
Data and text mining

ARAX: a graph-based modular reasoning tool for

translational biomedicine

Amy K. Glen 1,†, Chunyu Ma2,†, Luis Mendoza3, Finn Womack2, E. C. Wood 1,

Meghamala Sinha1, Liliana Acevedo1, Lindsey G. Kvarfordt1, Ross C. Peene1,

Shaopeng Liu2, Andrew S. Hoffman4, Jared C. Roach3, Eric W. Deutsch3,†,

Stephen A. Ramsey1,5,† and David Koslicki 2,6,7,*,†

1School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA, 2Huck Institutes of the Life

Sciences, Pennsylvania State University, State College, PA 16802, USA, 3Institute for Systems Biology, Seattle, WA 98109, USA,
4Interdisciplinary Hub for Digitalization and Society, Radboud University, Nijmegen 6500GL, The Netherlands, 5Department of

Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA, 6Department of Biology, Pennsylvania State University, State

College, PA 16801, USA and 7Department of Computer Science and Engineering, Pennsylvania State University, State College, PA

16802, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors and last three authors should be regarded as Joint Authors.

Associate Editor: Jonathan Wren

Received on August 15, 2022; revised on December 17, 2022; editorial decision on January 26, 2023; accepted on February 7, 2023

Abstract

Motivation: With the rapidly growing volume of knowledge and data in biomedical databases, improved methods
for knowledge-graph-based computational reasoning are needed in order to answer translational questions.
Previous efforts to solve such challenging computational reasoning problems have contributed tools and
approaches, but progress has been hindered by the lack of an expressive analysis workflow language for transla-
tional reasoning and by the lack of a reasoning engine—supporting that language—that federates semantically inte-
grated knowledge-bases.

Results: We introduce ARAX, a new reasoning system for translational biomedicine that provides a web browser
user interface and an application programming interface (API). ARAX enables users to encode translational biomed-
ical questions and to integrate knowledge across sources to answer the user’s query and facilitate exploration of
results. For ARAX, we developed new approaches to query planning, knowledge-gathering, reasoning and result
ranking and dynamically integrate knowledge providers for answering biomedical questions. To illustrate ARAX’s
application and utility in specific disease contexts, we present several use-case examples.

Availability and implementation: The source code and technical documentation for building the ARAX server-side
software and its built-in knowledge database are freely available online (https://github.com/RTXteam/RTX). We pro-
vide a hosted ARAX service with a web browser interface at arax.rtx.ai and a web API endpoint at arax.rtx.ai/api/
arax/v1.3/ui/.

Contact: dmk333@psu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Structured biomedical knowledge is rapidly accumulating in primary
databases such as ChEMBL (Mendez et al., 2019), DrugBank
(Wishart et al., 2006), Reactome (Fabregat et al., 2018), OBO
Foundry (Smith et al., 2007), KEGG (Kanehisa and Goto, 2000),
Semantic MEDLINE Database (SemMedDB) (Kilicoglu et al.,

2012), UniProtKB (UniProt Consortium, 2021) and the Unified
Medical Language System (UMLS) (Bodenreider, 2004). Using
knowledge-based computational reasoning to answer translational
questions such as what drugs might be repurposed to treat Adams–
Oliver syndrome? requires integrating facts spanning a variety of
concept types including drugs, targets, pathways, genetic variants,
phenotypes and diseases. To facilitate such computational
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reasoning, there have been numerous efforts to integrate knowledge
from various biomedical databases using knowledge graph (KG)
abstractions (Joubert et al., 1998a, b; Sowa, 1992) consisting of a
labeled multigraph in which each node represents a concept and
each edge represents a concept–concept relationship, that is, a ‘tri-
ple’. Several such biomedical KGs have been described (Dumontier
et al., 2014; Himmelstein et al., 2017; Messina et al., 2018a;
Morton et al., 2019; Pi~nero et al., 2017; Sanders et al., 2020;
github.com/gnn4dr/DRKG), including RTX-KG2, which we devel-
oped and described previously (Wood et al., 2021) and which inte-
grates all of the aforementioned primary databases with a semantic
layer that is described by the open-standard Biolink model (Unni
et al., 2022). Given such a comprehensive KG with a unified seman-
tic layer, a biomedical question can be transformed into a query

graph (Yih et al., 2015) [which represents a search pattern, analo-
gous to a select statement in the SPARQL language (Angles and
Gutierrez, 2008); see Fig. 1 for more details] and/or a graph analysis
workflow in order to generate a list of ‘answers’/‘results’, each cor-
responding to a subgraph of the KG. To facilitate that process for
translational applications, an open-source, web-based and
standards-based tool is needed for designing, expressing, executing
and refining KG analysis workflows.

