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Summary
AustralianGenomics is a national collaborative partnership ofmore than 100 organizations piloting a whole-of-system approach to inte-

grating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated

the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive an-

alyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the

Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity

of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data re-

sources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.
Introduction

Genomics is transforming healthcare across disciplines

and life stages, from rare disease to cancer, infectious

disease, and screening. Rapid, effective, and equitable im-

plementation is dependent on whole-of-system change:

building evidence, workforce, and infrastructure simulta-

neously while addressing ethical, legal, access, and data

management challenges.1 In the past 10 years, many gov-
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ernments have invested in large-scale projects to harness

the power of genomics and accelerate implementation.2

Program design has varied, from population-based

sequencing initiatives through to projects developing

infrastructure, fostering discovery, or assessing utility in

clinical cohorts.3–5 Few have reported outcomes to date,

with Genomics England recently reporting preliminary re-

sults from the rare disease pilot of the 100,000 genomes

project, encompassing 2,500 families.6
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We synthesize the outcomes of the first five years of a

government-funded national program led by Australian

Genomics, a partnership of more than 100 organizations,

including clinical and laboratory genetics services, hospi-

tals, research institutes, professional bodies, and patient or-

ganizations.7 This research collaboration aimed to evaluate

and accelerate the implementation of genomic testing into

healthcare, with the decentralized nature of the Australian

healthcare system necessitating a national approach based

on federation principles. Australian Genomics was de-

signed to deliver two inter-related bodies of work: exem-

plar clinical flagship studies prospectively providing

genomic testing across a broad range of rare diseases and

cancers and interdependent programs to advance the diag-

nostic, data management, regulatory, ethical, policy, and

workforce infrastructure necessary for the integration of

genomics in the health system. During the first five years,

Australian Genomics has generated a significant body of

work to inform policy and practice nationally and interna-

tionally. Here we reflect on the principal outcomes and

future directions.
Informing evidence-based implementation:

Genomic testing in rare disease and cancer

Genomic testing was performed in 5,273 individuals with

rare diseases and cancers and 2,399 relatives to evaluate

diagnostic and clinical outcomes across a broad range of

clinical indications. Participants were recruited prospec-

tively from all states and territories as part of 19 flagship

studies (Figure 1 and Table S1) with multi-site Human

Research Ethics approval (HREC/16/MH/251). The first

tranche of studies originated from existing centers of
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research excellence, while the second tranche were

selected using a competitive process. Cohort sizes ranged

from 35 to 1,659 participants. Genetic counsellors were

pivotal for the delivery of the program, with approxi-

mately one full-time equivalent position funded per 240

participants recruited. In addition, genetic counsellors

contributed to the design of the program and led research

into establishing best practices in genomic counseling,

particularly in the critical care setting.8–12 A variety of

sequencing approaches were assessed over the course

of the program, including in comparative studies and

studies designed to evaluate adjunct modalities such as

transcriptome sequencing and high-throughput func-

tional assays. Most testing was clinically accredited and

used a singleton, rather than family-based, approach to

optimize resource use.

The average diagnostic yield in the rare disease flagships

was 33%, ranging from 17% to 54%13–16; 48% of findings

in the cancer flagships were clinically actionable (range

6%–100%). The relatively high diagnostic yield likely re-

flects robust patient selection criteria, focusing on patients

without prior sequencing tests. The average time from pa-

tient consent to result was 5months; one study specifically

evaluating rapid genomic testing in critical care consis-

tently achieved a time to result of 3 days on a national

scale.14

Beyond the diagnostic and clinical outcomes of genomic

testing for patients, the importance of non-clinical and

process outcomes for both patients and families is

increasingly appreciated.17 These include ending the diag-

nostic odyssey and associated uncertainty, providing prog-

nostic information, restoring reproductive confidence, and

enabling access to peer support. A key research priority for

Australian Genomics has been the development and
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Figure 1. Informing evidence-based implementation of genomic testing in rare disease and cancer
(A) National recruitment sites, participant demographics, and willingness for data to be used for further research.
(B and C) Diagnostic outcomes of genomic testing across (B) 13 rare disease and (C) 6 cancer studies.
application of innovative health economic methodol-

