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ABSTRACT Islets of Langerhans operate as multicellular networks in which several hundred b cells work in synchrony to
produce secretory pulses of insulin, a hormone crucial for controlling metabolic homeostasis. Their collective rhythmic ac-
tivity is facilitated by gap junctional coupling and affected by their functional heterogeneity, but the details of this robust
and coordinated behavior are still not fully understood. Recent advances in multicellular imaging and optogenetic and photo-
pharmacological strategies, as well as in network science, have led to the discovery of specialized b cell subpopulations that
were suggested to critically determine the collective dynamics in the islets. In particular hubs, i.e., b cells with many func-
tional connections, are believed to significantly enhance communication capacities of the intercellular network and facilitate
an efficient spreading of intercellular Ca2þ waves, whereas wave-initiator cells trigger intercellular signals in their cohorts.
Here, we determined Ca2þ signaling characteristics of these two b cell subpopulations and the relationship between them
by means of functional multicellular Ca2þ imaging in mouse pancreatic tissue slices in combination with methods of complex
network theory. We constructed network layers based on individual Ca2þ waves to identify wave initiators, and functional
correlation-based networks to detect hubs. We found that both cell types exhibit a higher-than-average active time under
both physiological and supraphysiological glucose concentrations, but also that they differ significantly in many other func-
tional characteristics. Specifically, Ca2þ oscillations in hubs are more regular, and their role appears to be much more stable
over time than for initiator cells. Moreover, in contrast to wave initiators, hubs transmit intercellular signals faster than other
cells, which implies a stronger intercellular coupling. Our research indicates that hubs and wave-initiator cell subpopulations
are both natural features of healthy pancreatic islets, but their functional roles in principle do not overlap and should thus not
be considered equal.
SIGNIFICANCE Healthy pancreatic islets contain hundreds of b cells that operate in synchrony to secrete pulses of
insulin and thereby ensure metabolic homeostasis. The collective activity within these functional syncytia is influenced by
two subpopulations of b cells, namely hubs and wave-initiator cells. The latter operate as triggers of intercellular Ca2þ

signals that synchronize the cells, while the former facilitate their spreading due to their exceptional role in the multicellular
network. Here, we determine signaling characteristics of b cell populations while they are still embedded in pancreatic
tissue, assess their potential overlap, and their persistency over time. Understanding how the collective rhythmicity is
established within heterogeneous cellular subpopulations is of paramount importance also to assess the changes
associated with the pathogenesis of diabetes.
INTRODUCTION

Decoding cellular responses to changes in the environment
is of fundamental importance to our understanding of living
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systems (1). While in the past most of the studies focused on
isolated cells or population averages, the scope is nowadays
shifting toward networked cell populations. This approach
is also being applied to the insulin-secreting b cells from
pancreatic islets of Langerhans. These microorgans orches-
trate oscillations in the circulating insulin with a period of
about 3–15 min, which is crucial for maintaining normal ho-
meostasis of glucose and other nutrients (2,3). b Cells are
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Hubs and wave initiators in islets
the most prevalent cell type within islets (4–6), and are
nutrient-sensing units that respond to glucose stimulation
with two distinctive phases (7–12). Following stimulation
and after a time needed for b cells to metabolize glucose,
b cells respond with an initial transient increase in intracel-
lular Ca2þ concentration ([Ca2þ]IC). This phase is typically
referred to as the first phase of response. Afterward, b cells
exhibit repetitive [Ca2þ]IC oscillations that persist during
the course of stimulation, and this phase is named the sec-
ond or the sustained phase of response. Both phases were
found to be strongly glucose dependent (11,13,14). Most
importantly, b cells do not interact only with their environ-
ment but also among themselves. They are strongly electri-
cally coupled and form a functional syncytium. Cell-to-cell
interactions encompass direct electrical coupling through
gap junctions composed of connexin36, as well as by para-
crine, autocrine, and juxtacrine signaling (15–19). Intercel-
lular coupling is essential for the coordination of cellular
responses through which insulin is released in proportion
to stimulation and metabolic demands (17,20–23). If, how-
ever, cell-to-cell communication is impaired, the coherent
patterns of cellular activity are abolished, leading to dysre-
gulated plasma insulin oscillations and to glucose intoler-
ance (21,24), as observed in numerous models of obesity
and diabetes mellitus (20,25–28).

Early studies assumed that b cell populations are rather
homogeneous, but the subsequent functional analyses have
discovered a remarkable degree of heterogeneity that mani-
fested itself on the transcriptomic (29–33), metabolic (34),
electrophysiological (31,32,35–38), calcium (11,35,39),
and secretory (40,41) levels. This heterogeneity has impor-
tant functional implications, as the presence of specialized
subpopulations of b cells probably has a significant impact
on how the cells respond to changes in the biochemical
composition of their environment, on their collective activ-
ity, and consequently on insulin release (7,42).

In recent years, advances in multicellular imaging of
[Ca2þ]IC accompanied by network analyses have become
an indispensable tool for investigating how cellular hetero-
geneity within islets affects their collective activity and
function (27,43–50). Historically, network analysis focused
mainly on the response during the sustained glucose stim-
ulation. It is now generally accepted that, during this phase
a subpopulation of cells (termed hub cells) shows a dispro-
portionally high number of functional connections with
other cells (35,43,44,46,49,51–54). A relatively high frac-
tion of hub cells, short internodal distances, and highly
clustered organization, all characteristics of broad-scale
small-world networks, are believed to enhance communi-
cation capacity and robustness to perturbations within islets
(7,44,55). The role of hub cells and their impact on islet
function has been extensively debated, offering opposing
views on the matter. In principle, electrophysiologists are
in general skeptic about the concept of exceptional cells,
whereas imaging and molecular biology experts are vigor-
ously defending these ideas (46,53,56–60). Currently, the
presence of hub cells in b cell functional networks is well
acknowledged, but their exact functional roles have yet to
be determined. It is important to note that broad-scale
small-world functional networks with hub cells can arise
due to heterogeneous nearest-neighbor coupling of hetero-
geneous b cells that are synchronized by propagating inter-
cellular waves, without the need for physical long-range
connections or small-world networks (61). Furthermore,
[Ca2þ]IC wave analyses along with photopharmacological
interventions identified subpopulations of cells that rank
first during a particular intercellular wave, i.e., wave-initi-
ator cells. In the literature, these cells have often been
termed pacemaker cells (43,44). Since some authors sug-
gest that the term pacemaker should be reserved for cells
that display an intrinsic oscillatory behavior largely inde-
pendent of the prevailing conditions and are necessary for
oscillations to occur in other cells (which b cells do not),
in this work, we refer to these cells as wave initiators
(42). In addition, since there are different types of oscilla-
tions in the islets that are possibly all synchronized by
intercellular waves, we wish to underline that, in this
work, we focused on the so-called fast [Ca2þ]IC activity
and their corresponding intercellular waves (6,62). This
subpopulation of cells elevate their [Ca2þ]IC earlier than
the rest of the cells during the course of wave spreading
and have been reported to be characterized by elevated
excitability levels, increased glucokinase activity, and
higher-than-average natural frequencies (13,63–65).
Importantly, the wave-initiator cells should not be confused
with another subpopulation, i.e., first responder cells.
These cells were identified in the initial transient phase
when the cells respond to stimulatory glucose levels and
differ in principle from the cells that trigger the repetitive
intercellular waves during sustained activity. The first
responder cells have been shown to display high excit-
ability (7,44,59) and large heterogeneity that is glucose
dependent (11,66). Thus, the existence and importance of
b cell subpopulations are now generally acknowledged,
and we are starting to unveil the relative contributions of
these subpopulations to collective b cell activity in
different phases. However, the studies described above
focused on particular subpopulations and, to the best of
our knowledge, none characterized the subpopulations
simultaneously, thus hampering our understanding of their
complex interactions. In an attempt to unify seemingly
opposing and partial views on b cell heterogeneity, in this
study we applied complex network-based analyses in com-
bination with high-resolution multicellular confocal
[Ca2þ]IC imaging in acute mouse pancreas tissue slices.
We meticulously describe the Ca2þ signaling characteris-
tics of different b cell subpopulations and evaluate their
overlap as well as their temporal stability, with a special
emphasis on the recently debated relationship or overlap
between hub and wave-initiator cells.
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MATERIALS AND METHODS

Experimental protocol

The study was conducted in strict accordance with all national and Euro-

pean legislation (Directive 63/2010/EU) and recommendations on care

and work with laboratory animals and approved by the Administration

for Food Safety, Veterinary Sector and Plant Protection of the Republic

of Slovenia (approval nos. U34401-12/2015/3 and U34401-35/2018-2).