Efforts to develop a comprehensive platform for expressing, exe-
cuting and refining KG analysis workflows have used new query lan-
guages, web application programming interface frameworks,
computational reasoning paradigms, graph topology heuristics and
machine-learning methods. BIOZON (Birkland and Yona, 2006)
provides a SQL-based query and search function for its KG;
Hetionet (Himmelstein et al., 2017) integrates multiple databases
into a single graph for drug repurposing and leverages graph path-
finding; BioGraph (Messina et al., 2018b) uses the Gremlin graph
query language; SPOKE (Nelson et al., 2019) provides capabilities
for finding a concept of interest and visualizing its ‘node neighbor-
hood’; BioThings Explorer (Xin et al., 2017) builds a biomedical
KG by querying SmartAPI-registered application programming
interfaces (APIs); ROBOKOP (Morton et al., 2019) constructs a
query-specific KG which it analyzes to identify candidate answers
and mediKarnren (Byrd et al., 2020) uses the miniKanren logic pro-
gramming system for drug repurposing applications. Despite much
progress, two key problems remain: (1) how to provide control and
transparency of the graph analysis workflow that is executed to an-
swer a user’s question and (2) how to rank potential answers. The
control/transparency problem entails a trade-off: on one extreme, a
general-purpose graph query language such as Neo4j Cypher (neo4-
j.com/developer/cypher) provides complete control, but expressing,
modifying and extending a state-of-the-art drug repositioning ana-
lysis workflow is extremely complex and demanding for many users.
On the other extreme, canned analysis workflow approaches in
practice have limited customizability. In addition, many tools have a
limited number of knowledge sources and/or lack a standardized se-
mantic layer with sufficient expressiveness.

1.1 ARAX overview and key advantages
Here, we describe ARAX (arax.rtx.ai), a new computational reason-
ing tool for querying and exploring biomedical knowledge and data.
ARAX provides three key advantages versus previous systems:

1. ARAXi, ARAX’s intuitive language for specifying a workflow

for analyzing a KG (Section 2.1);

2. access to around 40 knowledge providers (KPs) (which them-

selves access over 100 underlying knowledge sources) from a sin-

gle reasoning tool, using a standardized interface and semantic

layer (Section 2.2) and

3. a versatile method for scoring search result subgraphs (Section

2.1.5).

Together, these advantages are designed to facilitate and improve
reasoning-based answering of translational questions (Austin, 2018)
such as what genetic conditions protect against asthma? What drugs
target proteins associated with the cyclooxygenase pathway? and
How can expression of KCNMA1 be pharmacologically inhibited?

ARAX is one of six reasoning engines in the Biomedical Data
Translator system (henceforth, ‘Translator’) (Translator Consortium,
2019a, b), (see the ‘Funding’ section), a distributed computational
system for accelerating translational science. Translator has a layered
architecture; queries are interpreted by a coordinating service, which
sends the query to the reasoning engines which, in turn, consult regis-
tered KP services to answer the query. All translator services exchange
messages using a standard web interface, the translator reasoner API
(TRAPI) (github.com/NCATSTranslator/ReasonerAPI), whose tech-
nical specification is collaboratively maintained. For its semantic
layer, TRAPI uses the biolink model (github.com/biolink/biolink-
model) to specify types of biological entities and relationships. ARAX
can be directly queried via either its TRAPI API or its web browser

Fig. 1. An example query graph (a) and the set of subgraphs that ‘fulfill’ it (c) from

an example knowledge graph (b). Item a depicts a query graph that asks for proteins

that interact with the drug acetaminophen. Query graphs are connected graphs that

define particular patterns to search for in-graph data. In this example, the acet-

aminophen query node is considered ‘pinned’, because it is constrained to a specific

concept; Biolink-defined (Unni et al., 2022) node categories (Protein) and edge

predicates (interacts_with) constrain the rest of the query. While this query

graph is quite simple, there is no hard limit to how many nodes/edges query graphs

can include (though there may be a practical limit, due to the tendency for query

runtime and memory consumption to increase with query graph size), and they may

contain cycles and/or be multigraphs. Item (b) depicts a hypothetical KG that might

be used to answer this query. This KG contains three different categories of nodes

(represented by node shape/color) and two different edge predicates. Item (c) shows

the three subgraphs of the KG that fulfill the query graph. A subgraph fulfills the

query graph if it fits the pattern of the query graph in terms of its structure and con-

straints, with acetaminophen connected to a protein via an interacts_with

edge. This example is simplified for clarity’s sake, but in reality there are more com-

plexities to what it means to fulfill a query graph. For instance, Biolink node catego-

ries and edge predicates are hierarchical in nature, meaning a valid result for the

example query graph could, for instance, use the edge predicate physically_in-

teracts_with, because that predicate is a descendant of interacts_with. In

addition, one could specify multiple node categories or edge predicates on a single

node/edge in their query graph; in that case, nodes/edges with either of those catego-

ries/predicates are considered to fulfill that query node/edge
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user interface; these provide various ways to formulate queries and
explore results (Section 2.3).

A typical query and corresponding workflow ARAX may use to
answer it is depicted in Figure 2, along with a diagram of ARAX’s
architecture. Its architecture is modular, with five different analysis
modules that can be run using ARAXi commands (Section 2.1).
ARAX is mainly built on top of RTX-KG2 (Wood et al., 2021), our
large-scale biomedical KG that has a TRAPI-compliant query inter-
face and is registered as a translator KP; but ARAX also queries
close to 40 other KPs with specific areas of emphasis (Section 2.2.1),
including genome-wide association study data, electronic health re-
cord data from medical centers and molecular data from high-
throughput cellular assays.

As illustrated in Figure 2, ARAX accepts input queries in any of
three representations: a TRAPI query graph, ARAXi or TRAPI oper-
ations. TRAPI query graphs are graph-based templates representing
the user’s question (see Fig. 1), expressed in JavaScript Object
Notation (JSON) format. The ARAXi language, which can be used
to express a custom graph analysis workflow including overlaying
of annotations and/or filtering of edges to reduce the result-set size,
is described in Section 2.1. TRAPI operations (github.com/
NCATSTranslator/OperationsAndWorkflows), the third way of
specifying a graph analysis workflow, is an ARAXi-inspired, trans-
lator-standardized vocabulary; it is translated into ARAXi by the
ARAX interpreter.

