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A B S T R A C T   

Vascular regeneration and patency maintenance, without anticoagulant administration, represent key develop-
mental trends to enhance small-diameter vascular grafts (SDVG) performance. In vivo engineered autologous 
biotubes have emerged as SDVG candidates with pro-regenerative properties. However, mechanical failure 
coupled with thrombus formation hinder translational prospects of biotubes as SDVGs. Previously fabricated poly 
(ε-caprolactone) skeleton-reinforced biotubes (PBs) circumvented mechanical issues and achieved vascular 
regeneration, but orally administered anticoagulants were required. Here, highly efficient and biocompatible 
functional modifications were introduced to living cells on PB lumens. The 1,2-dimyristoyl-sn-glycero-3-phos-
phoethanolamine-N-methoxy (DMPE)-PEG-conjugated anti-coagulant bivalirudin (DPB) and DMPE-PEG- 
conjugated endothelial progenitor cell (EPC)-binding TPS-peptide (DPT) modifications possessed functionality 
conducive to promoting vascular graft patency. Co-modification of DPB and DPT swiftly attained luminal 
saturation without influencing cell viability. DPB repellent of non-specific proteins, DPB inhibition of thrombus 
formation, and DPB protection against functional masking of DPT’s EPC-capture by blood components, which 
promoted patency and rapid endothelialization in rat and canine artery implantation models without antico-
agulant administration. This strategy offers a safe, facile, and fast technical approach to convey additional 
functionalization to living cells within tissue-engineered constructs.   

1. Introduction 

Small-diameter vascular grafts (SDVGs) fabricated with synthetic 
materials, such as expanded poly(tetraflouroethylene) (ePTFE) and poly 
(ethylene terephthalate) (PET), often fail due to thrombosis and intimal 
hyperplasia [1]. Tissue engineered vascular grafts (TEVGs) demonstrate 
superior regenerative properties and have emerged as promising SDVGs 

candidates [2,3]. However, incidence of acute thrombosis, comprised of 
fibrin and platelet aggregates that form at the blood-material interface, 
has hindered the clinical uptake of TEVGs [4–6]. Systemic administra-
tion of antiplatelet drugs, anticoagulants, or a combination of both, are 
often employed in clinical settings to inhibit thrombosis, but come with 
increased risks of adverse bleeding [7,8]. Strategies to functionalise the 
TEVG blood-interfacing surface can offer potential routes towards 
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minimizing activation of blood components, producing anti-thrombotic 
effects, and reducing the need for administration of anticoagulant drugs. 

Strategies to improve TEVG hemocompatibility have utilized passive 
approaches, such as the incorporation of zwitterionic components [9, 
10], polyethylene glycol (PEG) decoration [11,12], and other molecular 
modifications [13,14], which were shown to inhibit thrombus formation 
by improving resistance against platelet and plasma protein adhesion. 
Despite improved hemocompatibility results in vitro, such passive ap-
proaches have proven ineffective in obtaining long-term hemocompat-
ibility in vivo [15]. This may be explained by inadvertent masking of 
endothelial cell (EC) and endothelial precursor cell (EPC) recruitment, 
thereby hindering re-endothelialization [16,17]. The endothelium pre-
vent thrombus formation and inhibits intimal hyperplasia through 
regulating vascular smooth muscle cell (VSMC) proliferation [18]. 
Therefore, ideal blood-interfacing surfaces should be capable of 
conveying anticoagulation activity whilst inducing timely endotheliali-
zation, to achieve heightened patency. 

Capture of circulating EPCs in situ was shown to promote endothe-
lialization and represents a practical strategy in comparison to pre- 
seeding scaffolds with ECs [19]. Graft modifications with biological li-
gands that possess high affinity for EPC binding (e.g., antibodies, 
aptamers, and polypeptides) have demonstrated active capture and 
recruitment of EPCs [20–22]. Compared to other ligands, polypeptides 
have advantages in their facile synthesis, purification, storage, and 
controllable bioactivity [23,24]. The polypeptide, TPSLEQRTVYAK 
(TPS), has been shown to exhibit high affinity and binding specificity for 
EPCs in multiple experimental models across multiple species, including 
mouse [25], rat [26,27], canine [27,28]and human [29] studies. 
Furthermore, TPS had no negative effect on proliferation, migration, or 
tube formation of EPCs [30]. Therefore, TPS represents an ideal poly-
peptide ligand for EPC capture [31,32]. 

Pro-endothelialization graft modification technologies have rarely 
been reported in large animal pre-clinical studies or in clinical studies 
[33,34]. A potential reason for invalidity of surface functional modifi-
cation is the unspecific adhesion of plasma proteins [35,36]. Fibrinogen 
(FIB) is quickly adsorbed onto blood-material interfaces, thus masking 
activity of pro-endothelialization molecules and concomitantly pro-
motes platelet aggregation and thrombus formation [6,37]. Heparin is 
frequently employed as an anticoagulant in clinical practice and has 
been widely adopted for modification of TEVGs [38,39]. Heparin binds 
to antithrombin but also non-specifically binds to other plasma proteins, 
such as fibronectin and growth factors [40,41]. Additionally, heparin is 
susceptible to inactivation by platelet factor 4 (PF4) released by acti-
vated platelets [42]. Such non-specific interactions may reduce hepa-
rin’s anti-coagulation activity at the TEVG surface, resulting in 
unsatisfactory outcomes [43,44]. Thrombin’s catalysis of FIB to fibrin 
[45] has made it a major target of many anticoagulants. The synthetic 
short peptide bivalirudin (BVLD) is a highly-efficient and specific 
thrombin inhibitor [46], which directly inhibits FIB recognition and its 
catalysis by thrombin [47], inhibits thrombin mediated platelet adhe-
sion and activation, and is not susceptible to inactivation by PF4 [48]. 
Thus, BVLD serves as an attractive molecule for TEVG modification, to 
realise anticoagulant function whilst effectively protecting co-modified 
molecules against loss of function resulting from obscuration by FIB 
and platelets. 

In vivo tissue engineering exploits the foreign body response (FBR) to 
implanted materials and can be used to fabricate autologous TEVGs [49, 
50]. Previously, we fabricated polymer-reinforced biotubes (PBs) by 
subcutaneous implantation (SI) of melt-spun poly(ε-caprolactone) (PCL) 
fiber skeletons [51]. PBs circumvented issues relating to insufficient 
mechanical strength that is typically encountered by traditional bio-
tubes consisting only of autologous tissue [52]. Our PBs excelled in their 
demonstratable biomechanical, biodegradable and vascular regenera-
tion properties, but their implantation in canine arterial replacement 
models required oral anticoagulant drugs to be administered throughout 
the implantation period to maintain patency [51]. Therefore, we 

hypothesise that modifying PBs to improve hemocompatibility can 
eliminate the need for administration of anticoagulant drugs in large 
animal models. 