Acute pancreas tissue slices were prepared from nine male NMRI mice

aged 2–5 months, as described previously (39,67,68). In brief, after sacri-

ficing the animals by cervical dislocation, the abdominal cavity was ac-

cessed via laparotomy. The common bile duct was clamped distally at

the major duodenal papilla. The pancreas was injected at the proximal

end with 1.9% low-melting-point agarose (Lonza Rockland, ME), which

was dissolved in extracellular solution (ECS) (consisting of 125 mM

NaCl, 26 mM NaHCO3, 6 mM glucose, 6 mM lactic acid, 3 mM myo-

inositol, 2.5 mM KCl, 2 mM Na-pyruvate, 2 mM CaCl2, 1.25 mM

NaH2PO4, 1 mM MgCl2, 0.5 mM ascorbic acid), and maintained at

40�C. Following injection, the pancreas was cooled with the ice-cold

ECS, extracted from the animal, placed into a petri dish containing ice-

cold ECS, and cut into approximately 100 mm3 pieces, which were after-

ward embedded into agarose and cut with a vibratome (VT 1000 S, Leica

Biosystems, Deer Park, IL) into 140 mm thick slices. Throughout the entire

procedure, the ECS was continuously bubbled with a gas mixture of 95%

O2 and 5% CO2 at barometric pressure to ensure a pH of 7.4 and proper

oxygenation. During cutting slices were gently collected and transferred

into a 100 mm petri dish containing 40 mL of HEPES-buffered saline

(HBS) (consisting of 150 mM NaCl, 10 mM HEPES, 6 mM glucose,

5 mM KCl, 2 mM CaCl2, 1 mM MgCl2; titrated to pH 7.4 with 1 M

NaOH) with 6 mM glucose at room temperature until being dyed. For

dye loading, the slices were transferred into a 5 mL petri dish containing

6 mM Calbryte 520 AM (AAT Bioquest, Sunnyvale, CA), 0.03% Pluronic

F-127 (w/v), and 0.12% dimethyl sulfoxide (v/v) dissolved in HBS for

50 min at room temperature on an orbital shaker. Unless stated otherwise,

all chemicals were obtained from Sigma-Aldrich (St. Louis, MO).

Individual stained slices were placed into the recording chamber for mi-

croscopy, continuously perfused with carbogenated ECS containing 6 mM

glucose at 37�C. Perfusate was changed manually to ECS containing 8 or

12 mM glucose concentration at 37�C for 40 or 20 min, respectively, to

stimulate b cells. The slice was reintroduced to the perfusate containing

6 mM glucose in ECS for at least 15 min after stimulation. For confocal

functional multicellular Ca2þ imaging, we used a Leica TCS SP5 AOBS

Tandem II upright confocal microscope system with a Leica HCX APO

L water immersion objective (20�, NA ¼ 1.0). Fluorophore was excited

two to three cell layers deep in the tissue (39) with a 488 nm argon laser

to avoid damaged cells at the slice surface. The fluorescence was detected

with a Leica HyD hybrid detector in the range of 500–700 nm (all from Le-

ica Microsystems, Wetzlar, Germany). Before and after the time series,

high-resolution (1024 � 1024 pixels) images were acquired to assess

possible sample motions. The resolution of the image series was

512 � 512 pixels at 10 Hz allowing discrimination of individual [Ca2þ]IC
oscillation at single-cell resolution. Individual cells in islets were manually

selected for each time series without motion artifacts as regions of interest

(ROIs) (46) and exported using custom software (ImageFiltering, copyright

Denis �Speli�c). Further analysis with in-house MATLAB scripts included a

combination of linear and exponential fitting to eliminate photobleaching

effects (39).
Ca2D signal processing and analysis of b cell
activity

Ca2þ traces (fluorescence signals of Calbryte 520 AM) for manually

selected ROIs were exported as the F/F0 ratio employing custom software

(ImageFiltering, copyright Denis �Speli�c). Signals with extensive artifacts
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or a too low signal-to-noise ratio and those with evident non-b cell-like fea-

tures were excluded from further analysis. The activation delay of the first

phase response, i.e., the delay for initial increase in activity following

glucose stimulation (39), was assessed manually for each ROI from unpro-

cessed time series. For the plateau phase activity, i.e., the phase of sustained

oscillatory activity following the first phase, all Ca2þ traces were processed

with a zero-lag band-pass filter (cutoff frequencies 0.05 and 1.0 Hz) and

additionally smoothed with an adjacency averaging procedure. After

smoothing, traces were binarized (48), and binarized time series were

used to calculate the relative active time and the interoscillation interval

variability. The former reflects the average fraction of time that cells spend

in an active state with increased [Ca2þ]i and was simply determined as a

fraction of 1 (i.e., ‘‘on’’ states), whereas the latter indicates the regularity

of oscillations and is defined as the ratio between the SD of interoscillation

interval lengths and the corresponding mean interval length (69). Binarized

traces were also used to extract individual intercellular Ca2þ waves and to

determine the activation sequence of b cells within individual waves, as ex-

plained in continuation. The methodology of Ca2þ signal processing is

illustrated in Fig. 1 A.
Assessing hub and wave-initiator cells with
network analysis

We first briefly describe the general principles of network analyses that we

used to determine hub and wave-initiator cells along with their signaling

characteristics. Both subpopulations were in principle determined on the

basis of the whole plateau phase of sustained activity (20–60 min intervals).

Hub cell populations were determined from functional correlation-based

networks from which we extracted 1/6 of the cells with the most functional

connections. To determine wave-initiator cells, we constructed network

layers for each Ca2þ wave and determined the cells that were among the

wave initiators—the 1/6 of cells that most often activated among the first

within individual waves were deemed as the wave-initiating subpopulation.

Typically, a series of 80–120 wave-based network layers was used for this

analysis. For the extracted subpopulations we then separately investigated

whether they exhibit exceptional Ca2þ signaling characteristics and as-

sessed their potential overlap. Specifically, we analyzed how the relative

active time, interoscillation interval variability, and activation delay depend

on the number of functional connections and on the initiation parameter

value. It should be noted that, with the analyses of activation delays, i.e.,

the time lag of individual cells responding to stimulation, we studied the

possible relation to the so-called first responding cell subpopulation. More-

over, we investigated the relationship between functional and wave-based

network characteristics with emphasis on the relation between hub and

wave-initiator cells. Finally, we also determined the temporal persistency

of hub and wave-initiator cells. The latter was assessed by evaluating the

role of cells between consecutive wave-based network layers. For the

former, we additionally generated evolving functional correlation-based

networks. Specifically, we have used rolling correlation analysis to generate

a temporal series of functional networks and determined how the number of

functional connections and the role of hub cells evolved throughout the

whole interval of sustained activity. All methodological details are further

explained in the following subsections.
Construction of correlation-based functional
networks