2 Materials and methods

2.1 ARAXi KG analysis language
To address the need for an intuitive language for expressing KG analysis
workflows, we developed ARAXi, a procedural language that allows a
user or software tool to concisely express biomedical questions. The five
main ARAXi modules (see Sections 2.1.1–2.1.5) can be used individual-
ly or combined in a graph analysis workflow (Fig. 2). Each ARAXi
command corresponds to an analysis module; this modular design sim-
plifies both construction and reuse of KG analysis workflows.

All input queries—whether in the form of a TRAPI query graph,
ARAXi or TRAPI operations—are ultimately translated into a series
of ARAXi commands, which together define the knowledge-
retrieval and analysis workflow for answering the query. In particu-
lar, two core ARAXi commands, add_qnode and add_qedge, are
used to incrementally construct a query graph, which can then be
expanded by the ARAX_expander module (Section 2.1.1) into a
query-specific KG; the query-specific KG can then be refined or have
knowledge overlaid using the four other ARAX modules (Sections
2.1.2–2.1.5).

2.1.1 Expand a KG: ARAX_expander

The ARAX_expander module uses all TRAPI-compliant KPs regis-
tered in the SmartAPI registry (Zaveri et al., 2017) (see Section 2.2
for more details) to find subgraphs that satisfy the input query
graph. For each edge in the query graph, ARAX_expander deter-
mines which KPs are capable of fulfilling that query edge (based on
metadata provided dynamically by the KPs’ APIs) and then queries
those KPs concurrently via their TRAPI-compliant APIs. When
querying each KP, ARAX_expander converts any node identifiers in
the query to semantically equivalent identifiers from controlled
vocabularies that the KP prefers. This is accomplished by using the
ARAX Node Synonymizer service (Section 2.2.2). ARAX combines
answers returned from the KPs into a single answer KG that is ‘can-
onicalized’, meaning that it does not contain semantically redundant
nodes.

ARAX_expander processes the query graph in a breadth-first
fashion; that is, it retrieves all answers from KPs for a given query
edge before moving on to the next query edge. It avoids combinator-
ial explosion by pruning down the answer set that it receives for
each query edge in an adaptive and predictive manner: it uses the
ARAX_overlay module’s Fisher Exact Test function (Section 2.1.2)
combined with ARAX_ranker (Section 2.1.5) to decide which triples
to retain for the given query edge. By default, the number of triples

to retain for each query edge (the ‘pruning threshold’) is dynamically
determined according to the projected degree of combinatorial ex-
plosion the given query edge will produce, based on heuristics per-
taining to the depth of categories and predicates in the Biolink
hierarchy. Currently, these heuristics essentially set the threshold to
one of three values when one of the query edge’s nodes is ‘unpinned’
(not constrained to specific concepts): 100 if the given query edge is
unconstrained in terms of categories and predicates or if the root
Biolink categories/predicates are used, 200 if a category known to
be very prevalent in KPs is used (this generally only includes catego-
ries one generation away from the root node in the Biolink category
tree; e.g. biolink: ChemicalEntity) and 500 otherwise.
Doubly pinned queries are given a higher prune threshold of 5000,
due to their inherent constraint to specific concepts. Alternatively, a
user may specify a per-query prune threshold that overrides
the dynamically determined default pruning via the ARAXi
prune_threshold parameter. Having to prune answers after
expanding each query edge is the main downside to the breadth-first
approach of processing the query graph, since good answers may be
lost; while a depth-first approach would avoid this, it allows for less
batch querying of KPs (i.e. sending queries in which one node is
pinned to many concepts) and thus results in prohibitively slow
query times in our experience. In the future, we plan to improve the
dynamic pruning method to do query backtracking in some form;
that is, if no answers for the next query edge are found based on the
set of answers that were retained for the prior query edge, try using
more of the prior query edge’s answers to see if they produce
answers for the next query edge and so on. This will effectively re-
sult in a sort of hybrid breadth-first/depth-first approach that may
combine the best of both worlds.

Because users have different preferences in terms of the amount
of time they are willing to wait for ARAX to provide answers to
their query, ARAX_expander also provides a KP timeout parameter,
which specifies how long ARAX_expander should wait for a re-
sponse from each KP. Users who are more interested in getting
answers quickly can specify a short (e.g. 30 s) timeout, while a user
whose use-case prioritizes comprehensiveness over expediency can
use a longer KP timeout.

2.1.2 Overlay/annotate contextual information: ARAX_overlay

The ARAX_overlay module enhances the ARAX_expander-built
KG by overlaying ‘virtual edges’ (which are virtual in the sense that
they do not fulfill edges present in the original query graph) to de-
note (1) structural similarity (i.e. a statistically significant number
of shared neighbors) of two nodes in the KG; (2) a predicted
‘treats’ relation between drug and disease nodes via a link-
prediction model or (3) statistically significant co-association in a
database such as a clinical database, a combined clinical–epidemio-
logical database or the biomedical literature. Currently, the overlay
function (which is called with the overlay command in ARAXi)
can overlay nodes or edges with the following seven kinds of con-
textual information:

Fisher exact test evaluates how significant/non-random a one-
hop connection is between a given list of subject nodes and an object
node based on the P-value calculated by following the traditional
Fisher’s exact statistical test. This is equivalent to a phenotype or
gene enrichment analysis in statistical genetics, but for arbitrary
node categories. Given a set fvsg of subject nodes and an object
node vo, a P-value is calculated to indicate how significant/non-
random an edge is between the subjects and object. This requires
using the following 2 � 2 contingency table as input to the ‘stats.-
fisher_exact’ method in the Scipy python package (Virtanen et al.,
2020):

Number of

nodes in fvsg
Number of nodes

not in fvsg

Number of nodes connected to vo a b

Number of nodes not connected to vo c d

ARAX 3



where ‘connected’/‘not connected’ means with respect to the KG
RTX-KG2 when considering nodes of the same category as vo.fa, b,
c, dg are the integer values representing number of nodes.