Conventional modification methods, such as covalent crosslinking, 
layer-by-layer self-assembly, or electrostatic interactions are less suit-
able for the modification of bioactive molecules onto the blood- 
interfacing surface of living tissue PBs, primarily due to time- 
expensive methodology and varying degrees of cytotoxicity [53]. We 
previously utilized hydrophobic interactions between 
polypeptide-linked PEG-conjugated phospholipids (DMPE-PEG) and the 
phospholipid bilayer of the cell membrane to successfully incorporate 
functional polypeptides into the membrane of living cells without 
impairment of cell activity and function [54]. In this study, DMPE-PEG 
was covalently bonded to TPS (DPT) or BVLD (DPB) and both were 
co-modified onto the surfaces of living cells on the PB lumens (Scheme 
1). DPB modifications were utilized to achieve a “kill three birds with 
one stone” strategy: (i) to improve hemocompatibility by inhibiting FIB 
and platelet adhesion; (ii) to decrease non-specific plasma protein 
adsorption due to PEG incorporation; and (iii) to protect DPT function 
through prevention of masking by blood components. We first optimized 
DPT:DPB co-modifications on PBs by in vitro assessment of biocompat-
ibility, anticoagulation capacity, and capability to capture EPCs from 
dynamic flow culture. Next, we evaluated in vivo regenerative abilities in 
rat abdominal artery implantation models. The performance of opti-
mized DPT/DPB-modified PBs was then further verified in canine ca-
rotid artery implantation models. The results shown here offer insights 
and reference for surface modification of vascular grafts and 
tissue-engineered constructs that contain living cells, and have broader 
implications in strategies of surface functional regulation for autologous 
tissues or transplanted organs. 

2. Results and discussion 

2.1. Fabrication of PBs and optimization of modification conditions 

Subcutaneous implantation of our previously optimized melt spun 
PCL fiber skeleton [51] was re-employed in this study to generate PBs. 
Firstly, the optimized melt-spin preparation parameters were followed, 
and the resultant PCL fiber skeletons were morphologically character-
ized (Table S1 and Figs. S1a and b, Supporting Information). PBs were 
then prepared in rats and canine models (Figs. S1c and d, Supporting 
Information) by subcutaneous implantation of the PCL fiber skeletons 
for 30 days. PBs were comprised of PCL fiber skeletons that had autol-
ogous tissue occupying the spaces between the PCL fibers. Immunoflu-
orescence staining revealed that the lumen surface of rat-derived PBs 
(inner diameter: 2 mm) and canine-derived PBs (inner diameter: 3.5 
mm) were covered by α-smooth muscle actin-positive (α-SMA+) cells 
(Figs. S1e and f, Supporting Information), which was in-line with our 
previous observations [51]. 

During the subcutaneous implantation time, DPT and DPB were 
synthesized and verified by 1H NMR spectra (Fig. S2, Supporting In-
formation). DPT was synthesized by Michael addition reaction between 
the carbon-carbon double bonds of DMPE-PEG-MAL and the sulfhydryl 
group of TPS (Fig. S2a, Supporting Information). In the spectra of DPT 
(Fig. S2b, Supporting Information), the presence of benzene ring group 
in tyrosine (6.8 ppm and 7.1 ppm) and the –CH2- characteristic peak 
(3.6 ppm) belonging to PEG in DMPE-PEG-MAL, indicated the successful 
synthesis of DPT. Based on the condensation reaction of primary amine 
groups and carboxyl groups, DMPE-PEG-NH2 was covalently linked with 
carboxyl groups of BVLD (Fig. S2c, Supporting Information) to synthe-
size DPB. In the 1H NMR spectra of DPB (Fig. S2d, Supporting Infor-
mation), the characteristic peak (6.8 ppm and 7.1–7.3 ppm) assigned to 
the benzene ring of BVLD and the characteristic peak (3.6 ppm) 
belonging to –CH2- of DMPE-PEG-NH2could be observed, indicating the 
successful synthesis of DPB. 

We next sought to optimize the modification conditions 
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(concentration and incubation time) of DMPE-PEG-conjugated peptides. 
In order to visualize the extent of modification, DMPE-PEG-Cy7 (DP- 
Cy7) was synthesized. PEG-Cy7 (P-Cy7) has a similar molecular struc-
ture to DP-Cy7 but lacks the lipid component, and was synthesized as a 
control to investigate the immobilization effect of DMPE within DP-Cy7. 
As shown in the schematic (Fig. 1a), PBs were incubated with the 
different concentrations of DP-Cy7 or P-Cy7. Following incubation for 
10 min, the fluorescence signal of the whole PBs was assessed. Results 
showed that 5 μM DP-Cy7 modified PBs exhibited near complete fluo-
rescence signal coverage, whereas P-Cy7 could not be visualized, even in 
the higher concentration 20 μM group (Fig. 1b). The mean fluorescence 
intensity (MFI) of DP-Cy7 modified PBs, as quantified by Indigo (Bert-
hold Technologies) showed positive correlation with the DP-Cy7 con-
centration (Fig. 1c). The MFI plateaued at 15 μM DP-Cy7 and did not 
obviously increase further when utilizing 20 μM DP-Cy7. Confocal im-
ages and corresponding statistics showed that both 15 μM (98.17 ±
0.85%) and 20 μM DP-Cy7 (98.30 ± 1.19%) had almost labelled all cells 
of the PB lumen surface (Fig. 1d and e), which also verified that 15 μM 
DP-Cy7 was sufficient to achieve saturated modification. Notably, the 
fluorescence signal of DP-Cy7 was distinctly localized along the cell 
periphery, demonstrating that the DMPE component of DP-Cy7 had 
inserted into the cell membrane through hydrophobic interaction. 
Subsequently, the fluorescence signal of PBs modified with 15 μM DP- 
Cy7 for different incubation times was also assessed. The fluorescence 
signal of DP-Cy7 has sufficiently covered the lumen surfaces of PBs as 
rapidly as after 1 min incubation time (Fig. 1f). After incubation for 15 
min, the 15 μM P-Cy7 group still demonstrated no detectable signal. 
Quantitative data indicated that the MFI of PBs modified with 15 μM DP- 
Cy7 at the 15 min time-point was comparable with that at the 10 min 
time-point (Fig. 1g), which indicated that the modification degree had 
reached saturation by 10 min. The fluorescence signal of the lumen 
surface of 15 μM DP-Cy7 modified PBs was observable by confocal mi-
croscopy after 5 min incubation, unlike the fluorescence signal of 15 μM 
P-Cy7, which remained undetectable at 15 min incubation time (Fig. 1h 
and i). The percentage of DP-Cy7 labelled cells on the lumen surface in 
the 15 μM modified PB group, as quantified from confocal microscopy 

images, showed no obvious increases at 15 min incubation (96.06 ±
1.70%) compared to at 10 min (97.19 ± 1.33%), which was similar to 
the trend exhibited by the quantified MFI data. These results suggested 
that incubation with 15 μM DP-Cy7 for 10 min was sufficient to saturate 
the PB lumens with DP-modifications. The cross sections and longitu-
dinal sections of PBs modified with 15 μM DP-Cy7 for 10 min were 
observed using confocal microscopy (Fig. S3, Supporting Information). 
The fluorescence signal was uniformly and distinctly distributed on the 
lumen surface of PBs, which indicated that our method achieved lumen- 
specific modification. 