We computed the pairwise Pearson’s correlation coefficients to quantify the

collective b cell activity during the whole plateau phase of sustained activ-

ity. By this means, correlation matrices (Fig. 1 B) were determined for each

islet. These were then used to construct functional networks (Fig. 1 C) in

which nodes represent individual b cells, and their locations correspond

to the physical positions of cells in tissue slices (54,55). Connections

were established based on the correlation matrix. To avoid an arbitrary
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threshold selection, we used variable thresholds to extract the networks so

that the average node degree (number of connections per cell) in all islets

was kavgz8. This seemingly arbitrary number was used to mimic realistic

b cell connectivity in the tissue (70). However, it should be noted that

within reasonable limits the results are qualitatively independent of the

exact value (62), as we also demonstrate in our supporting material. Hetero-

geneity in network connectivity was assessed through the computation of

node degrees. Fig. 1 D shows the distribution of node degrees for a repre-

sentative islet with indicated 1/6 (17%) of the most connected cells, i.e., hub

cells.
Characterizing intercellular signals with Ca2D

wave-based network layers

Individual intercellular Ca2þ waves were extracted from binarized cellular

signals using a space-time clustering algorithm described before (48). In

short, cells i and j were considered part of the same wave, i.e., wave-

network layer a, if their onsets of oscillations (Ti and Tj) were close enough

in space and time. Specifically, the spatial threshold Rs was determined on

the basis of the average intercellular distance and the corresponding SD:

Rs ¼ <dij > � xSDðdijÞ, where dij is the distance between cells i and j

in a given islet. For the temporal threshold we took Rt ¼ 0.7 s, which

roughly corresponds to 1/3 of the total time for a wave to travel across

the whole islet. Most importantly, within reasonable and physiologically

meaningful values of the threshold, our analyses are qualitatively indepen-

dent on the choice of their values, as we also demonstrate in the supporting

material. Moreover, all cells belonging to the given Ca2þ wave were ranked

by their order of activation (Fig. 2 A). Typically, between 80 and 120 waves

were detected during the plateau phase per islet, and the wave front encom-

passed cells spanning over several tens of micrometers, implying that rela-

tively small errors in binarization due to inherent experimental noise in the

Ca2þ signal could result in inconsistent coordinates of wave initiators. In an

attempt to overcome this issue, each b cell was assigned an initiation

parameter. The initiation parameter was defined as the fraction of waves

in which a cell was within the smallest 10% of activation ranks. The distri-

bution of the initiation parameter per islet was used to define cells with the

highest tendency to initiate waves (i.e., wave initiators) using an arbitrary

cutoff value of 17% (1/6). Furthermore, weighted and directed connections

between all cell pairs i and j within each wave-based layer a were estab-

lished, and the direction was i � > j if Ti < Tj and vice versa. If the two

cells activated simultaneously, they were connected with an undirected

connection (Fig. 2 C). Weights of the connections were determined based

on the time delays between the activations of cells i and j within the

wave (
��Ti � Tj

��). Therefore, the weights reflect how fast the excitation

signal traveled between different cell pairs. The average weights of individ-

ual cells determined from all temporal layers were used as a proxy for inter-

cellular coupling, as they encode the information on how fast on average a

given cell transmits intercellular waves. As demonstrated previously, the ef-

ficiency of intercellular coupling between direct neighbors depends on the

gap junctional conductivity and the so-called input conductance, which is

essentially the nonjunctional plasma membrane conductance, with the

KATP and Ca2þ-dependent potassium conductance playing major roles.

To complicate things further, both junctional and membrane conductance

change or may change repeatedly during the plateau phase of fast oscilla-

tions. We elaborate this into more detail in the discussion. By this means,

each wave-based network layer contains a set of connections encompassing

the course of the wave and the transmission delays along its path. Our anal-

ysis considered only intercellular Ca2þ waves in which more than 45% of

all cells in the islet participated. To assess the interwave similarity and the

persistency of wave initiators, we constructed multilayer networks by stack-

ing all waves on top of each other in chronological order for each recording

(Fig. 2 D) (48), as explained in more detail in continuation. Since in this

work we, for the first time, use two different kinds of networks, it is worth

explicitly pointing out that they are fundamentally different. The correla-
tion-based network (Fig. 1) is the now standard approach to constructing

and analyzing functional network properties, such as the number of links,

based on similarities between long Ca2þ traces that each contain a large

number of fast oscillations, whereas the Ca2þ wave-based network

(Fig. 2) is a new approach to quantify intercellular wave propagation by

means of directed weighted graphs and each such graph is essentially based

on a single intercellular wave that synchronizes a single fast oscillation, and

tens of such graphs are then pooled to obtain wave network parameters,

such as the initiation parameter.
Quantifying the overlap of b cell subpopulations

We quantified the extent of overlap between the four subpopulations of

cells: 1) first responders (during the first phase), 2) initiators of waves

(i.e., wave-initiator cells), 3) most active cells (during the plateau phase),

and hub cells (cells with a high number of functional connections during

the plateau phase). The subpopulations of hub and wave-initiator cells

were defined above. First responder cells were defined as the top 17% (1/

6) of the cells that responded first to stimulatory glucose concentrations

(8 or 12 mM). The most active cells were defined as the top 17% (1/6) of

the cells with the highest relative active time values. We computed the pair-

wise overlap of cellular subpopulations (Oi;j) as the ratio of the actual over-

lap probability (Pi;j
overlap) and the probability that cells belong to both

subpopulation i and j by chance (Prand):

Oi;j ¼ Pi;j
overlap

Prand

i; j˛

½Hubs; Initiators;First responders;Most active� isj; (1)

where Pi;j
overlap ¼ mðiXjÞ

N ; mðiXjÞ is the cardinality of the overlap of subpop-
ulations i and j and N is the number of cells in the recording, and
Prand ¼ mðiÞmðjÞ
N2 (mðiÞ and mðjÞ are the cardinalities of sets i and j).
Temporal persistency of the initiator and hub
cells

For each detected Ca2þ wave a, a set of initiator cells (Ia) was constructed

based on the aforementioned 10% of the first activated cells within individ-

ual Ca2þ waves. Temporal initiator cell stability IS was calculated as the

relative overlap of the sets of initiator cells in waves a and a0 as the so-

called Jaccard similarity:

ISa;a0 ¼ Ia;a
0

shared

Ia;a
0

unique

; (2)

where Ia;a
0

shared is the cardinality of the intersection of the sets of initiator cells

and Ia;a
0

is the cardinality of the union of the two sets of initiator cells.
unique

Equation (2) yields a value between 0 and 1, where 0 means there are no

cells in the intersection and 1 means a perfect intersection. The latter re-

flects the scenario where all initiator cells in layers a and a0 were the

same. With Eq. (2), we constructed initiator similarity matrices for all

Ca2þ wave pairs a and a0 in individual recordings and calculated the

average initiator similarity ISðnÞ as a function of the temporal distance

for all wave pairs that were m steps apart as:

ISðmÞ ¼ 1

M

XM

a ¼ 1
ISa;ðaþmÞ; (3)

where m ¼ 1; 2;. and M is the number of Ca2þ waves that are m steps

apart.
To assess the temporal persistency of functional connectivity

patterns and hub cells, we computed the temporal evolution of the
Biophysical Journal 122, 784–801, March 7, 2023 787



FIGURE 1 Methodology to analyze Ca2þ signals

and construct functional correlation-based b cell net-

works. (A) Raw Ca2þ signal in a representative b

cell (upper panel, dark gray line) during glucose stim-

ulation with 8 mM glucose. Depicted are the activa-

tion delay after switching to stimulatory conditions,

and the plateau phase of sustained oscillatory activity.

The light gray line below represents the corresponding

processed b cell signal. The lower panel shows a

zoom-in on the plateau phase of the processed Ca2þ

signal. The blue line represents the corresponding bi-

narized activity used for further analysis. The hatched

area denoted by tAT signifies the active time of one

selected Ca2þ oscillation. (B) Correlation matrix

computed based on pairwise comparisons of Ca2þ sig-

nals. (C) A representative correlation-based functional

b cell network. Nodes represent the physical locations

of b cells, and the connections signify cells with high-

ly correlated cellular activity. Red dots indicate the

cells with the most connections (i.e., 17% hub cells

with the highest node degree values). (D) Swarm

plot presenting the relative node degree distribution.