Jaccard similarity measures how many shared intermediate
nodes with a specific category (e.g. ‘Protein’) can be found via
knowledge sources between a subject node and an object node.

Fig. 2. ARAX answers queries using workflows, in which each step is handled by a particular ARAX module. Left panel: The left half of this figure depicts a typical simple

query that might be submitted to ARAX (Step 1) and how ARAX goes about answering that query (Steps 2–6). More specifically, Step 1 shows a visual representation of the

query in query graph form, which asks for proteins associated with both Parkinson’s disease and the drug cilnidipine. Step 2 depicts the Expand step, which reaches out to vari-

ous KPs for answers to the given query and combines their answers into an answer knowledge graph. Step 3 represents the Overlay step, in which the answer KG is overlaid/

annotated with contextual quantitative information in ‘virtual’ edges (dashed/dotted lines). Step 4 depicts the Filter step, in which nodes and edges are filtered from the answer

KG based on the statistical information overlaid in Step 3. Step 5 represents the Resultify step, which finds all of the subgraphs in the answer KG that fulfill the query graph.

Step 6 represents the Rank step, which calculates a score for each result subgraph indicating the overall degree of epistemic support for that answer. Right panel: The right half

of this figure depicts ARAX’s architecture, which is centered around five modules, each of which corresponds to a typical workflow step. Notably, ARAX accepts queries in

three different forms, all of which are based on the TRAPI data model: (1) a query graph (as shown in Step 1), (2) the ARAXi graph analysis workflow definition language

(Section 2.1) or (3) TRAPI operations. The ARAX system translates the two non-ARAXi input forms into an ARAXi workflow that specifies the series of ARAX modules that

will be run to answer the query. The five core ARAX modules (Expander, Overlay, Filter, Resultify and Ranker) operate independently and may be combined in various orders

depending on the query. When the input is in the form of a query graph, the Query Graph Interpreter layer selects an appropriate series of ARAXi commands to answer the

question at hand; this selection of ARAXi commands is done using a template-based system in which templates were manually curated by examining common query graph

structures or archetypes. The final answer knowledge graph and results are returned in a TRAPI JSON response either directly to the requesting software program or to the

ARAX UI for browser rendering (Section 2.3.1)

4 A.K.Glen et al.



For example, this can be used to find drugs that interact with many
genes associated to a disease; find genes associated with many phe-
notypes of a disease or other such ‘many intermediate connections’
queries. More rigorously, given a starting node vs connected to n
intermediate nodes fvign

i¼1 which each connects to an ending node
ve, the Jaccard similarity between vs and ve is defined as follows,
with OutDegðvÞ representing the out-degree of a node in the KG:

JSðvs; veÞ ¼
n

OutDegðvsÞ
: (1)

Drug-treats-disease probability predicts the probability that a
given drug can treat a given disease. We developed this computa-
tional drug repurposing approach based on the model framework
proposed by Womack et al. (2019). In order to adapt this model to
our core KG RTX-KG2, we modified the implementation of the
model by replacing node2vec (Grover and Leskovec, 2016) with
GraphSage (Hamilton et al., 2017) for generating the node embed-
dings as well as using direct concatenation instead of the Hadamard
product to generate the input features for a Random Forest classifier
for drug–disease pairs. Additional performance gains may be real-
ized through the use of alternative embedding or prediction models,
though Section 3.3 indicates the current approach performs
favorably.

Normalized PubMed distance measures the significance of co-
occurrence of pairs of terms (corresponding to node names) in art-
icle abstracts in the PubMed (i.e. MEDLINE) database, using the
‘normalized Google distance’ (NGD) measure (Cilibrasi and
Vitanyi, 2004)

NGDðt1; t2Þ ¼
maxf log f ðt1Þ; log f ðt2Þg � log f ðt1; t2Þ

log N �minf logðt1Þ; logðt2Þg
; (2)

where t1 and t2 are the biomedical terms (node names) used in RTX-
KG2; f ðt1Þ and f ðt2Þ, respectively, represent the total number of
unique PubMed IDs associated with this term; f ðt1; t2Þ is the number
of unique and shared PubMed IDs between t1 and t2 and N is the
number of pairs of article abstract and MeSH term (Rogers, 1963)
annotations in PubMed.

PubMed abstracts obtained by mapping node identifiers to
MeSH terms and obtaining the PubMed articles associated with this
MeSH term.

Columbia Open Health Data (COHD) Clinical Information (Ta
et al., 2018) obtained from electronic health records of 1.7 M
patients during a 5-year period. For a given pair of terms, three stat-
istical measures are obtained from COHD: observed clinical fre-
quencies; the log-ratio between observed and expected counts and
the v2 test statistic.

Exposure data statistical association data for pairs of terms in
health records and between clinical terms and environmental expos-
ure variables in epidemiological databases are obtained through the
Integrated Clinical and Environmental Exposures Services (ICEES)
service (Fecho et al., 2019), which obtains data from University of
North Carolina Health; the Drug Induced Liver Injury Network and
the National Institute of Environmental Health Sciences
Personalized Environment and Genes Study.