Taken together, the data indicated the simplicity and time efficient 
modifications made with DMPE-PEG-conjugated molecules. The DP- 
based modifications lend themselves to clinical feasibility when pre-
paring autologously generated tissue constructs; the methodology 
avoids complex external processes, and time-expensive preparation 
procedures. The optimized modifications demonstrated here were used 
for further experiments. 

2.2. Assessment of modification biocompatibility and stability 

As a product of the FBR, biotubes were reported to be enriched with 
fibroblastic cells [55]. These cells exhibit plasticity, can acquire con-
tractile VSMC-like characteristics, and play key roles in matrix synthesis 
and remodelling after vascular grafting [52,56]. Thus, it is important to 
maintain cell viability throughout the modification process. The 
biocompatibility of DMPE-PEG-conjugated peptide modifications was 
primarily evaluated. The prepared PBs were divided into five groups to 
incubate for 10 min with different DPT: DPB concentration. The groups 
were as follows: (i) unmodified PBs; (ii) 15 μM DPT modified PBs (15 μM 
DPT-PBs); (iii) 10 μM DPT + 5 μM DPB modified PBs (10 μM DPT + 5 μM 
DPB-PBs); (iv) 7.5 μM DPT + 7.5 μM DPB modified PBs (7.5 μM DPT +
7.5 μM DPB-PBs); and (v) 5 μM DPT + 10 μM DPB modified PBs (5 μM 
DPT + 10 μM DPB-PBs). PBs incubated with 0.1% Triton X-100 for 10 
min were used as positive controls to induce cell lysis [57]. Live/Dead 
staining revealed that the vast majority cell on the lumen surface of PBs 
modified with DPT/DPB were living, which was similar with unmodified 

Scheme 1. DPB and DPT co-modified PB lumens. The 
lumens of in vivo engineered PBs were co-modified 
with DPB and DPT. The DPB modifications (1) boos-
ted resistance against fibrinogen and platelet activa-
tion and aggregation, (2) reduced nonspecific protein 
absorption, and (3) protected DPT’s EPC capture 
functionality against masking by blood components. 
Co-modifications improved PB patency rates and 
enhanced endothelialization of PBs in rat and canine 
arterial implant models, without requirement of 
anticoagulant drug administration.   
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PBs and in contrast to Triton X-100 treated PBs (Fig. 2a). In addition, 
CCK-8 assays confirmed that there were no obvious differences in cell 
metabolic activity between the modified and unmodified PBs (Fig. 2b), 
thereby indicating that modifications did not negatively affect cell 
number or cell viability. The expression of apoptosis-related genes 
(Casp8, Casp9, Fas, Bax, Fasl, Bad) and metabolism-related genes (Glut1, 
Glut4, Ldha, Pgc1, Pkm2, Cs) showed no significant differences between 
unmodified and modified PBs (Fig. 2c). 

Several approaches including electrostatic interaction, covalent 
conjugation, and enzymatic ligation have already been successfully 
employed to modify living cell surfaces with exogenous bioactive mol-
ecules [58]. Indeed, these methods could potentially be utilized to 
modify the cells on the PB lumens. Instead, we opted for a simple and 
convenient method that would be more favourable in clinical applica-
tions, an approach that altogether avoids risks of cytotoxicity such as 
polycations (as in electrostatic interaction) [59], membrane proteins 
impairment (as in covalent coupling) [60], or restricted enzyme cata-
lytic sites (as in enzymatic ligation) [61]. DMPE-PEG consists of a cell 

membrane-friendly component (DMPE) [62] and a biologically inert 
PEG chain, which has been widely used as an effective and biocom-
patible linker to anchor bioactive molecules to living cell surfaces 
without negatively impacting on cell viability [63]. Our own results 
supported that DMPE-PEG-conjugated peptide modifications exhibited 
the biocompatibility necessary for a method to safely modify PB lumens. 

In consideration of exposure to blood flow shear stress and the 
complex in vivo environment after vascular implantation, the stability of 
the modified molecules on the graft lumen will ultimately affect the 
efficacy of the modifications. The stability of the DP-conjugated peptide 
modifications on the PB lumen surface was investigated based on fluo-
rescence imaging technology. PBs modified with 15 μM DP-Cy7 for 10 
min were linked in series, attached to a flow culture bioreactor, incu-
bated at 37 ◦C and operational for up to 72 h (Fig. S4a, Supporting In-
formation). The flow rate of serum-containing culture medium was set at 
12.47 cm/s to simulate in vivo blood flow [64]. The fluorescence signal 
of DP-Cy7 gradually decreased over time without sudden losses in 
distinct areas (Fig. S4b, Supporting Information). The MFI of DP-Cy7 