Red dots indicate the 17% of most connected cells

(as in (C)). Individual node degrees were normalized

with the islet size, i.e., the number of all cells in the

islet. To see this figure in color, go online.
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correlation-based network using a sliding window of Tsw ¼ 300 s. By

this means we generated a temporal series of functional networks rolling

over the whole plateau phase, so that networks generated in each step

represent a temporal layer b with kavgz8. To ensure comparison with

the analysis of the initiator cell persistency, we used a temporal step

size equal to the average interoscillation interval in each recording. In

this case, the temporal distance between two layers b and bʹ roughly cor-

responds to the interval between two subsequent Ca2þ waves a and a0,
which are, on average, also separated by the same temporal distance.

The average node degree in all temporal layers and the corresponding

SDs were calculated for each cell in the islet. Moreover, in each layer

b, 17% (1/6) of the cells with highest node degrees were designated

hub cells and formed a set Hb. Temporal hub similarity (71) was then

assessed via the Jaccard similarity index as the relative overlap of the

sets of hub cells in temporal layers b and b0 as:

HSb;b0 ¼ Hb;b0
shared

Hb;b0
unique

; (4)
where Hshared is the cardinality of the intersection of the sets of hub cells,

and Hb;b0 is the cardinality of the union of the two sets of hub cells.
b;b0

unique

This yields a value of HS for layers b and b0 between 0 (empty intersection)

and 1 (perfect intersection), with the latter representing the scenario where

hub cells in both layers b and b0 were the same. With Eq. (4), we con-
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structed hub similarity matrices for all layer pairs b and b0 in individual re-
cordings and calculated the average hub similarity HSðnÞ as a function of

temporal distance for all pairs that were n layers apart as:

HSðnÞ ¼ 1

N

XN

b ¼ 1
HSb;ðbþnÞ; (5)

where n ¼ 1; 2;. and N is the number of all network layer pairs that are n

layers apart.
Data pooling, normalization, and statistical
analysis

To compare different signaling parameters from all cells in different islets,

we first normalized all values with the average value of the parameter in the

islet, yielding values distributed around unity. We pooled the data sepa-

rately for 8 and 12 mM glucose stimulation. Next, pooled parameter values

were separated into the lowest 1/6, intermediate 2/3, and highest 1/6 tier.

Statistical significance of differences (p values) between individual tiers

for each parameter was calculated with the Kruskal-Wallis one-way anal-

ysis of variance on ranks with a post hoc pairwise multiple comparison pro-

cedure (Dunn’s method). In addition to p values, we also calculated the

effect size d (Cliff’s Delta) of differences between pairs of parameter tiers

Qi and Qj (i; j ˛ [lowest 1/6, intermediate 2/3, and highest 1/6], isj) as fol-

lows (72):



FIGURE 2 Intercellular Ca2þ wave analysis. (A)

Average Ca2þ signal of a representative islet (upper

panel) and corresponding raster plot with indicated

oscillation onsets in individual intercellular Ca2þ

waves (lower panel). The colors of dots represent

the activation rank of individual cells within each

wave, with red and blue colors denoting the first and

last activated cell, respectively (see also the color

bar in (C). Stars indicate the time point of the onsets

of different Ca2þ waves. (B) Raster plots for four sub-

sequent Ca2þ waves (see the color of the stars to link

with the data on (A)). (C) Directed Ca2þ wave

network extracted from the first Ca2þ wave in (B) in

which the colors of the cells reflect the sequence of

activation. The activation ranks are color coded as

indicated by the color bar. (D) The sequence of the

four successive Ca2þ waves is presented as a multi-

layer temporal network. The connections and the

colors of cells have the same meaning as in (C). To

see this figure in color, go online.
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d ¼ mðQi >Qj
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where mðQj >QjÞ and mðQi <QjÞ are the cardinalities of the subsets,

where Qi is larger than Qj and vice versa, and mðQiÞ and mðQjÞ are the car-
dinalities of the two tiers of the parameter. The effect size was then catego-

rized as negligible – N (d < 0.147), small – S (0.33 > d R 0.147),

medium – M (0.474 > d R 0.33), or large – L (d R 0.474) depending

on the value of d (73).
RESULTS

We applied functional multicellular calcium imaging and in-
depth network analysis to assess b cell roles and functional
parameters within the pancreatic islets. We created func-
tional correlation-based networks to identify highly inter-
connected cells that act as signal transduction hubs (i.e.,
hub cells). We also created intercellular Ca2þ wave-based
networks to identify Ca2þ wave-initiator cells and describe
the course of the intercellular signals. Recordings of b cell
activity in acute tissue slices were performed either under
physiological (8 mM) or supraphysiological (12 mM)
glucose concentration.
Analyzing the Ca2D signaling characteristics of
hub and wave-initiator cells

First, we investigated how cellular signaling parameters
relate to their corresponding node degree, i.e., the number
of functional connections in the correlation-based network.
Results are shown in Fig. 3 for all recordings performed
with 8 mM (upper panels, cyan) and 12 mM (lower panels,
blue) glucose stimulation. Data points for individual cells
(gray dots) are shown in each panel, along with the collec-
tive data for cells with the 1/6 lowest, 2/3 intermediate, and
1/6 highest correlation network node degrees (boxplots).
Note that the signaling parameter values of each cell
were normalized with the average value of their corre-
sponding islet to allow the comparison between different
islets. Fig. 3 A shows the relative active time of cells as
a function of the node degree. A clear correlation between
the number of functional connections and the relative
Biophysical Journal 122, 784–801, March 7, 2023 789



FIGURE 3 Relationship between various Ca2þ signaling parameters and the number of functional connections in correlation-based networks. Dependence

of the relative active time (A), interoscillation interval variability (B), activation delay (C), initiation parameter (D), wave-network node degree (E), and the

average node weight in the wave network, i.e., average transmission delay (F) on the correlation network degree for stimulation protocols with 8 mM glucose

(first and third row, cyan) and 12 mM glucose (second and fourth row, blue). Gray dots represent normalized values of individual cells, and boxplots show the

lowest 1/6, the middle 2/3, and the highest 1/6 connected cells in the functional network. All panels show the pooled data from all recordings whereby in-

dividual values were normalized by the average value of the specific parameter in the given islet. Boxes determine the interval between the 25th and the 75th

percentile, whiskers denote the 10th and the 90th percentile, and lines within the boxes indicate the median. Data were pooled from the following number of

islets/cells: 8/865 (8 mM glc); 8/1103 (12 mM glc). Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001; n.s., not significant. Effect sizes: negli-

gible – N (d < 0.147), small – S (0.33 > d R 0.147), medium – M (0.474 > d R 0.33), or large – L (d R 0.474). To see this figure in color, go online.
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active time was observed in both glucose concentrations,
indicating that the hub cells tend to be among the most
active cells.
790 Biophysical Journal 122, 784–801, March 7, 2023
In contrast, a stark anticorrelation was found between the
interoscillation interval variability and the node degrees
(Fig. 3 B). The cells with the most functional connections
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exhibited the most regular calcium oscillations, and the
trend was prominent under both stimulatory glucose levels.
In Fig. 3 C, we show how the delay in the onset of Ca2þ os-
cillations after switching from substimulatory to stimulatory
glucose depends on the node degree. There appears to be no
correlation between activation delays and node degrees un-
der 8 mM glucose, while under 12 mM glucose the most
connected cells tended to activate first.