2.1.3 Filter the KG: ARAX_filter

Multi-hop queries can produce such large answer KGs that it is
sometimes useful to prune down the KG to remove less important
nodes or edges before proceeding. The ARAX_filter module allows
one to do this; it provides several options for selectively removing
nodes/edges based on their contextual information (often quantita-
tive information added by ARAX_overlay) according to user-
defined thresholds. This functionality can be invoked using the
filter_kg ARAXi command. ARAX_filter also provides various
methods for limiting the number of results returned and for sorting
the results created by ARAX_resultify (see Section 2.1.4), for ex-
ample, by score, edge/node counts or particular edge/node
attributes.

2.1.4 Create results: ARAX_resultify

The ARAX_resultify module finds and returns all subgraphs in the
answer KG that fulfill the query graph; this step is typically per-
formed after the answer KG has been constructed and (optionally)
pruned. ARAXi exposes a boolean ignore_edge_direction
parameter that controls whether ARAX_resultify should ignore or
enforce edge direction when determining whether a subgraph fulfills
the query graph. When enforcing edge direction, ARAX_resultify
will only return subgraphs for which edge directions match those
of the query graph edges they are fulfilling. When ignoring edge
direction, KG edges are allowed to fulfill query graph edges in
the reverse direction (meaning, PTGS2—interacts_with—>
Acetaminophen would be a valid result for the query graph
Acetaminophen—interacts_with—> Protein).

2.1.5 Score and rank result graphs: ARAX_ranker

The ARAX_ranker module assigns a score between 0 and 1 (where a
higher score represents a higher confidence answer) to each result
graph and orders the results by descending score. Scores are com-
puted as follows:

1. For each ‘result graph’:

a. Each edge in the result graph is assigned a score [0,1], as

follows:

i. Any scalar attribute (e.g. Fisher exact test P-value or

Jaccard index) on the edge is normalized to a value be-

tween 0 and 1 using a sigmoid function parameterized

for the specific type of attribute.

ii. For any edges originating from SemMedDB, the attri-

bute containing PubMed references for publications sup-

porting the given assertion is converted into a scalar

value via the function:

1þ b

n

� �a
" #�1

; (3)

where n represents the number of publications listed in

the attribute. The values of a ¼ log 2ð9Þ and b ¼ 4 were

chosen so that four supporting publications result in a

value of 0.5 (i.e. 50% confidence) and eight publications

give a value of 0.9.

iii. The given edge’s normalized, weighted scalar values are

then multiplied to create one single score between 0 and

1 that is assigned to that edge.

b. Using the normalized, weighted edge scores from Step 1a,

three graph weights (calculated using max-flow, Frobenius

norm and weight-of-longest-geodesic-path) are obtained for

the result graph.

2. Results are then ranked in descending order by their three metric

scores calculated in Step 1b (in three separate lists).

3. Each result is assigned a final score that is the average of its three

ranks from Step 2 (normalized between 0 and 1).

The ARAX system automatically runs ARAX_ranker after
ARAX_resultify, but ARAX_ranker can also be run individually via
the rank_results ARAXi command; in principle, a list of result
subgraphs produced by another translator tool could be ranked
using this ARAX service.

2.2 Knowledge/data
2.2.1 Richness

ARAX currently uses around 40 different KPs to answer queries; the
exact count depends on the number of TRAPI-compliant KPs regis-
tered in SmartAPI (smart-api.info/registry) at query runtime, since
ARAX_expander dynamically selects from all such KPs for a given

ARAX 5



query. The KPs themselves obtain information from various know-
ledge sources, giving ARAX access to a combined total of more than
100 knowledge sources (e.g. UniProt, DrugBank, DisGeNET,
ChEMBL, MONDO and SemMedDB). Calculating the exact count
of underlying knowledge sources is difficult due to the lack of such in-
formation in structured form for some KPs, but between RTX-KG2’s
73 knowledge sources (Wood et al., 2021), SPOKE’s approximately
40 knowledge sources (spoke.ucsf.edu/data-tools) and the BioThings
Explorer Service Provider’s 32 integrated sources (github.com/bio-
things/biothings_explorer), ARAX has access to at least 100 distinct
underlying knowledge sources (we note that there is some overlap in
knowledge sources between KPs). The true count of underlying know-
ledge sources is likely notably higher since ARAX uses many other
KPs that were not included in the above estimate.

In total, ARAX’s KPs can answer queries of about 135 different
categories of nodes (e.g. biolink: Protein, biolink:
Disease) and 281 different edge predicates (e.g. biolink:
interacts_with, biolink: treats). This results in a total of
76 443 distinct meta-triples (combinations of subject node category,
edge predicate and object node category) that ARAX has access to.
The breakdown of these counts by KP is shown in Table 1 for
ARAX’s top 25 KPs in terms of number of supported meta-triples.
Figure 3 shows a small selection of ARAX’s overall meta-graph,
including some of the most commonly queried node categories.
The counts for each KP are based on their TRAPI v1.3.0 API/
meta_knowledge_graph endpoints, accessed on December 12,
2022. All such APIs are listed in the SmartAPI Registry online 5.

2.2.2 Knowledge federation

Two aspects of ARAX’s architecture are crucial for knowledge
federation: its adherence to standards for query APIs and for its

semantic layer (i.e. TRAPI and Biolink, respectively) and its compre-
hensive service for mapping between equivalent node identifiers (i.e.
node synonymization).