Fig. 1. Optimization of incubation conditions for DP-Cy7 modification of PBs. a) Schematic diagram of the P-Cy7 or DP-Cy7 modification of PB lumens. b) 
Representative fluorescence images and c) quantitative of mean fluorescence intensity (MFI) analysis of different concentrations of DP-Cy7 or P-Cy7 incubated with 
PBs for 10 min. d) Representative confocal micrographs of PB lumen after 10 min incubation with different concentrations of DP-Cy7 or P-Cy7. e) Quantification of 
DP-Cy7 labelled cells calculated based on confocal images. Five images per sample and five samples per group were used to obtain statistical results. f) Representative 
fluorescence images and g) quantitative MFI analysis of 15 μM DP-Cy7 or P-Cy7 incubated with PBs after different incubation times. h) Representative confocal 
micrographs of PB lumen after different incubation times with 15 μM DP-Cy7 or P-Cy7. i) DP-Cy7 labelled cells were quantified based on confocal images. Five 
images per sample and five samples per group were evaluated to obtain statistical results. For quantitative analyses, data are presented as the mean ± SEM (n = 5). 
Statistical significance is indicated as *P < 0.05, ***P < 0.001, and ns: not significant, as determined by one-way analysis of variance (ANOVA) with Tukey’s post 
hoc analysis. 
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modified PBs at 72 h post-flow culture was 30.88 ± 4.32% of the initial 
MFI (Fig. S4c, Supporting Information). PBs modified with 15 μM 
DP-Cy7 for 10 min were also implanted into rat abdominal artery 
replacement models to evaluate in vivo modification stability. Following 
implantation for 3 days, DP-Cy7 modified PBs exhibited a detectable 
fluorescence signal that was maintained at 28.57 ± 8.56% of the initial 
MFI (Figs. S4d and e, Supporting Information) and the fluorescence 
signal was still detectable after 7 days (17.80 ± 5.83% of the initial 
MFI). These results indicated that after modification with 15 μM DP-Cy7 
for 10 min, DMPE-PEG-conjugated molecule modifications remained on 
the luminal surfaces of PBs for at least 7 days post-implant. Our results 
were similar to those shown in a series of works by Iwata et al. [65,66], 
wherein fluorescently-labelled PEG linked to lipid derivatives were used 
to modify islets cells’ surfaces and remained detectable over 4–7 days in 
vitro. 

2.3. Evaluation of DPT/DPB-modified PB hemocompatibility 

Thrombus formation at the material-blood interface is triggered 
within minutes of blood exposure, primarily by the adhesion and acti-
vation of FIB and platelets [5]. The fibrin network formed from the 
cleavage of adhered FIB and the aggregation of activated platelets 
constitutes the backbone of the thrombus [67]. In this process, thrombin 
plays a crucial role, not only in converting fibrinogen to fibrin, but also 
by promoting platelet activation and aggregation [68]. Therefore, we 
primarily examined the inhibitory effect of DPT/DPB modification on 
thrombin activity (Fig. S5, Supporting Information). The results showed 
that the thrombin activity of 15 μM DPT-PBs group was comparable to 
that of unmodified-PB group, indicating that the only DPT modification 
had little effect on inhibiting thrombin activity. However, DPT and DPB 
co-modification effectively inhibited thrombin activity in a DPB 
concentration-dependent manner. Subsequently, we evaluated the ca-
pacity of modified-PB to inhibit fibrin network formation and platelet 
adhesion, which has been casually linked to improved patency of 
vascular grafts [69–71]. Alexa Fluor 488-labelled FIB was used to detect 
the FIB adhesion on differentially modified PBs via tissue imaging with a 
NightOWL LB983 Imaging System (Fig. 3a). The quantitative MFI 
analysis showed that all DPT and DPB co-modification conditions had 
demonstratable capacity to reduce FIB adhesion on the lumen surface of 

PBs. Whereas 15 μM DPT modification alone failed to produce a sig-
nificant inhibitory effect on FIB adhesion, compared to unmodified PBs 
(Fig. 3b). Confocal images visualized the fibrin networks that had 
formed from the adhered FIB on PBs lumen (Fig. 3c). Dense networks 
composed of thin fibrin fibers covered the unmodified-PB and the 15 μM 
DPT-PB lumens, whereas a dispersed and coarse network of fibrin had 
formed on the lumens of DPT and DPB co-modified PBs. The inhibitory 
effect on FIB binding and fibrin formation correlated with increasing 
DPB modification concentration. FIB adhesion and polymerization was 
markedly reduced and only a few isolated fibrin fibers were observable 
on the lumens of the 5 μM DPT +10 μM DPB-PBs. Previous studies have 
shown that thrombin significantly impacts on fibrin network structure 
[72,73]. In the presence of a high concentration of thrombin, fibrin 
tends to produce dense networks; in contrast to this, dispersed coarse 
networks of fibrin become apparent in the presence of low thrombin 
concentrations [74]. The high affinity and specificity of BVLD binding to 
the active site of thrombin effectively inhibits thrombin activity [75]. In 
consideration of the crucial involvement of thrombin in fibrin network 
formation, it was unsuprising that the DPB consequently reduced FIB 
adhesion and fibrin network formation on the PB lumens. This suggested 
that DPT would remain unmasked and functional in the presence of 
co-modified DPB. 

Typically, the extent of platelet activation can be evaluated accord-
ing to the morphology of adhered platelets, and this can be used to assess 
a material’s thrombogenicity [76]. Scanning electron microscopy (SEM) 
images showed that most of the platelets adhered to the lumen of un-
modified PBs appeared multiple spread dendritic pseudopods (Fig. 3d, 
top row), indicative of platelets in an activated state [77]. The platelets 
adhered to the modified PBs tended to maintain the inactivated rounded 
morphology and fewer number with increasing DPB concentration. 
Next, mepacrine staining (Fig. 3d, middle layer images) and anti-CD62P 
immunofluorescence staining (Fig. 3d, lower layer images) were per-
formed to quantify the adhesion and activation state of platelets on the 
differentially modified PB lumens, respectively. The effect of DPT/DPB 
co-modification on anti-platelet adhesion and activation was reflected 
by the quantitative data (Fig. 3e and f), which verified the observations 
made by SEM and showed the similar trend with resist FIB adhesion. 
This is because that in addition to BVLD dependent inhibition of 
thrombin induced fibrin network formation, it also suppresses 

Fig. 2. The safety analysis of DPT/DPB modification for PBs. a) Representative Live/Dead fluorescence staining images of different DPT:DPB concentration modified 
onto PBs. PBs incubated with 0.1% Triton X-100 for 10 min were used as positive control for cell death. b) The cell viability of differentially DPT/DPB-modified PBs 
(n = 5). c) The relative expression of apoptosis-related genes and metabolism-related genes in differentially DPT/DPB-modified PBs (n = 5). For quantitative an-
alyses, data are means ± SEM (n = 5) and there was no significance across the five groups, as determined by one-way ANOVA with Tukey’s post hoc analysis. 
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thrombin’s role as an agonist of platelet adhesion and activation [78]. 
Furthermore, we used recalcified whole blood to evaluation the anti-clot 
formation ability of differentially modified PBs. Stereomicroscopic 
observation revealed no obvious signs of blood clot formation on 
modified PBs when DPB concentrations exceeded 5 μM (Fig. 3g), and the 
inhibitory effect was further shown by the reduced clot mass (Fig. 3h). A 
series of works by previously, Yang et al. [75,79,80] showed that the 
surface of a BVLD-modified blood-interfacing material exhibited marked 
resistance to fibrin binding and platelet adhesion and activation, thereby 
effectively prevented thrombus formation. The above results support the 
incorporation of DPB modifications to effectively improve the hemo-
compatibility of PB lumens. Moreover, the data demonstrated that BVLD 
maintained its anticoagulation bioactivity despite conjugation with 
DMPE-PEG. 