Next, we examined the interrelations between cells’ roles
in the correlation-based functional networks and in the Ca2þ

wave-derived network layers. Fig. 3 D shows the relation
between the initiation parameter values of individual cells
and the number of functional connections. It turned out
that there was no discernible correlation under physiological
stimulation, whereas under supraphysiological stimulation,
a slight anticorrelation was inferred. These results indicate
that the most connected cells in the correlation-based func-
tional networks, i.e., hub cells, do not principally act as
wave initiators in the wave-based networks of the same is-
lets and that, under supraphysiological conditions, the
waves are actually more likely to be initiated from less con-
nected cells. Moreover, there is a powerful relation between
the number of connections each cell has in the functional
and Ca2þ wave-based network (Fig. 3 E), which substanti-
ates their central role in transmitting intercellular waves.
Most importantly, results in Fig. 3 F reveal a compelling
correlation between the node degree in the correlation
network and the average node weights in the wave-based
network. The latter reflects the delays in intercellular signal
transmission, which implies that hub cells exhibit a stronger
intercellular coupling when compared with cells with less
functional connections. It should be noted that the average
node degree in the wave-based network (Fig. 3 E) portrays
only the number of connections with direct neighbors in
the observed focal plane, without taking into account their
weights, whereas the average node weight (Fig. 3 F) is
computed as the sum of all in- and out-weights of connec-
tions divided by the number of connections of this cell. In
other words, hub cells, as defined by the correlation-based
network, have both a higher number of direct neighbors in
the wave-based network and the average phase-shift be-
tween their own oscillations and oscillations in their neigh-
bors are significantly shorter. Finally, since theory predicts
that the velocity of waves should not change with increasing
glucose (see (86) and discussion for more details) we quan-
tified the glucose dependence of node weights in the wave-
based network (Fig. S1). The range of average node weights
was 0.1–0.35 s and thus consistent with a wave velocity in
the range of 30–100 mm/s. In hub cells, the average node
weight was approximately 20% lower in both glucose con-
centrations. Most importantly the node weight, correspond-
ing to the temporal delay between neighboring cells, did not
importantly differ between 8 and 12 mM glucose.

We then examined how different cellular signaling param-
eters depend on the Ca2þ wave initiation parameter to char-
acterize wave-initiator cells. Results are shown in Fig. 4,
where panels in Fig. 4 A clearly demonstrate that the wave-
initiating cells are the most active under physiological as
well as under supraphysiological stimulation levels. Interest-
ingly, in contrast to hub cells (Fig. 3 B), these wave-initiator
cells are not exceptional in terms of the regularity of oscilla-
tions (Fig. 4B). Fig. 4C presents the activation delays of cells
after the onset of stimulation depending on the initiation
parameter. Upon stimulation with 8 mM glucose, there was
a tendency of the wave initiators responding first during the
first phase, whereas under 12 mM glucose, no correlation be-
tween these parameters was inferred.

Furthermore, our results indicate that the wave initiation
parameter relates very weakly to the cells role in the b cell
networks. In 8 mM glucose, there was no correlation,
whereas, in 12 mM glucose, wave-initiator cells tended to
have a lower-than-average number of connections in the cor-
relation-based network (Fig. 4D). Interestingly, in 8mM and
especially in 12 mM glucose, the wave initiators tended to
have a lower-than-average number of links with their neigh-
bors in the wave-based network. Moreover, in neither of the
two glucose concentrations, a correlation between the initia-
tion parameter and the average intercellular signal transmis-
sion delay between neighboring cells was observed, i.e.,
average weighted wave-based network node degree (Fig. 4
F). The above indicates that the cells that often serve as
wave initiators are not distinguished by their strength of inter-
cellular coupling with respect to individual neighbors, how-
ever, they tend to have fewer neighbors.

To design functional and wave-based networks, to deter-
mine hubs and wave initiators, and to categorize cells to
groups, we have used a specific set of parameters, which
were determined based on the nature of the data as well as
physiological relevance (see materials and methods). How-
ever, for the sake of scientific rigor, we additionally investi-
gated whether our findings are sensitive to the choice of
these parameters. In the supplementary figures we therefore
present the calculations obtained for a broad range of
different values of these parameters. We first tested whether
the arrangement of cells affects the conclusions and per-
formed two additional data splits: 1) lowest 1/10, intermedi-
ate 4/5, highest 1/10 cells (Figs. S2 and S3), and 2) lowest 1/4,
intermediate 1/2, highest 1/4 cells (Figs. S4 and S5) for the
correlation network node degree and for the initiation param-
eter. Results clearly show that all investigated signaling pa-
rameters follow the same trend regardless of the selected
data split. Next, we investigated the impact of the selected
average correlation network node degree on the identified
hub cells and the most notable signaling parameters (relative
active time, interoscillation interval variability, wave
network node weight, and initiation parameter). We per-
formed the analysis on a representative islet for average cor-
relation network node degrees kavg ¼ 6.0, kavg ¼ 8.0, and,
kavg ¼ 10.0 (Fig. S6). The identified hub cells (1/6 of most
connected cells) are largely independent of the selected
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FIGURE 4 Relationship between various Ca2þ signaling parameters and the wave initiation parameter. Dependence of the relative active time (A), inter-

oscillation interval variability (B), activation delay (C), correlation-based network node degree (D), wave-network node degree (E), and average node weight

in the wave network (F) on the initiation parameter for stimulation protocols with 8 mM glucose (first and third row, cyan) and 12 mM glucose (second and

fourth row, blue). Gray dots represent values of individual cells, and boxplots show the lowest 1/6, the intermediate 2/3, and the highest 1/6 connected cells in

the correlation network. All panels show the pooled data from all recordings whereby individual values were normalized by the average value of the specific

parameter in the given islet. Box charts are defined as in Fig. 3. Boxes determine the interval between the 25th and the 75th percentile, whiskers denote the

10th and the 90th percentile, and lines within the boxes indicate the median. Data were pooled from the following number of islets/cells: 8/865 (8 mM glc);

8/1103 (12 mM glc). Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001; n.s., not significant. Effect sizes: negligible – N (d < 0.147), small – S

(0.33 > d R 0.147), medium – M (0.474 > d R 0.33), or large – L (d R 0.474). To see this figure in color, go online.
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average node degree (Fig. S6 A) and the selected signaling
parameters also appear to follow the same trend for each
value (Fig. S6 B). Finally, we analyzed whether the wave-
792 Biophysical Journal 122, 784–801, March 7, 2023
network layer extraction is sensitive to the distance and delay
threshold parameters for wave detection, i.e., Rs and Rt (see
materials and methods). To that end, we performed the
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same wave detection process for multiple combinations of
those parameters on a representative islets plateau phase
and present the findings in Fig. S7. There is only a minor dif-
ference in the number of detectedwaves, which indicates that
within reasonable limits our results are not sensitive to the
specific values of these parameters.

In the following,we investigatedwhether there is an overlap
between specific b cell subpopulations. The results in Fig. 5 A
feature a typical isletwithmarked top1/6 of cellswith themost
functional connections (hubs), cells with the highest initiator
parameter values (wave initiators), cells that responded first
to stimulation (first responders), and that had the highest rela-
tive active time (most active cells). A visual inspection of the
plot indicates some overlap between specific cell subpopula-
tions. To investigate this further, we quantified the overlap of
cells in all recordings in 8 mM (cyan bars) and in 12 mM
(blue bars) glucose (Fig. 5B). The relative overlaps of specific
cell subpopulations are expressed concerning the overlap by
chance, such that 0 corresponds to overlap purely by chance
(see the materials and methods section for further details).
The results reveal that the intersections between the designated
cell subpopulations are not large. In both glucose concentra-
tions, the overlap is rather well pronounced only between the
wave-initiating and themost active cells,where approximately
42% of specific cell types were present in both groups. There
also appears to be a certain overlap between the initiators
and the first responders and between the first responders and
the most active cells, but only under physiological stimulatory
conditions. The relation between the hub and the first respond-
ing cells seems to be very glucose dependent, as in 8 mM a
negative overlap was detected. In contrast, in 12 mM glucose,
the opposite was observed. Finally, practically no overlap be-
tween the hub and the wave-initiator cells was detected in
either glucose concentration, indicating that, in principle,
they represent different and independentb cell subpopulations.
Assessing the temporal persistency of hub and
wave-initiator cells

Finally, we analyzed the temporal persistence of hub and
wave-initiator cells over the course of the plateau phase of
a single square pulse stimulation by glucose. In Fig. 6 A,
FIGURE 5 Characterizing the overlap of specific b cell

subpopulations. (A) Correlation-based functional b cell

network extracted from a typical islet. Node size reflects

the number of functional connections per cell. The red-

colored cells indicate 1/6 of the 1) most connected cells,

i.e., hub cells (upper left), 2) wave initiators, i.e., cells

with the highest initiation parameter values (upper right),

3) first responding cells to stimulatory glucose concentra-

tions, i.e., cells with the lowest activation delays (lower

left), and 4) most active cells, i.e., cells with the highest

active times (lower right). (B) Bar plots show the relative

overlap of specific cell subpopulations compared with the

overlap by chance that two cells belong to the same sets

of subpopulations (zero means an approximately 2.8%,

i.e., (1/6)2, overlap). To see this figure in color, go online.
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FIGURE 6 Assessing the temporal persistency of hub and wave-initiator cells. (A) The evolution of relative node degrees in the functional b cell network

within a sliding temporal window (width 300 s, step 20 [8 mM] and 5 [12 mM] s) in two typical islets with 8 mM (left) and 12 mM (right) glucose stimulation.