ogies to measure the economic value of all key outcomes

of genomic testing (referred to as welfare gain) and to

evaluate cost effectiveness. Analysis of parental and

child quality-of-life data from over 200 participants in

the rare disease flagships demonstrated significant parental

health spillover effects.18 Preference-elicitation studies

with 3,255 members of the Australian public and study

participants highlighted the high economic value placed

on the outcomes of genomic testing, with an average wel-

fare gain ranging from AUD$1,570 (USD$1,080) to

$11,500 (USD$7,917) per test, depending on clinical

context.19–22 Cost-effectiveness and cost-benefit evalua-

tions in specific patient cohorts have continued to demon-

strate that genomic testing is both less costly and more

effective than conventional diagnostic approaches.23–25

For example, in pediatric mitochondrial disease, genomic
The Ameri
testing was estimated to lead to a cost saving of

AUD$8,800 (USD$6,082) per child tested and a net benefit

of AUD$14,700 (USD$10,059).23 A budget impact assess-

ment estimated an annual cost-saving of AUD$7.3M

(USD$5M) for the Australian healthcare system through

the implementation of rapid genomic testing for critically

ill children alone.26

The results of these studies provided a robust evidence

base to inform the transition of genomic testing to health-

care system funding. Applications for public funding

for multiple clinical indications (syndromic and non-syn-

dromic intellectual disability, genetic cardiac disorders,

genetic kidney diseases, and a range of cancers) have un-

dergone successful health technology assessment through

the Medical Services Advisory Committee (MSAC) and

have been funded, with many more applications in

process.
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National data resources: Supporting research and

clinical genomic delivery

Genomic sequencing generates data of unprecedented scale

and complexity. Successful implementation necessitates

substantial investment in high-performance computing,

data storage infrastructure, and local and national services

for data access and exchange. It is imperative that data

are collected, stored, and shared using internationally

recognized standards and interoperable formats. Respon-

sible management needs to ensure participant privacy,

data security, and rigorous governance, while optimizing

the accessibility and value of data for healthcare and

research benefit. Federated systems present further chal-

lenges in this context, with the real danger of creating

data siloes. Australian Genomics is a driver project for the

Global Alliance for Genomics and Health (GA4GH) placing

an emphasis on integrating GA4GH standards and

frameworks to support international interoperability.27

Australian Genomics also co-leads the GA4GH National

Initiatives Forum with Genomics England, building a com-

munity to align standards and share practical experience

internationally.
One of the principal legacies of Australian Genomics is

the creation of several integrated national data resources

to support a virtuous cycle between clinical and research

genomic delivery. These are informing prototypes and

recommendations for developing a national genomic in-

formation management ecosystem. Available resources

include a Genomic Data Repository (GDR), containing

genomic data from flagship studies, hosted on commercial

cloud. Data sharing for secondary research uses, where

appropriate consent and ethics are in place, is supported

by a data governance framework, including policies and

access processes developed by Australian Genomics.
The national clinical consent form and supporting mate-

rials developed by Australian Genomics specifically incor-

porate consent to national and international data sharing

for the benefit of healthcare and advancing knowledge. In

addition, Australian Genomics has built the CTRL

(control) dynamic consent web application as a means for

participants to better engage with research and to enable

granular decision making over time in relation to return of

results and secondary use of data.28 CTRL incorporates the

GA4GHDataUseOntology29 so that an individual’s dataset

can be tagged with their own permissions and restrictions

on use. The pilot implementation facilitated evaluation of

participation and usage rates, participant perspectives, and

exploration of the barriers to implementation. CTRL was

further developed to manage online decision support,

recruitment, and consent of 18,000 individuals for the

Australian Reproductive Genetic Carrier Screening Project

(Mackenzie’s Mission) and has attracted widespread na-

tional and international interest in adaptation. To support

uptake, the CTRL codebase is a freely available open-

source code via Australian Genomics’ GitHub repository

(https://github.com/Australian-Genomics/CTRL) for the
422 The American Journal of Human Genetics 110, 419–426, March
research community to adopt and participate in its

improvement.