2.4. Protection of the specific capture of EPCs by DPB/DPT co- 
modifications 

In addition to anti-coagulation modifications, pro-endothelialization 
modifications have been shown to be beneficial in achieving and 
maintaining TEVG patency [81]. Despite demonstratable success in vitro 
through enhanced adhesion and migration of ECs [28,82,83], the rapid 
adhesion of blood components to the blood-interfacing material surface 
in vivo could mask pro-endothelialization bioactive molecule, ultimately 
leading to invalidity of pro-endothelialization functional modifications 
[33]. Therefore, many research groups have co-modified PEG to protect 
the function of pro-endothelialization modifications, such as 
EPC-capturing ligands [11,84,85]. Despite PEG-modified implants sup-
porting reduced adherence of non-specific blood proteins, PEG did not 
convey significant improvement of antithrombotic ability in vivo [86]. 
This may be explained by PEG lacking specific anticoagulant biological 

Fig. 3. Hemocompatibility analysis of differentially modified PBs. a) Representative fluorescence images and b) quantitative MFI analysis of Alexa Fluor 488-labelled 
FIB adhesion on the lumen surface of PBs with different modification treatment. c) Representative confocal images of fibrin network formed by adhered FIB on the 
lumen surface of PBs with differential modifications. d) After 1 h incubation at 37 ◦C, the adhesion of platelets to the lumen of differentially modified PBs was 
observed by SEM (top row) and mepacrine staining (middle row) and the activation of platelets on different sample was observed by anti-CD62P staining (bottom 
row). e,f) Quantitative analysis of e) the area occupied by adhered platelets and f) the area occupied by activated platelets per field of view, based on mepacrine 
staining and anti-CD62P staining images, respectively. Five image per samples and five samples per group were evaluated to obtain statistical results. g,h) After 
incubation at room temperature for 5 min, g) the clot of recalcified whole blood on the lumen of PBs with different modification was observed by a stereomicroscopic 
and h) quantified by weighting. Quantitative data are displayed as the mean ± SEM (n = 5). Statistical significance is indicated as *P < 0.05, ***P < 0.001, ns = not 
significant. P values were determined using one-way ANOVA with Tukey’s post hoc analysis. 
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effect [87]. The use of other anticoagulant molecules such as heparin, 
have been combined with bioactive molecules to promote endothelial-
ization [88]. The anticoagulant ability of heparin is dependent on its 
capacity to bind circulating antithrombin [37]. However, heparin also 
binds plasma proteins such as growth factors and fibronectin [89]. Such 
non-specific interactions impact on the anticoagulant capabilities of 
heparin [43], which also does not resolve the issues relating to masking 
of functional co-modified molecules by blood components. Bovine 
serum albumin (BSA) is a commonly used model protein in the evalu-
ation of the non-specific protein adsorption of materials [90,91]. There 
was no obvious differences in the amount of BSA adhered to the lumen of 
DPT-modified PBs, DPB-modified PBs, or DMPE-PEG (DP)-modified PBs, 
but all showed obviously lower BSA adherence than unmodified-PBs 
(Fig. S6, Supporting Information). These results suggested that the 
protection against non-specific protein adsorption function of the PEG 
components in DPT and DPB modifications was maintained. Thus, our 
data suggest that modification with PEG-BVLD is an effective method to 
provide anticoagulation whilst reducing nonspecific protein binding. 

We next sought to determine whether DPB could prevent DPT from 
having its EPC-recruiting function masked by blood components. TPS 
peptide was conjugated with propargylglycine (PraOH) to synthesize 
DPT with an alkynyl end (DPT-PraOH) (Fig. S7, Supporting Informa-
tion). DPT-PraOH modified PB lumens were reacted with Cy5-N3 in the 

presence or absence of various concentrations of DPB. The capacity of 
DPB to repel blood components and to thereby allow Cy5-N3 to react 
with available DPT-PraOH via click chemistry was determined by fluo-
rescent signal intensity (Fig. 4a). After incubation with PBS for 1 h, all 
the DPT-PraOH modified on the lumen surface of PBs could react with 
Cy5-N3 because there was no blood component adhesion to shield the 
DPT-PraOH molecules (Fig. 4b). Thus, the fluorescence intensity of Cy5 
was positive correlation with DPT-PraOH modification concentration. 
Platelet-rich plasma (PRP) contains enriched blood plasma components, 
such as numerous platelets, plasma proteins, and near physiological 
levels of FIB [92,93]. Quantitative analysis (Fig. 4c) showed that after 
incubation with PRP, addition of Cy5-N3 resulted in fluorescence signal 
that increased with the concentration increase of DPB modifications, 
which indicated that DPB successfully inhibited PRP-component adhe-
sion and protected DPT-PraOH reaction with Cy5-N3. The fluorescence 
intensity of the 7.5 μM DPT +7.5 μM DPB-PBs and 5 μM DPT +10 μM 
DPB-PBs groups showed no significant differences between PBS and PRP 
incubations, which revealed that the potent effect of ≥7.5 μM DPB on 
preventing DPT from PRP-component masking. Therefore, 7.5 μM DPT 
+7.5 μM DPB-PBs and 5 μM DPT +10 μM DPB-PBs were selected as 
optimized PB modification candidates for further evaluation. 

Circulating cell populations consist of multiple cell types. One of the 
most abundant cell types found in circulation are monocytes. To 