The relative number of functional connections is color coded as indicated by the color bar. (B) Upper panels show the mean-field Ca2þ signal of the same two

representative islets as in (A), and lower panels show raster plots indicating individual Ca2þ oscillations with color-coded activation sequence within indi-

vidual Ca2þ waves. The ranks for oscillation onsets are color coded as indicated by the color bar, such that the red dots reflect the initiating cells within a

given wave. (C) Average interlayer hub similarity as a function of interlayer distance n (left) and the average values of interlayer hub similarity (right). (D)

The average values of wave-network interlayer initiator similarities (left) and the average wave-network interlayer initiator similarity as a function of the

interlayer distance m (right). (E) Temporal variability of node degrees in correlation-based networks dependent on the node degree. Gray dots denote the

values of individual cells, and the boxplots the 1/6 lowest, 2/3 intermediate, and 1/6 highest connected cells. (F) Temporal cellular activation rank variability

dependent on the initiation parameter. Gray dots represent the values of individual cells, and the boxplots the 1/6 lowest, 2/3 intermediate, and 1/6 highest

connected cells. Boxes determine the interval between the 25th and the 75th percentile, whiskers denote the 10th and the 90th percentile, and lines within the

boxes indicate the median. (C–F) The pooled data from the following number of islets/cells: 8/865 (8 mM glc); 8/1103 (12 mM glc). Statistical significance:

*p< 0.05, **p< 0.01, ***p< 0.001; n.s., not significant. Effect sizes: negligible – N (d< 0.147), small – S (0.33> dR 0.147), medium – M (0.474> dR
0.33), or large – L (d R 0.474). To see this figure in color, go online.
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we present color-coded temporal evolution of node degrees
for each cell for two representative islets stimulated with
8 mM (left) and 12 mM (right) glucose. In each time step,
node degrees were computed from the correlation-based
networks within a sliding window of Tsw ¼ 300 s, and the
values were normalized relative to the highest node degree.
It appears that there are some variations in node degrees dur-
ing 8 and 12 mM glucose, but in general, the roles of the hub
and nonhub cells remained preserved even after prolonged
exposure to glucose. To assess the temporal stability of
wave-initiator cells, we visualized the cellular activation se-
quences within individual Ca2þ waves as raster plots with
indicated Ca2þ oscillations (Fig. 6 B). The colors of stripes
denote cellular activation ranks, with the red color denoting
the cells that activated first during a given wave, as indicated
by the color bar. The plots indicate that, in 8 mM glucose,
the activation patterns are rather changeable, whereas, in
12 mM, the activation patterns seem to be relatively stable
even over prolonged periods. To obtain a general insight
and to quantify how stable hubs, wave-initiator cells, and
the paths of Ca2þ waves are across time, we computed the
interlayer similarity between correlation- and wave-based
temporal network layers (see materials and methods for de-
tails) for all recordings in 8 and 12 mM glucose. In Fig. 6 C,
we show the average absolute values of the hub interlayer
similarity (right panel) and the normalized interlayer hub
similarity as a function of temporal distance between
network layers (left panel). Similarly, in Fig. 6 D, we
show the average absolute values of the interlayer wave
initiator similarity (left panel) and the normalized interlayer
initiator similarity as a function of temporal distance be-
tween network layers (right panel). It turned out that, on
average, the hub similarity between network layers is
much higher than the wave initiator similarity, which indi-
cates that the role of hub cells is significantly more persis-
tent than the role of wave-initiator cells.

Moreover, the temporal stability of hubcells did not depend
on glucose concentration, whereas the role of wave-initiator
cells was found to be more stable in 12 mM compared with
8 mM glucose. The results showing how the normalized
values of interlayer similarities decay with the temporal dis-
tance further corroborate this notion, as the interlayer Ca2þ

wave similarity declines much slower in 12 mM than in
8 mM glucose. To further evaluate the characteristics of b
cells concerning their roles in correlation- and Ca2þ wave-
based networks in detail, we quantified the dispersion of tem-
poral node degrees and initiation parameter values. The rela-
tionship between the relative correlation-based network node
degrees of cells and their corresponding SD shown in Fig. 6 E
indicates that the number of functional connections fluctuates
in time much less in cells with the most functional connec-
tions in both glucose concentrations. In contrast, we found
no clear relation between the SD of average activation ranks
inferred from onsets of Ca2þ oscillations within individual
waves and the initiation parameter (Fig. 6 F). These results
suggest that the roles of wave-initiating cells are more vari-
able and less determined than those of the hub cells.
DISCUSSION

Pancreatic islets are highly interconnected structures and
display a fascinating coordination of their rhythmic activity,
which plays a key role in the regulation of metabolic homeo-
stasis and becomes progressively impaired in diabetes mel-
litus. The increasing awareness that the intercellular
coupling and its modulation are vital to the normal islet
function has stimulated immense interest in how different
subpopulations of heterogeneous cells are functionally
arranged throughout the islets and how they mediate inter-
cellular signals. Recent advances in optogenetics, photo-
pharmacology, and computational tools have allowed the
assessment of multicellular b cell behavior revealing that
the mediating Ca2þ waves are initiated from specific sub-
regions of the islet with specific local excitability and
metabolic profiles (7,25,35,48,59,64,65,74–78). Moreover,
network analyses have emerged as promising tools to
elucidate the collective activity of b cell populations. It
turned out that the functional b cell connectivity patterns
are much more heterogeneous than one would expect
from a gap junction coupled syncytium, displaying
small-worldness and a hub-like connectivity architecture
(7,11,42,43,46,49,54,59,61,79). The complexity of these
functional interactions results from the intricate islet-wide
Ca2þ dynamics that is influenced by a multilayered cellular
heterogeneity along with heterogeneous intercellular inter-
actions and by the extracellular environment. However,
how specific specialized subpopulations of b cells con-
tribute to synchronized dynamics, network activity, persis-
tency, and initiation of intercellular signals and what are
their functional characteristics, is not clear and is a matter
of ongoing research. Particularly the term pacemaker has
in the recent literature been loosely applied to refer to hub
cells, wave-initiator cells, or to the first responding cells
that control Ca2þ elevations in response to stimulatory
glucose, as has been clarified in a very recent review by Ben-
ninger and Kravets (7). Therefore, classifying specific b cell
types and subpopulations, assessing their functional charac-
teristics, and elucidating how the multicellular consortium
coordinates the intercellular Ca2þ activity and insulin secre-
tion from an islet, have attracted a lot of attention by the islet
community and represent very vibrant topics.

