we discovered that when fine-tuned

with a high learning rate (e.g. 5e� 5), our tiny models,
TinyBioBERT and BioTinyBERT, perform well on downstream
tasks while our bigger models tend to perform better with a lower
learning rate (e.g. 3e� 5).

Table 6. Test results of the models that were directly distilled from the BioBERT-v1.1 on the BioASQ QA dataset

Dataset Metrics DistilBERT DistilBioBERT CompactBioBERT TinyBioBERTa BioBERT-v1.1

BioASQ 7b S 20.98 20.98 22.83 20.98 24.07

L 29.62 28.39 29.01 30.86 34.56

M 24.34 23.79 25.06 25.05 28.41

The metrics used for reporting the results are taken from the BioASQ competition and the models were assessed using the same evaluation script. The metrics

are as follows: Strict accuracy (S), lenient accuracy (L) and mean reciprocal rank (M).

Bold numbers denote the best performance and underlined numbers denote the second-best performance.
a

Any direct comparison between TinyBioBERT and other models should account for the significant difference in model size (15 M versus 60 M). Scores for

GAD are in the binary mode and the metrics reported for CHEMPROT are macro-averaged.

Table 7. BioASQ QA test results for the models that were pre-trained on the PubMed dataset via MLM objective and continual learning

Task Metrics DistilBERT TinyBERT MobileBERT BioDistilBERT BioTinyBERT BioMobileBERT

BioASQ 7b S 20.98 21.60 27.77 25.92 20.37 29.01

L 29.62 29.62 40.74 38.88 32.09 38.88

M 24.34 24.62 32.78 30.83 25.20 32.90

Notes: The metrics used for reporting the results are taken from the BioASQ competition and the models were assessed using the same evaluation script. The

metrics are as follows: Strict accuracy (S), lenient accuracy (L) and mean reciprocal rank (M) scores.

Bold numbers denote the best performance and underlined numbers denote the second-best performance.

Fig. 2. The inference time/memory comparison of our proposed models. ‘Small’ refers to TinyBioBERT, ‘mobile’ to BioMobileBERT, ‘distilled’ to DistilBioBERT and

CompactBioBERT (since they share the same architecture) and ‘base’ to BioBERT-v1.1
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In addition, we found that compact models that have been
trained on the PubMed dataset for fewer training steps (e.g. 50 K)
tend to achieve better results on more general biomedical datasets
such as NCBI disease which are annotated for disease mentions and
concepts and perform worse on more specialized datasets like
BC5CDR-disease and BC5CDR-chem which include extra domain-
specific information (e.g. chemicals and chemical–disease interac-
tions), and the reverse is true for the models that are trained longer
on the PubMed dataset.

TinyBioBERT and BioTinyBERT are the most efficient models
in terms of both memory and time complexity (as evidenced in
Fig. 2). DistilBioBERT, CompactBioBERT and BioDistilBERT are
the second most efficient set of models in terms of time complexity.
BioMobileBERT, on the other hand, is the second most efficient
model with regards to memory complexity. In conclusion, if effi-
ciency is the most important factor, the tiny models are the most
suitable resources to use. In other use cases, we recommend either
the distilled models or BioMobileBERT depending on the relative
importance of memory, time and accuracy.

7 Conclusion

Lightweight models developed here can either be used in isolation
for tasks and scenarios where either computational resources are
limited or when a small drop in performance would be an acceptable
trade-off for faster processing. Another scenario is when a compact
model can be used as a lightweight front-end for a larger model,
with the larger model only being used to handle cases where the
compact model is not confident or where more detailed analysis is
needed. This approach allows the larger model to be used when ne-
cessary, while also leveraging the benefits of a fast and compact
model.

In this work, we employed a number of compression strategies
to develop compact biomedical transformer-based models that
proved competitive on a range of biomedical datasets. We intro-
duced six different models ranging from 15 M to 65 M parameters
and evaluated them on three different tasks. We found that competi-
tive performance may be achieved by either pre-training existing
compact models on biomedical data or distilling students from a
biomedical teacher. The choice of distillation or pre-training is de-
pendent on the task, since our pre-trained students outperformed
their distilled counterparts in some tasks and vice versa.

We discovered, however, that distillation from a biomedical
teacher is generally more efficient than pre-training when using the
same number of training steps. Due to computational and time con-
straints, we trained all of our distilled models for 100 K steps, and
for continual learning, we trained models for 200 K steps. For future
work, we plan to pre-train models for 500 K to 1 M steps and pub-
licly release the new models. In addition, since CompactBioBERT
and DistilBioBERT performed similarly on most of the tasks, we
plan to investigate the effect of hyperparameters on training these
models in order to determine which distillation technique is more ef-
ficient. Some of the compact biomedical models proposed in this
study may be used for inference on mobile devices, which we hope
will open new avenues for researchers with limited computational
resources.
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