2.2.3 TRAPI and the biolink model. ARAX bypasses many of the
data integration challenges that arise when combining information
from multiple sources by adhering to a standard web API format
(TRAPI; github.com/NCATSTranslator/ReasonerAPI) that itself
adheres to a standard semantic format (Biolink: github.com/biolink/
biolink-model). Not only does ARAX’s API conform to TRAPI, but in
the course of answering queries, ARAX largely only uses KPs that
themselves speak TRAPI [The only exceptions are two in-house KPs
that are stored locally and queried using SQL: Drug-Treats-Disease
and Normalized PubMed Distance (Section 2.1.2).] This means that
ARAX has to do very minimal processing to relay queries to and com-
bine answers from different KPs, since they all represent their answers
in the same format, using the same node categories and edge predi-
cates. Because of this, any KP that speaks TRAPI can be plugged into
the ARAX_expander module with ease. In fact, ARAX_expander
(Section 2.1.1) dynamically selects TRAPI KPs that are registered in
the SmartAPI registry (Zaveri et al., 2017), meaning ARAX is able to
add new KPs without any human intervention.

2.2.4 ARAX node synonymizer. Because there are many overlapping
controlled vocabularies within biomedicine, concepts (or the nodes
that represent them) can often be described using multiple identi-
fiers. For instance, MONDO:0019391, DOID:13636 and
ORPHANET:84 are all valid identifiers for the disease Fanconi an-
emia, coming from the Monarch Disease Ontology (Mungall et al.,
2017), the Disease Ontology (Schriml et al., 2019) and the
Orphanet Rare Disease Ontology (Vasant et al., 2014; Weinreich
et al., 2008), respectively. Different KPs may refer to the same con-
cept using different identifiers, making it challenging to integrate
their results. To address this problem, we created the ARAX node
synonymizer, a node synonym mapping service built into ARAX.
The node synonymizer determines node equivalencies by combining
four kinds of evidence:

1. Concept equivalence information provided by a translator web

service called the Standards and Reference Implementation Node

Normalizer (github.com/TranslatorSRI/NodeNormalization),

Table 1. ARAX’s top 25 KPs in terms of number of meta-triples they

can answer queries about

KP Cat. Pred. Meta.

RTX-KG2 57 86 45 300

CAM-KP 105 50 28 601

Ontology-KP 81 14 4434

Automat-robokop 20 190 2296

Automat-uberongraph 18 66 1414

Service Provider (by BioThings

Explorer)

22 97 1102

Automat-ctd 16 91 730

SRI Reference KG 14 89 644

Text Mined Cooccurrence API 18 1 322

Automat-cord19 17 6 291

MolePro (Molecular Provider) 20 126 288

Automat-biolink 17 13 210

Automat-hetio 15 27 159

Automat-ontology-hierarchy 18 2 134

Automat-drug-central 11 17 104

Automat-pharos 13 12 95

Automat-hmdb 10 9 72

Automat-human-goa 10 23 60

Automat-icees-kg 8 1 57

COHD (Columbia Open Health

Data)

5 2 50

SPOKE KP 18 24 44

Automat-gtopdb 6 11 40

Automat-viral-proteome 10 11 35

Automat-panther 8 7 24

Automat-gtex 2 20 20

Notes: Cat., categories; Pred., predicates; Meta., meta-triples. More infor-

mation on each KP along with links to their APIs are available in the

SmartAPI registry (footnote 5).

Fig. 3. A small portion of ARAX’s meta-graph including a selection of the most

commonly queried node categories. The size of each node represents the number of

ARAX’s KPs that can answer queries involving that category, the color of each node

represents the number of node identifier types ARAX has access to (through its KPs)

for that category and the thickness of each edge represents the number of distinct

predicates ARAX has access to between two nodes with the given categories
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2. Nodes connected by biolink: same_as relations in RTX-KG2,

3. Nodes with identical names and

4. Node semantic type compatibility.

The node synonymizer uses this information to partition a

given set of node identifiers into sets of semantically equivalent
identifiers. Each of these clusters is assigned a single representative
concept identifier from among the cluster’s members. ARAX uses

the node synonymizer to map all node identifiers returned from
KPs to these canonical identifiers, facilitating merging of the KPs’

responses.

2.3 Interfaces for accessing ARAX
2.3.1 ARAX web browser interface

The ARAX web browser user interface (‘ARAX UI’; arax.rtx.ai)
provides an intuitive, human–friendly mechanism for querying
ARAX and exploring the answers it returns. It allows users to for-

mulate biomedical questions in four different formats: an interactive
visual query graph builder, TRAPI operations, TRAPI JSON and
ARAXi. The interactive query graph builder allows users to con-

struct a query graph in a visual fashion via drop-down lists and
clickable buttons, with no JSON or TRAPI knowledge required. The

TRAPI operations input aids users in creating a TRAPI-compliant
workflow by providing a drop-down list of allowable operations
and guided entry of operation parameters. The TRAPI JSON input

method facilitates sharing and re-use of graph analysis workflows.
The ARAXi input method (described in Section 2.1) provides users

with easy-to-understand syntax to formulate more complex query
workflows, along with drop-down menus of ARAXi commands to
facilitate discovery. For each query posted to the ARAX UI, the out-

put includes five sections:

1. Summary summarizes the answers to the query in a simple table

sorted by ARAX-defined scores that can be considered a meas-

ure of confidence (Section 2.1.5).

2. KG provides a visual representation of the answer KG for easy

viewing of its topology.