In this study, we systematically addressed the aforemen-
tioned issues by combining multicellular Ca2þ imaging
in mouse pancreas tissue slices with network science
approaches. We constructed correlation-based functional
multicellular networks based on the temporal similarity of
the measured cellular dynamics, such that nodes represented
individual b cells and connections between them were es-
tablished based on thresholded pairwise correlations of
Ca2þ imaging signals (55). By these means, we detected a
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fraction of very well functionally connected cells, i.e., hub
cells. This subpopulation has already been identified before
in various experimental (44,46,49,79) and theoretical
(37,56,63,80) studies and its existence was suggested to be
important for normal islet functioning (7,42,46). Moreover,
utilization of advanced optogenetic and photopharmacolog-
ical strategies has indicated that the hub cells exhibit hyper-
polarized mitochondria, a lower insulin content resembling
a transcriptionally immature phenotype due to the low
expression levels of signature b cell transcription factors,
and that they are metabolically highly active (35,46,81).
Increased metabolic activity could at least in part be associ-
ated with our findings that hub cells exhibit a higher-than-
average activity (Fig. 3 A), although a clear overlap between
hub cells and the most active cells was observed only under
12 mM glucose stimulation and not under 8 mM (Fig. 5 B).
Moreover, we noticed a tendency of hub cells to exhibit the
most regular oscillations (Fig. 3 B). This observation indi-
cates that hub cells are typically almost always included
in whole-islet Ca2þ waves, which implies that they play
an important role in the mediation of intercellular signals.
Since hub cells tend to have a larger number of direct neigh-
bors and shorter phase lags in the wave-based network, their
Ca2þ signals are more likely to be highly correlated to a
larger number of other cells. Moreover, the above regularity
is in line with our previous finding that hub cells tend to
dissipate more energy (79). Interestingly, we also noted a
tendency of hub cells being activated first when stimulated
with 12 mM glucose, while under 8 mM glucose no such
trend was observed (Fig. 3 C), which corroborates our pre-
vious findings, but on a larger data set (11). Nevertheless,
the discrepancy observed between both stimulation levels
indicates that the guidance of Ca2þ elevations and the medi-
ation of intercellular signals are very complex processes that
are influenced by the interplay of a wide variety of factors,
such as the metabolic activity, local connectivity, and varia-
tions in gap junctional conductances, as well as by the vari-
ability of excitability profiles (7,42). To make matters even
more complicated, many of these factors are known to be
glucose dependent and change with time. These reasons
might account for the apparent inconsistencies reported in
the recent literature (35,44,54,59,63,65). It has been shown
that specific subpopulations of b cells, whose metabolic fin-
gerprints overlap with the characteristics of hub cells, can
recruit a disproportionally high number of their neighbors
(35,65), and that there exists an overlap between the cells
that drive glucose-stimulated Ca2þ elevations and hub cells
(59). In contrast, it has also been reported that the first re-
sponding cells that guide the first responses to stimulation
are defined principally by their excitability profiles and
that they do not spatially or functionally overlap with hub
cells (44), and similar conclusions have been drawn from
comprehensive in silico studies (63).

While the connection between hub and first responder
cells does not seem to be entirely clear, it is becoming
796 Biophysical Journal 122, 784–801, March 7, 2023
apparent that the hub cells are not the cells that impose
the cellular rhythm in the phase of sustained activity. Our re-
sults show that hubs are definitely not specialized initiators
of intercellular waves (or pacemaker cells as also sometimes
called in the literature). Specifically, there seems to be no
correlation between the number of functional connections
and the wave initiation parameter in 8 mM glucose, while
in 12 mM glucose there was even a slight anticorrelation
(Fig. 3 D), and there was only a random overlap between
these two subpopulations (Fig. 5 B). These findings are
also in agreement with a recent report on human islets
(43) and with results predicted by a multicellular computa-
tional b cell model (63). However, even though the hub cells
do not initiate Ca2þ waves, they could play an important
role in the coordination of intercellular signals. In our ana-
lyses we compared their roles in the functional correlation-
based network and in wave-derived networks and detected a
strong relation between the number of connections in both
types of networks, thereby highlighting their exceptional
role in mediating the collective activity. Most importantly,
a strong trend of hub cells exhibiting the shortest delays in
transmitting the intercellular signal to their neighbors was
detected in both glucose concentrations. This implies a
higher level of intercellular coupling, which might be one
of the crucial aspects of their decisive role in coordinating
Ca2þ oscillations across the islets. What we call intercellular
coupling essentially reflects the local efficiency of spreading
depolarization and Ca2þ waves and has been termed this
way in classical electrophysiological studies (82,83). This
local spreading not only depends on the intercellular
conductance determined by gap junctions but also on the
capacitance and nonjunctional membrane conductance of
the neighboring cells that are being depolarized by junc-
tional currents (70). While the cell capacitance was esti-
mated to contribute only marginally to the time lag
between neighboring cells (70), the junctional and nonjunc-
tional conductance are not only important but also change
periodically between bursts and silent phases depending
on a cell’s state of activation (82,83). We chose the term
intercellular coupling since it is impossible in our current
experiments to separately quantify the contributions by the
junctional and nonjunctional conductance. Previous
modeling suggested that KATP conductance of neighboring
cells may determine the wave velocity more importantly
than gap junctional conductance at the beginning of b cell
bursting immediately following activation by glucose (84).
Later during the sustained plateau phase the degree of syn-
chronicity is higher and all cells are close to their thresholds
for firing a burst when being activated by the incoming de-
polarization front, and thus the speed of the intercellular
wave may be predominantly proportional to the square
root of the harmonic mean of gap junctional conductivity
(85). This theory also predicts that the wave velocities
should be largely independent of the stimulatory glucose
concentration, and we confirmed this (Fig. S1).
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Furthermore, the range of average node weights in this study
was consistent with a wave velocity in the range of 30–100
mm/s, which is comparable with previous experimental
studies (39,64,75,84). Notably, the absolute values of
wave velocities tend to be higher in modeling studies, unless
a heterogeneity in intrinsic cell parameters or gap junctional
coupling or both are introduced (85,86). In hub cells, the de-
lays were approximately 20% shorter and, together with a
larger number of neighbors, this could importantly
contribute to the higher correlation of their Ca2þ signals
with signals in other cells. In addition to the above circum-
stantial arguments about the importance of gap junctional
coupling, to account for systematically higher local wave
velocities between a hub cell and its neighbors across a large
number of waves and wave directions going through it over
tens of minutes, a larger gap junctional conductance of the
observed hub cell could be a more plausible explanation
than a significantly higher input resistance or state of activ-
ity in all of its neighbors from a probabilistic point of view,
in the spirit of the Occam’s razor. However, this remains to
be clarified in future studies.

To identify Ca2þ wave initiators and to assess intercel-
lular interactions more precisely, we made use of the multi-
layer network formalism and regarded each calcium wave as
an individual network layer with weighted directed connec-
tions portraying the intercellular signal propagation. We
identified b cell subpopulations that act as wave initiators,
and these cells represented the most active cells in the islet
(Figs. 4 A and 5 B). This observation goes well in hand with
previous studies in which the cells that lead Ca2þ oscilla-
tions were indirectly shown to have a faster intrinsic oscil-
lation frequency, consistent with a rhythmic pacemaker
concept (65,74). As such, the wave initiator population
has been argued to be important for proper regulation of pul-
satile insulin release during the second phase (59,65,74). In
addition, this cell population was also found to have
elevated excitability levels (13,74,75) and lower metabolic
rates as they seem to exhibit lower NAD(P)H responses
(65) and therefore differ in this respect from the hub cell
population, in which an enhanced metabolic activity was
noticed (35,46,81). Furthermore, we observed a rather small
overlap between the subpopulation of cells that act as wave
initiators and the cells responding first to initial exposure to
stimulatory glucose concentration (Fig. 5 B). In addition, a
clear tendency between the activation delay and the wave
initiation parameter was only observed in 8 mM and not
in 12 mM glucose (Fig. 4 C). On one hand this might be
due to the abrupt cellular activations provoked by supraphy-
siological stimulation levels, but on the other hand this
result once again indicates that the response to stimulation
encompasses a series of complex factors, as already argued
above. Furthermore, the cells that recurrently initiate Ca2þ

waves have an average number of connections in the corre-
lation-based networks and are thus not hubs. (Fig. 4 D). Our
observation that wave initiators seem to have a lower-than-
average number of connections may intuitively be ascribed
to the fact that the waves start in these cells and thus they
necessarily have fewer links in the wave-based network
(with no cells preceding them). However, it is also consis-
tent with previous suggestions that the cells with less neigh-
bors may first be able to escape the hyperpolarizing or
clamping effect of nonactive cells (74,87). Judging by the
node weights, once the waves are established, compared
with other cells in the wave-based network, the local inter-
cellular coupling between wave initiators and their direct
neighbors does not seem to be higher or lower than the
average.