To promote sharing of knowledge about genes and

variants associated with disease, Australian Genomics has

deployed two platforms, PanelApp Australia30 and Shar-

iant.31 These serve to facilitate harmonization of gene

and variant curation efforts between laboratories, promot-

ing consistency in data interpretation, a key driver in

improving diagnostic accuracy and patient outcomes.

To further gene and virtual gene panel curation, Austra-

lian Genomics deployed a local instance of the PanelApp

software in collaboration with Genomics England.30 It

currently contains clinical validity assessments for 5,403

genes and hosts 272 virtual gene panels developed by

Australian research studies and clinical and laboratory

services. PanelApp Australia consolidates virtual panels be-

tween Australian diagnostic laboratories with the aim of

promoting collaborative discordance resolution and

harmonization. Internationally, a systematic comparison

of the content of 80 virtual panels between PanelApp

Australia and Genomics England PanelApp resulted in

the identification and review of 2,144 discordant gene-dis-

ease assessments,30 improving diagnostic outcomes and

providing a blueprint for expanding participation in inter-

national harmonization efforts via the Gene Curation

Coalition.32

Shariant is a controlled access platform, supporting real-

time, two-way automated sharing of variant interpretations

and associated evidence between Australian diagnostic labo-

ratories, with submitters notified and encouraged to resolve

discrepant variant interpretations. Shariant currently

contains 14,000 variant entries, with 11% (28/260) of vari-

ants submitted by more than one laboratory found to be

discrepant.31 The platform supports automation of data

sharingwith the ClinVar public archive, enabling Australian

laboratories to contribute internationally.
Building a cohesive national approach to genomic

implementation: Whole-of-system change

Data and evidence alone are not enough to ensure effective

translation of a complex technology such as genomic

testing into an already complex healthcare system. Austra-

lian Genomics has supported a broad program of imple-

mentation science research to identify methods and strate-

gies that facilitate the uptake of evidence-based genomics

practice by both practitioners and policymakers. Theory-

informed interviews helped researchers to understand

individual and organizational barriers (and enablers) to im-

plementation as pre-requisites to informing interven-

tions.33,34 These identified a shift on the implementation

journey from preadoption through to adoption and imple-

mentation, highlighting the importance of demonstrating

the value of clinical genomics in the initial phases. The role

of leadership35 and clear organizational priorities that

include clinical genomics are key success drivers in the
2, 2023
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Figure 2. The Australian landscape of national and state/territory-based policies, frameworks, and genomic initiatives
National, orange; state/territory, blue. SA, South Australia; WA, Western Australia; OPHG, Office of Population Health Genomics; QLD,
Queensland; VIC, Victoria; NSW, New South Wales.
latter phases.33 Process mapping with non-genetic physi-

cians was used to better understand the complexity of

delivering genomic testing, enabling the development of

implementation strategies to support scaling up while al-

lowing for local variation with national standardization.36

Arguably, one of the most significant achievements of

Australian Genomics has been to strategically build a con-

nected, collaborative national network to enable collective

learning. A social network analysis conducted in 2018

found a doubling of professional ties from 2,925 ties before

2016 to 6,381 ties in 2018, and an increase in relationship

density (0.020–0.043).37 Shared leadership across the coun-

try and multi-site participation were encouraged in all pro-

jects, and the national network of more than 60 project co-

ordinators was central to facilitating connections within

and between individual projects and working groups.

To support workforce development, Australian Genomics

conducted research to understand needs and preferences

for education and training and to develop tools to support

evidence-based genomics education. A national survey

captured experiences and perspectives of more than 400

medical practitioners from varied specialties, career stages,

and work settings.38 Over half (54%) reported that they

already practiced genomicmedicine. There was a significant

preference for a servicemodel that includes support fromge-

netics services, either through referral or providing pre- and

post-test support (p<0.001). The surveydataprovide impor-

tant insights into thepreferredmodels of practice andeduca-

tion needs of physicians, to guide genomic educators on the

content, mode, and level of genomic education required. It

also validated the importance of experiential learning and

of specialty-based ‘‘genomics champions,’’ highlighted

previously in interviews with 86 medical specialists.39 To

connect genomics educators as a community of practice,

Australian Genomics established the Genomics Education
The Ameri
Network of Australasia (GENA) in 2018. Finally, to support

best practice in genomics education, Australian Genomics

developed a program logic model to articulate the required

inputsandprocesses forplanning, delivery, andevaluation40

and standards to enable consistent reporting of genomics

education interventions and their evaluation.41 Both were

developed with international experts and the reporting

standards have been endorsed by international genomics

and reporting standards networks. These are now informing

the development and delivery of continuing professional

development courses as well as the integration of genomics

into the training of the current and emerging Australian

workforce.