Fig. 4. Analysis of the protective effect of DPB on DPT and selective capture of EPCs by DPT modified PB lumens. a) A schematic showing the experimental design to 
evaluate DPB inhibition of DPT masking by blood components. b) The masking of DPT modified lumen surface of PBs was detected by Cy5 fluorescence imaging after 
incubation with PBS or PRP for 1 h. Stronger fluorescence signal represented that more DPT-PraOH was exposed to react with Cy5-N3. c) Quantitative MFI analysis of 
Cy5 conjugated onto the lumen surface of PBs with different modification treatment in PBS and PRP group. Data are displayed as the mean ± SEM (n = 5). Statistical 
analysis is annotated as *P < 0.05; ***P < 0.001; and ns (not significant), as determined using unpaired Student’s t-tests. d) Schematic illustration of EPC selective 
capture experiments in dynamic flow culture system. e) Representative confocal images of DiO-labelled EPCs (green) and DiI-labelled monocyte (red) or DiI-labelled 
SMCs (red) adhesion on the lumen of different concentration of DPT: DPB modified PBs at 4 h post-dynamic flow culture. f,g) The adhesion ratios of f) EPCs/MNCs 
and g) EPCs/SMCs were calculated based on confocal images from e). Five image per sample and five samples per group were evaluated to obtain statistical results. 
Quantitative data are presented as the mean ± SEM (n = 5). Statistical analysis is annotated as *P < 0.05; ***P < 0.001; and ns (not significant), as determined using 
one-way ANOVA with Tukey’s post hoc analysis. 
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demonstrate selective EPC capture from a heterogeneous mixture of 
cells, 2 × 105 cells/mL DiO-labelled EPCs were mixed with 1 × 106 cells/ 
mL DiI-labelled monocytes (1:5) and the cell mixture was then perfused 
over lumen surface of differentially modified PBs using a dynamic flow 
culture chamber (12.47 cm/s) over the course of 4 h. The flow rate of 
culture medium mimicked human coronary blood flow velocity (9.9 ±
3.5 cm/s) [64]. Confocal images (Fig. 4e) showed that compared to 
unmodified PBs, EPC capture and adhesion increased, whereas 
non-specific MNC adhesion was markedly reduced on the lumen surface 
of 7.5 μM DPT +7.5 μM DPB-PBs and 5 μM DPT +10 μM DPB-PBs.. 
Quantitatively, the adhered cell ratio of EPC: MNC (0.23 ± 0.09) on 
the lumen surface of unmodified PBs was comparable with the ratio of 
the initial 1:5 ratio of EPC: MNC in the mixed cell suspension, which 
indicated that the unmodified PBs lacked selectivity for cells adhesion. 
However, the EPC:MNC ratio demonstrated a substantial increase in the 
DPT/DPB modified PBs, and the highest ratio was found to be in the 7.5 
μM DPT +7.5 μM DPB-PB group (Fig. 4f). In addition to the cells in 
circulation, balanced control over VSMCs infiltration is an important 
factor influencing physiological versus pathological vascular tissue 

regeneration [94,95]. The competitive growth of VSMCs can obstruct EC 
monolayer formation, resulting in intimal hyperplasia and compromised 
vascular graft patency [25,96]. The adhesion of EPCs and VSMCs 
exhibited a similar pattern to the previously observed EPCs and MNCs 
adhesion ratios (Fig. 4e,g), EPC:VSMC adhesion ratios were 1.13 ± 0.23, 
9.90 ± 1.30, and 6.10 ± 1.32 on unmodified PBs, 7.5 μM DPT +7.5 μM 
DPB-PBs, and 5 μM DPT+ 10 μM DPB-PBs, respectively. These results 
indicated that the functional sites of DPT modified onto the lumen 
surface of PBs was effectively left exposed, due to the anti-making effect 
of co-modified DPB. The DPT modifications conveyed prominent 
EPC-capturing ability, thereby also demonstrating TPS functionality 
despite conjugation to DMPE-PEG. 

2.5. In vivo endothelial regeneration by DPB/DPT-PBs in rat abdominal 
artery replacement models 

The 7.5 μM DPT +7.5 μM DPB-PBs exhibited the optimal ability to 
selectively capture EPCs, but the complexity of the in vivo internal 
environment warranted the use of rat abdominal artery implantation to 

Fig. 5. Evaluation of ECs regeneration of DPT/DPB modified PBs after implantation into rat abdominal artery for 2 weeks. a) CD31 en-face staining showed the ECs 
coverage at different (anastomotic, quarter and midportion) sites of the lumen. b) Representative anti-CD31 antibody immunofluorescence staining images of 
longitudinal sections and calculated mean % ± SEM of ECs coverage (length of CD31+ monolayer/total length) (n = 5). c) Representative double immunofluo-
rescence staining images with anti-CD34 (red) and anti-CD31 (green) antibodies demonstrate the difference in the contribution of CD34+ EPCs to the ECs regen-
eration at quarter site of the explanted PBs in different groups. Quantification of d) CD31+ cells (% of total lumen-facing cells per field); e) CD34+ cells (% of total 
lumen-facing cells per field); and f) CD31+ CD34+ double-positive cells (% of total lumen-facing cells per field). Quantification was assessed across the three assessed 
sites (anastomotic, quarter, midportion) of the lumen at 2 weeks post-implantation (1 images per sites, 3 different site per section, 3 section per sample and 5 samples 
per group were evaluated to obtain data for statistical analysis). Data are expressed as the mean ± SEM (n = 5). Statistical significance is indicated as *P < 0.05, ***P 
< 0.001, ns = no significance. P values were determined using one-way ANOVA with Tukey’s post hoc analysis. 
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assess the performance of both 7.5 μM DPT +7.5 μM DPB-PBs and 5 μM 
DPT +10 μM DPB-PBs. One week after vascular implantation, anti-CD34 
and anti-Flk-1 antibodies were used to co-stain and characterize the 
presence of EPCs on the luminal surface of differentially modified PBs 
(Fig. S8, Supporting Information). On the lumen of unmodified PBs, 
CD34+ Flk+ cells were scarcely observable. In contrast, both 7.5 μM DPT 
+7.5 μM DPB-PBs and 5 μM DPT +10 μM-PBs exhibited more CD34+

and Flk+ cells on the lumen surfaces at all three of the assessed sites. The 
elevated luminal presence of cells positive for EPC markers indicated 
that DPT/DPB modified PBs successfully enhanced the capture of EPCs 
in vivo. After implantation for 2 weeks, en-face staining showed a 
different extent of EC coverage at the anastomotic site, quarter site and 
midportion site of the differentially modified PBs (Fig. 5a). In unmodi-
fied PBs, only the anastomotic sites showed EC coverage, likely indica-
tive of trans-anastomotic migration of ECs rather than EPC recruitment 
[97]. In the 5 μM DPT +10 μM DPB-PB group, more ECs had covered the 
lumen surface, but complete EC monolayer regeneration had yet to be 
achieved, especially at the midportion site. In the 7.5 μM DPT +7.5 μM 
DPB-PBs group, the luminal surface at each of the three analysed sites 
had been completely covered by ECs with a morphology similar to 
native vascular tissue ECs (i.e., cobblestone-like morphology and elon-
gated follow the blood flow direction) [98]. The same degree of 
coverage was also observed by immunofluorescence staining of the 
longitudinal sections using anti-CD31 antibody (Fig. 5b). The ECs 
coverage rates of 7.5 μM DPT +7.5 μM DPB-PBs was found to be 85.60 
± 5.11% at 2-week post-vascular implantation, which was a remarkably 
higher percentage than unmodified (34.76 ± 6.52%) and 5 μM DPT +
10 μM DPB-PBs (56.53 ± 5.59%) (Fig. S9, Supporting Information). To 
investigate whether the improved endothelialization of modified PBs 
was directly related to the enhanced and selective capture of EPCs, 
anti-CD34 antibody (a typical marker expressed by EPCs) [99] and 
anti-CD31 antibody co-staining were performed to disclose the contri-
bution of CD34+ EPCs to CD31+ EC monolayer regeneration in differ-
entially modified PBs at 2 weeks. Few CD34+ CD31+ cells were observed 
at the anastomotic site of unmodified PBs (Fig. S10, Supporting Infor-
mation), and neither CD31+ cells nor CD34+ cells were distributed at the 
quarter site (Fig. 5c) or midportion sites of unmodified PBs (Fig. S10, 
Supporting Information). Both 7.5 μM DPT +7.5 μM DPB-PBs and 5 μM 
DPT +10 μM-PBs exhibited more CD31+ CD34+ cells on the lumen 
surface at all three of the assessed sites (Fig. 5c, Fig. S10, Supporting 
Information). Quantitative analysis indicated that 7.5 μM DPT +7.5 μM 
DPB-PBs showed the highest percentage of CD31+ (Fig. 5d) and CD34+