3. Results provide a display of all the results that satisfy the input

query graph, ranked as in Section 2.1.5. Clicking on individual

results displays an interactive graphical representation of the re-

sult. Within each result, clicking on nodes and edges displays

detailed information including evidence/provenance information

and concept descriptions.

4. Messages show all messages logged during processing of the

query, including any errors or warnings.

5. Provenance shows the number of edges in the final KG by predi-

cate type and knowledge source(s) that they came from. (May

require refreshing the web browser page to display data.)

The ARAX UI provides persistent URLs that enable fast re-
trieval of results from previously run queries. Apart from these

main functions, the ARAX UI also provides three additional tools/
services:

• Synonym lookup exposes the ARAX Node Synonymizer

(described in ‘ARAX Node Synonymizer’ in Section 2.2.2); a

user can input a concept identifier or name and see its set of

equivalent identifiers and other synonym information.
• Dev Info provides a JSON-formatted view of UI-server commu-

nications for development purposes.
• System activity displays the status and activity of previous

queries submitted to ARAX over a user-selectable time interval

and retrieves corresponding queries and results (if they com-

pleted successfully).

2.3.2 ARAX API

ARAX can also be used via its publicly accessible API (arax.rtx.ai/
api/arax/v1.3/openapi.json), which is listed in the SmartAPI registry
(Zaveri et al., 2017). The ARAX API includes /query and /
asyncquery endpoints that accept TRAPI input, as well as an /
entity endpoint that exposes the ARAX Node Synonymizer ser-
vice, allowing users to programmatically retrieve equivalent identi-
fiers and other synonym information for a given concept.

3 Use cases

To illustrate how ARAX can be used to explore biomedical know-
ledge, we present three different use cases: two focused queries, one
to search for molecular mechanisms in bipolar disorder and one to
search for the mechanism of action for an antiviral for COVID-19
disease, and a larger-scale analysis concerning drug repurposing.

3.1 Use Case 1: Bipolar disorder
Bipolar disorder is a mental health condition that affects over 46 M
people worldwide (Ferrari et al., 2016). It is characterized by mood
swings that can include excessive happiness (mania) and/or excessive
sadness (depression). The causes of bipolar disorder are not well
understood, but are thought to include both genetic and environ-
mental factors, with stress and substance abuse contributing to dis-
ease severity. It has been recently proposed (Hasin et al., 2021) that
decreased expression of D-amino acid oxidase (DAO) in cerebellar
neurons might increase the risk for bipolar disorder by affecting the
regulation of N-methyl-D-aspartate receptors (NMDARs). Using the
ARAX web browser interface, we explored the connection between
DAO and bipolar disorder via protein intermediaries in the context
of a two-hop query graph (e.g. ‘DAO—*-—bipolar disorder’ where
* represents a peptide/protein mediator). Within the browser inter-
face, we posted the ARAXi commands of a two-hop query graph to
ARAX, which returned 17 result subgraphs (Fig. 4). The query and
its results are available as the Supplementary Material
(github:RTXteam/RTX/notes/vignettes.md#bipolar-disorder). The
‘NMDARs’ result [which we expected to see based on prior litera-
ture (Hasin et al., 2021)] is in the top 10 highest-scoring results,
based on ARAX’s result-graph ranking algorithm (see Section
2.1.5). For some of the other peptide/protein results returned,
ARAX provided hyperlinks to publications that support the relevant
relations in the specific DAO-to-bipolar result graph such as the
amino acid proline (Fig. 5).

3.2 Use Case 2: Coronavirus disease 2019
Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2
pathogen, has resulted in a worldwide pandemic. Researchers have
made extensive efforts (Grundeis et al., 2023; Hassanipour et al.,
2021; Reis et al., 2022; Rosas et al., 2021; Temple et al., 2021) to
repurpose existing drugs to treat COVID-19. Remdesivir was the

Fig. 4. ARAX Web UI showing the ARAXi workflow (1) used for Use Case 1

(exploring what proteins might be involved in the connection between DAO and bi-

polar disorder) and the 17 returned results with their corresponding ranking scores

(2), as they appear in the Summary tab in the UI. The expected result of ‘NMDARs’

is highlighted in yellow
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first repurposed antiviral drug that was approved by the United
States Food and Drug Administration for the treatment of COVID-
19. Remdesivir was originally developed to treat hepatitis C and
then found to be effective against many other viral diseases including
Ebola and other coronavirus diseases. Its mechanism of action is to
interfere with the viral RNA-dependent RNA polymerase (RdRp)
(Eastman et al., 2020). By using ARAX, we can provide a series of
potential three-hop biological-relation paths between remdesivir
and COVID-19 via RNA-directed RNA polymerase. Figure 6 shows
the top 25 ARAX results with the corresponding ARAXi commands.
The query and its results are available as the Supplementary
Material (github:RTXteam/RTX/notes/vignettes.md#covid-19). A
top-ranking result, ‘Virus Replication’, is precisely the mechanism of
action that has been reported by various researchers (Eastman et al.,
2020; Kokic et al., 2021; Malin et al., 2020). Furthermore, ARAX
results can reveal potential downstream mediators of therapeutic ef-
ficacy such as release of type I interferon, an antiviral cytokine
which SARS-CoV-2 infection is known to inhibit (Wang et al.,
2021) (see result ‘IFNB1’ for this query).