Engaging more broadly, the Australian Genomics

Community Advisory Group has led key projects,

including Genomics in the Community, whereby repre-

sentatives of patient support and advocacy groups worked

together to develop resources on genomic testing for the

public (genomicsinfo.org). Australian Genomics has also

actively engaged with mainstream and social media to pro-

mote positive, accurate messaging about genomics to the

broader public (Facebook and Twitter: @AusGenomics).

At the government level, Australian Genomics has oper-

ated in a complex political ecosystem, where the delivery

of healthcare is a shared responsibility between the Austra-

lian federal government and the State and Territory juris-

dictions. Policy frameworks and service plans have been

developed both at national and jurisdictional levels, with

several jurisdictions funding their own collaborative

genomic alliances (Figure 2).1,42 Australian Genomics has

partnered with these state-based efforts to maximize

research funding through shared support of projects,

facilitating expansion of single-jurisdiction projects to

national, multi-site research programs. As evidence is

generated through these projects, the Australian Genomics
can Journal of Human Genetics 110, 419–426, March 2, 2023 423
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National Implementation Committee has served as a

forum for jurisdictional health departments to consider

the healthcare system implementation of nationally sig-

nificant translational projects.
Key challenges, limitations, and solutions

Australian Genomics has produced a large body of work

from 2016 to 2021 for a relatively modest level of invest-

ment (AUD$25M, USD$17M over 5 years) compared

with similar programs internationally. This has been

achieved through leveraging more than AUD$100M

(USD$69M) in additional federal and state investments

in genomics and building an engaged genomics commu-

nity. The long lead-in time for multi-site ethics approvals43

impacted on reaching some recruitment targets and

affected equity of access to the program across Australia.

Toward the end of the program, the COVID-19 pandemic

hindered reagent supplies, sample collection, and trans-

port but promoted a compensatory shift toward telehealth,

electronic test ordering, and electronic consent. As with

many other genomic studies, participants living in non-ur-

ban areas, from culturally and linguistically diverse groups,

are underrepresented. This specifically includes Australia’s

First Nations people, Aboriginal and Torres Strait Islanders,

and has now led to significant investment in strategies to

engage and ensure broad participation and benefit.
Future directions

The Australian Government has invested AUD$500M

(USD$344M) in a research fund, the Genomics Health Fu-

tures Mission (GHFM, 2018–2028) and a further

AUD$15M (USD$10M) to support Australian Genomics

(2021–2023). One of the principal objectives of the

current Australian Genomics funding is to improve the

efficiency, reach, and timeliness of genomic research

projects. Australian Genomics currently supports 27

GHFM-funded projects, to an estimated in-kind value of

AUD$12M (USD$8M). Examples of GHFM-funded initia-

tives include Mackenzie’s Mission, a national reproductive

carrier screening project recruiting >9,000 couples, and

the establishment of the Australian Functional Genomics

Network (AFGN) connecting research groups and clini-

cians to facilitate variant interpretation and novel

gene discovery. As the outcomes of these research projects

are published, the second aim of Australian Genomics

will be to support government health departments in

clinical implementation by refining and communicating

evidence to inform policy. Recently, the Australian

Government announced the establishment in 2024 of a

new national government entity, Genomics Australia,

with the remit to build upon the strong foundations

laid by Australian Genomics in ensuring a cohesive

national approach to genomics implementation into

mainstream healthcare.
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Data and code availability

The datasets supporting the current study have not been deposited

in a public repository due to consent restrictions. De-identified

genomic and associated data from this study are available for ethi-

cally approved research. The online access application process is

administered by the Australian Genomics Data Access Committee.

CTRL dynamic consent platform codebase is available open-

source via Australian Genomics’ GitHub repository (https://

github.com/Australian-Genomics/CTRL).
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2023.01.018.
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