cells (Fig. 5e). The ratio of CD31+CD34+cells among the three PB groups 
indicated that 7.5 μM DPT +7.5 μM DPB-PBs demonstrated the highest 
ratio (29.50 ± 4.84%), followed by 5 μM DPT + 10 μM DPB-PBs (16.90 
± 3.53%) (Fig. 5f). The current generally accepted in situ endotheliali-
zation mechanism of vascular grafts include endothelial ingrowth from 
trans-anastomotic migration and recruitment/adhesion of circulating 
progenitor cells [100]. Our results strongly support the capture of 
circulating EPCs as an effective method to promote timely endothelial-
ization. Accumulated evidence also demonstrated that EPCs stimulated 
the proliferation of mature ECs [101] and inhibited their apoptosis 
through paracrine activity [102]. Both our en-face staining and 
anti-CD31 antibody-stained longitudinal sections showed that the extent 
of EC monolayer regeneration closer to the anastomotic site was more 
consistent than at the distal midportion site. Therefore, EPCs captured 
by DPT may also assist in the promotion of vascular resident EC 
migration and proliferation from anastomosis-adjacent sites. 

2.6. Performance of DPT/DPB modified PBs in canine carotid artery 
implantation models without anticoagulant administration 

Thrombus formation is considered a predominant reason of vascular 
graft failure [3]. Antiplatelet drugs, such as aspirin or clopidogrel, are 
commonly used in clinical settings to maintain implanted graft patency 
[103]. However, the administration of antiplatelet drugs is a 

double-edged sword, as indicated by the increased risk of adverse 
bleeding described in clinical research studies [8]. In our previous study, 
orally administered antiplatelet drugs were required to maintain PB 
patency in canine carotid artery implantation models [51]. In this study, 
we evaluated platelet function via optical aggregometry after canines 
received the same anticoagulant administration as in our previous study 
(po: 13 mg/kg aspirin and 3 mg/kg clopidogrel, qd) for 7 consecutive 
days. Optical aggregometry is considered to be the ‘gold standard’ 
method for detecting drug-induced platelet dysfunction [104,105]. 
Aggregometry assesses platelet function using agonists to activate 
platelets and measures platelet aggregation [106]. After anticoagulant 
administration for 7 consecutive days, there was an approximately 
five-fold decrease in the maximal platelet aggregation when arachidonic 
acid was used as the agonist in canine (from 80.75 ± 4.81% to 15.63 ±
3.67%) (Fig. 6a). Cuticle bleeding time (CBT) assay was performed to 
evaluate the influence of anticoagulant administration on increasing 
bleed risk. After the canine nail cuticle was severed, the number of blood 
drops in the subsequent 15 min was recorded (Fig. 6b) and converted to 
a CBT score (Table S3, Supporting Information). The CBT score (Fig. 6c) 
of canine received anticoagulant drugs for 7 consecutive days was 36.88 
± 5.97, which was remarkably higher than that before anticoagulant 
administration (6.75 ± 1.36). A standardized cut with controlled length 
(2 cm) and depth (0.2 cm) on canine hind limb was produced to observe 
the bleeding. Before anticoagulant administration, only minimal 
bleeding with spontaneous hemostasis at 3 min. However, after canine 
received anticoagulant drugs for 7 consecutive days, active bleeding and 
significant increased amount of blood were observed at 3 min of incision 
produced. These results indicated that consist anticoagulant adminis-
tration obviously increase the bleeding risk, which even may be fatal [8, 
37]. Avoiding the use of anticoagulant drugs would improve the life 
quality of patients and should be the development trend of TEVG [107]. 
In order to clear the influence of anticoagulant drug on the patency of 
vascular grafts, the canine received a 3-week wash out period without 
any drug administration [108]. Afterwards, the eight canine were 
randomly divided into two groups to evaluate the performance of the 
modified and unmodified PBs in carotid artery implantation model 
without any anticoagulant administration (Fig. 6e). After vascular im-
plantation for 30 days, color ultrasound doppler test showed that the 
patency rate of 7.5 μM DPT +7.5 μM DPB-PBs was 75%, while all the 
unmodified PBs was occlusion (Fig. 6f and Fig. S11, Supporting Infor-
mation). Color ultrasound doppler test also showed that compared to 
immediate test post-vascular implantation, there was only a slight 
decrease in luminal diameter of the patent 7.5 μM DPT +7.5 μM 
DPB-PBs at 30 days (Fig. 6g). Stereomicroscopic observation showed 
that there were lots of capillaries on the outer surface of the explanted 
unmodified PBs and 7.5 μM DPT +7.5 μM DPB-PB, indicating that 
co-modification had no influence on the integration of PBs with the 
surrounding tissue (Fig. 6h). Stereomicroscopy (Fig. 6h and Fig. S12, 
Supporting Information) images of the cross section from proximal 
anastomoses (position #1), midportion (position #2) and distal anas-
tomoses (position #3) together with H&E staining (Fig. 6i) confirmed 
that the thrombus formation was the main cause of the occlusion in the 
all unmodified-PBs and 7.5 μM DPT +7.5 μM DPB-PBs. The lumen sur-
face of the other three patent 7.5 μM DPT +7.5 μM DPB-PBs at mid-
portion was free of thrombus (Fig. S12, Supporting Information). SEM 
images (Fig. 6j) showed that the lumen surface of patent 7.5 μM DPT 
+7.5 μM DPB-PBs has covered by cobblestone-like ECs with a nicely 
elongation in the direction of blood flow, similar to regenerated ECs in 
rat model. Immunofluorescence staining of vWF and α-SMA (Fig. 6k) 
showed that the lumen of patent 7.5 μM DPT +7.5 μM DPB-PBs were 
covered by vWF+ EC monolayer, α-SMA+ SMCs were arranged in the 
circumferential direction and closely adhered blow the EC layer. These 
results indicated that 7.5 μM DPT +7.5 μM DPB-PB display the good 
capacity for rapid endothelialization and vascular regeneration. 