3.3 Use Case 3: Recovering drug/disease relationships
Drug repurposing is a strategy for finding treatments for diseases by
searching for and validating new indications for existing (i.e. already
approved) drugs. Computational approaches to this task often in-
volve developing a link-prediction model: a model that, when given
a drug and disease, predicts the probability that the drug treats the

disease. One such model, given in Section 2.1.2, is accessible via
ARAX. Here, we describe the performance of that model in predict-
ing ‘treats’ edges in the RTX-KG2 KP. Importantly, this model was
not trained on RTX-KG2 ‘treats’ edges but rather data from
SemMedDB (Kilicoglu et al., 2012), MyChem (Xin et al., 2018) and
NDF-RT (Brown et al., 2004) (as described in Womack et al.,
2019), though some RTX-KG2 ‘treats’ edges may exist in these three
training datasets. (Namely, those edges from SemMedDB, which is
one of RTX-KG2’s sources; MyChem and RTX-KG2 also have
some overlapping sources, such as DrugCentral.) In RTX-KG2,
there are 266k biolink: treats edges. We used the model in
Section 2.1.2 to predict, for all such 266K drug/disease (Note here
that ‘drug’ means biolink:Drug or biolink:SmallMolecule, and ‘dis-
ease’ means biolink:Disease or biolink:PhenotypicFeature) pairs, the
probability that a ‘treats’ relationship exists between them. We then
selected all (drug, h‘non-treats’ relationi, disease) triples,
where ‘non-treats’ relation is any relation besides the Biolink
predicates: treats, prevents, treated_by, ameliorates,
is_ameliorated_by, related_to or disrupts. We used the
model to calculate the link prediction probabilities of all 184k such
‘non-treats’ edges. Figure 7 shows the distributions of this link pre-
diction task, demonstrating the model can successfully distinguish
between drug/disease pairs with the ‘treats’ or ‘not-treats’ relation-
ship. Using a cutoff probability of 0.8, 40% of existing RTX-KG2
‘treats’ relationships were recovered, while only 17% of ‘non-treats’
edges were above this cutoff.

4 Discussion

The purpose of ARAX and Translator is to enable integrated ana-
lysis of structured biomedical knowledge in order to provide ranked,
coherent answers to translational biomedical questions. ARAX’s
three key innovations—ARAXi, its approximately 40 KPs, and its
result subgraph ranking algorithm—together provide significant le-
verage to enable a researcher to tackle translational questions that
are more complex and rely more on basic science (and not just on
clinically validated) knowledge. Further, ARAX’s web browser
interface enables composing queries and browsing/exploring results,
without having to programmatically post-process results or query
the API.

While it shares the goal of leveraging knowledge to advance
translation, ARAX is not an AI-based Biomedical Question-
Answering system such as IBM Watson (Ferrucci, 2012), MedQA
(Yu et al., 2007) or BioSQUASH (Shi et al., 2007). Such question-
answering systems can provide a direct semantic answer computa-
tionally extracted from relevant biomedical documents via natural
language processing (NLP) techniques. Thus, the knowledge used in
these systems is only limited to document-based knowledge.
Further, ARAX differs from the NLP-based document search tool
BioMed Explorer (sites.research.google/biomedexplorer/); BioMed
Explorer is designed to answer a question by finding relevant resour-
ces (such as articles) using semantic search and showing excerpts
from those resources. ARAX, in contrast, is based on multiple types
of data sources (e.g. publications, databases and electronic health
records). Instead of directly providing an intuitive answer, ARAX is
more like a ‘searching and computing engine’ where it provides a
self-developed domain language to translate a specific biomedical
question into a query graph, ‘search’ for answers from different KPs
and then perform computations with the resulting graphs. Thus, it
can facilitate querying and exploring a significant fraction of pub-
lished biomedical knowledge and public biomedical knowledge-
bases. However, unlike search engines or semantic search engines,
ARAX allows users to create custom KG analysis workflows, as
well as access reasoning modules for specific translational applica-
tions like drug repurposing.

ARAX was built to help biomedical researchers explore struc-
tured knowledge and help generate new hypotheses. ARAX is for re-
search purposes and is not meant to be used by clinicians in the
course of treating patients. As the system is being actively developed,
there is no expectation that results from queries run on ARAX will
be retained indefinitely. Future enhancements to ARAX will include

Fig. 5. A ‘result graph’ for a single result (‘proline’) for the two-hop query for media-

tors between DAO and bipolar disorder, with supporting publication (PMID:

27622935) and its corresponding relevant sentence shown (highlighted by a red

square) for a specific edge ‘Proline—biolink: related_to—bipolar disorder’

Fig. 6. ARAXi workflow (1) for finding the remdesivir mechanism-of-action down-

stream of RdRp for treating COVID-19 (Use Case 2), along with the top 25

returned results (2). The results of ‘Virus Replication’ and ‘IFNB1’ mentioned in the

main text are highlighted in yellow

8 A.K.Glen et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad082#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad082#supplementary-data


increasing the Node Synonymizer’s accuracy and improving drug-
treats-disease prediction via alternative embedding models and
classifiers.

5 Conclusion

ARAX is a computational reasoning tool that allows users to easily
extract, explore and analyze knowledge from diverse biomedical
resources. With self-developed ARAXi, ARAX allows users to en-
code their complex biomedical questions into specific KG analysis
workflows in an intuitive manner. These workflows can intelligently
integrate data from multiple biomedical KPs, analyze and filter that
data, and rank the final results. The ARAX UI further simplifies this
process by providing multiple query options and facilitating inter-
active exploration of query results. The ARAX API enables incorpo-
rating ARAX’s knowledge retrieval and reasoning capabilities
within a workflow involving non-ARAX tools. We believe that
ARAX can help life sciences researchers to more effectively interpret
new research findings and develop new hypotheses.
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