Two important questions in islet biology that remain open
are whether heterogeneous nearest-neighbor coupling is suf-
ficient to explain the patterns of observed intercellular
waves and small-world functional networks properties and
whether the behavior observed in a single focal plane is
representative of the behavior in all three dimensions. Cap-
pon and Pedersen demonstrated that structural long-range
connections are not necessary for the observed intercellular
waves and small-world functional network properties and
that the latter can arise from heterogeneous nearest neighbor
coupling of heterogeneous cells that are synchronized by
heterogeneous propagating waves (61). Indeed, possible
structural long-range connections typically prevent propa-
gating waves (88) and the combination of experimentally
observed intercellular waves and small-world functional
network properties speaks against a structural small-world
substrate. Notably, further research also suggested that the
small-world characteristics can in part be attributed to the
multimodal nature of the oscillatory b cell activity, whereby
the slow oscillatory component contributes more directly to
long-range connectivity (54) and that the slow-activity-
derived networks are less dependent on the structural gap
junctional network (62,91). Furthermore, both modeling
and experimental studies suggest that the intercellular waves
and functional networks in a single focal plane are largely
representative of the behavior in the islet as a whole
(59,61,64). Clearly, further studies are needed to address
these two questions into more detail.

Furthermore, our results display a rather high dispersion
of data. Individual data points are profoundly scattered
across the main trends, which not only indicates that b cells
are characterized by a large functional heterogeneity but
also that the division to specific subpopulations cannot be
done definitively as there is certainly some overlap. In other
words, there are, for example, also some hub or wave-initi-
ator cells with a lower-than-average activity, although the
main trend clearly indicates that the cells with many func-
tional connections or the cells that frequently initiate waves
have on average higher active times. Most importantly, due
to the heterogeneous nature of data, we gave particular
emphasis to the statistical measures and interpretation of
our results. Typically, the correlations between parameters
have been studied and interpreted based solely on the
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statistical significance (p value) that shows only whether an
effect exists and does not reveal the size of the effect (sub-
stantive significance). A major disadvantage of the p value is
the dependency on the sample size. With a sufficiently large
sample, as in our study, the p value will almost always show
a significant difference, which can bring confusion to the
interpretation of the results. As in our analyses we dealt
with a high number of rather scattered data points; we addi-
tionally evaluated the results in terms of the effect size (d
value), which is independent of sample size and helps us
to better understand the magnitude of the p value difference
found (89). By these means we identified which correlations
between parameters are physiologically meaningful despite
the high degree of variability. To gain further insight into the
data dispersion, we additionally investigated how the central
Ca2þ signaling parameters depend on the node degrees and
initiation parameters in individual islets. The results pre-
sented in Figs. S8 and S9 indicate that in most islets the
same trends are noticed as in the main results with a few mi-
nor exceptions. Apparently, the dispersion of data points
that characterize the results is more due to the intercellular
variability than due to interislet variability.

Finally, representing each Ca2þ wave as a network layer
with weighted directed connections not only enabled us to
portray the intercellular signal propagation but also allowed
us to assess the spatiotemporal stability of calcium waves
(48). It turned out that subregions exist in the islet that serve
as initiators in a large portion of events, but the course of the
Ca2þ waves were found to change with time, whereby the
changes were more frequent at a physiological glucose con-
centration (Fig. 6 D). We argue that this reflects the fact that,
under high glucose conditions, i.e., 12 mM, the supply of
metabolic energy is high, all cells are on average more
excited, and the relative cell-to-cell variability becomes
smaller, which facilitates a more stable course of intercel-
lular signals. On the other hand, if the supply of metabolic
energy is moderate, i.e., in 8 mM glucose, the cells remain
less excited, more heterogeneous, and are therefore more
prone to stochastic effects and influences from neighboring
cells, resulting in less coherent spatiotemporal activity pat-
terns. These ideas are also in agreement with recent theoret-
ical studies that indicate that presence of wave initiators in
networks of excitable cells as an emergent and dynamic pop-
ulation behavior (8,13,90). Notably, applying an equivalent
analysis for the persistency of hub cells revealed that their
role is much more stable in time, as particularly the number
of functional connections of the most connected cells was
not found to change significantly during the recordings
(Fig. 6, C and E). Moreover, in contrast to wave-initiator
cells, the persistency of hub cells did not depend on glucose
concentration. These results suggest that the role of hub cells
might be more predetermined by their intrinsic functional
characteristics (such as their metabolic activity and the de-
gree of intercellular coupling) and less on the level of stim-
ulation compared with wave-initiator cells. In future studies,
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it would be worthwhile to assess the stability of the hub role
over longer periods of time, e.g., several hours or even days,
and to reassess if this stability is related to the cell matura-
tion stage and other functional properties by analyzing
expression of different transcription factors.

In sum, in the present workwe assessmulticellular activity
in pancreatic islets with emphasis on specialized subpopula-
tions of b cells, which substantially affect the collective
dynamics. Our findings indicate that both hub andwave-initi-
ator cells are genuine features of islets, but they differ in
several aspects of Ca2þ signaling and their roles do not
seem to overlap. Moreover, while on the molecular and sin-
gle-cell level clear discrepancies have been identified, sug-
gesting differences in function (7,31,52), it appears that the
roles of cells, when operating in a multicellular environment,
are not completely obvious and predetermined. Particularly
the initiation of intercellular waves was found to be rather
dynamic and is most probably affected by a wide range of
factors. It seems that a higher fraction of cells exhibits the po-
tential to become a wave initiator, but the underlying socio-
cellular context then principally defines the true roles. This
idea is also in agreement with recent theoretical studies high-
lighting that pacemakers (in the context of wave initiators)
can emerge naturally in cellular networks (90). Finally, we
did not perform silencing or deletion of wave-initiating cells
but, given the rather large number of physically separate cell
clusters capable of initiating waves found in our study, it
seems reasonable to speculate that silencing or deleting
some of them would probably not abolish intercellular
waves. The role of hub cells seems to be more determined,
whereby a higher degree of intercellular coupling along
with the specificmetabolic characteristics are themain deter-
minants that ensure their more stable roles. Importantly, our
results do not indicate that the roles of hub cells are reserved
exclusively to a very small fraction, i.e., a few extraordinary
and irreplaceable cells. Rather, we argue that, in the
heterogeneous b cell population, a certain fraction of cells
possesses more exceptional values of certain electrophysio-
logical and metabolic characteristics that are otherwise
distributed continuously among cells. Therefore, they partic-
ipate in the majority of Ca2þwaves, have the shortest delays
to Ca2þ signals in other cells, and their oscillations are less
variable. As a consequence, their signals are correlated
with a large number of other cells and they emerge as hubs
when viewed through the prism of network analysis. A
similar concept has recently been proposed theoretically
(51), unifying thereby the seemingly opposing views on b
cell hubs (53,58). Furthermore, based on the rather weak
and inconsistent overlap between different cell subpopula-
tions reported here, as well as in the recent literature, we
can presume that the functional heterogeneity in the b cell
population exists for sure, but it is probably not as clear-cut
as to divide cells into clearly predefined subgroups and that
to some extent the influential cells can manifest themselves
endogenously within the b cell collectives. We share the
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belief that such a design represents a functionally more
robust and evolutionary advantageous architecture.
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