Assessment of modification stability indicated the degree of loss of 
functional molecules from the lumen surface of PBs, which may result in 
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systemic distribution of DPT and DPB with risks of adverse effects. Thus, 
the major organs were evaluated for signs of toxicity (heart, liver, 
spleen, lung, kidney). H&E staining showed that the histological archi-
tecture of main organs of rats from DPT/DPB modified PBs groups was 
similar to those from unmodified PBs at 2-week post-vascular implan-
tation, which both had no abnormal pathological changes compared to 
those form normal rats without any treatment (Fig. S13, Supporting 
Information). In canine vascular implantation model, the abnormal 
pathological changes were not be found in main organs at 30 days 
(Fig. S14, Supporting Information). These results indicated that the loss 
of DPB and DPT modifications from the lumen surface did not induce 
organ toxicity. 

The work presented here offers insights into the feasibility of 
achieving biocompatible and functional modifications in living cell 
systems. Indeed, this cell membrane modification method may have 
general applications in the field of tissue-engineered constructs con-
taining living cells or for conveying beneficial function for organ 
transplantation. Vascularization is one of the top challenges in engi-
neered tissues and organs [109]. Especially for large size (>1 mm) tissue 
constructs replacements, angiogenesis should be considered [110]. 

Bioactive molecules that promote angiogenesis and vascularization, 
such as IGF-mimicking peptide [111], could be modified onto the sur-
face of transplanted allogeneic tissues or tissue-engineering constructs 
using anchors/linkers DMPE-PEG. A promising therapeutic method for 
type 1 diabetes is islet transplantation. However, host immune rejection 
as mediated by T effector cells severely limit the functions and longevity 
of grafted allogeneic islets [112]. Using DMPE-PEG covalent linked with 
immunomodulatory molecules to modify islet cell surfaces could 
potentially serve to help alleviate immune rejection. The present study 
can serve as a foundational basis and reference from which to adapt 
DMPE-PEG-molecule modifications into complex tissue/organ 
structures. 

3. Conclusion 

Through the conjugation of BVLD or TPS to DMPE-PEG, we suc-
cessfully synthesized DPB and DPT, respectively. These two types of 
molecular modifications were co-modified onto the lunmen surface of 
PBs, by utilizing hydrophobic interactions between DMPE-PEG and the 
living cell membranes. The biocompatible DPB and DPT co- 

Fig. 6. Evaluation of the bleeding risk caused by anticoagulant administration and the performance of 7.5 μM DPT +7.5 μM DPB-PB in canine model. a-d) Evaluation 
of canine bleeding risk before and after anticoagulant administration (po: 13 mg/kg aspirin and 3 mg/kg clopidogrel, qd) for 7 consecutive days. a) Maximum platelet 
aggregation percentage analysis via optical aggregometry in eight dogs before anticoagulant administration and after 2 h at the last anticoagulant administration. b) 
Nail cuticle bleeding time (CBT) assay. After the nail cuticle was severed, the number of blood drops in the subsequent 15 min was recorded and converted to a CBT 
score (Table S3, Supporting Information). c) Statistical analysis of canine CBT scores before and after anticoagulant administration for 7 days (n = 8). d) Repre-
sentative digital photos of full-thickness skin incision bleeding assay. e-k) Performance evaluation of modified and unmodified PBs in canine carotid artery im-
plantation model. e) The 7.5 μM DPT +7.5 μM DPB-PBs and unmodified PBs were implantated into canine carotid artery for 30 days without any anticoagulant 
administration. f) Representative colour ultrasound doppler images of implanted graft immediately after surgery (day 0) and 30 days post-vascular implantation (day 
30). g) Quantitative analysis of luminal diameter based on colour ultrasound doppler test (n = 4). h) Representative stereomicroscopy images of side view and cross- 
section of the explanted 7.5 μM DPT +7.5 μM DPB-PB and unmodified PBs at 30 days. i) Representative H&E staining images of the cross-section of midportion of the 
explanted 7.5 μM DPT +7.5 μM DPB-PB and unmodified-PBs. j, k) Representative j) lumen surface SEM images and k) anti-vWF immunofluorescence staining images 
of three different (proximal anastomoses, midportion and distal anastomoses) sites of the explanted 7.5 μM DPT + 7.5 μM DPB-PBs at 30 days. Data are shown as 
means ± SEM. Statistical significance was determined by paired Student’s t-test (a, c, g). **P < 0.01, ***P < 0.001 and ns: not significant. 
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modifications afforded PBs the capacity to attenuate fibrinogen binding, 
platelet adhesion, and whole blood clot formation on the material-blood 
interface; whilst also facilitating the specific capture and recruitment of 
EPCs from the circulating blood to enhance endothelialization. A total of 
10 min of incubation time was sufficient to saturate the PB lumens with 
DPB and DPT. The optimized DPT/DPB-PB could then be immediately 
implanted as vascular grafts to achieve remarkable improvements in 
patency and graft endothelialization in both small-animal (rat) and 
large-animal (canine) artery replacement models. Importantly, these 
beneficial effects were realised without the need for anticoagulant drug 
administration. The uniqueness of this work was summarized as follows: 
(i) Conjugation of BVLD or TPS to DMPE-PEG successfully produced 
synthetic DPB and DPT molecules. The two molecules were co-modified 
on the lumen surface of PBs, based on the hydrophobic interactions 
between DMPE-PEG and cell membranes. DMPE-PEG-based functional 
modifications exhibited high efficiency and biocompatibility, achieving 
saturated levels of modification within 10 min of incubation, which did 
not exert negative impacts on PB-resident cell viability or expression of 
physiological markers (apoptosis and metabolism-related gene expres-
sion); (ii) DPB modifications achieved an effective ‘kill three birds with 
one stone’ strategy. The DPB modifications conveyed anti-coagulation 
functions and maintained the nonspecific protein repellent function of 
its PEG component, which in-turn prevented DPT from having its EPC- 
recruiting function masked by circulating blood components; (iii) DPT 
and DPB co-modified PBs maintained vascular graft patency and facili-
tated the rapid endothelialization of grafts implanted in large animal 
carotid artery replacement models without the requirement for admin-
istration of anticoagulation drugs; and (iv)This work provided a safe, 
simple and fast approach to modify tissue engineering constructs con-
taining live cells. 
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