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Abstract
Purpose  Consistent assessment of bone metastases is crucial for patient management and clinical trials in prostate cancer 
(PCa). We aimed to develop a fully automated convolutional neural network (CNN)-based model for calculating PET/CT 
skeletal tumor burden in patients with PCa.
Methods  A total of 168 patients from three centers were divided into training, validation, and test groups. Manual annota-
tions of skeletal lesions in [18F]fluoride PET/CT scans were used to train a CNN. The AI model was evaluated in 26 patients 
and compared to segmentations by physicians and to a SUV 15 threshold. PET index representing the percentage of skeletal 
volume taken up by lesions was estimated.
Results  There was no case in which all readers agreed on prevalence of lesions that the AI model failed to detect. PET index 
by the AI model correlated moderately strong to physician PET index (mean r = 0.69). Threshold PET index correlated fairly 
with physician PET index (mean r = 0.49). The sensitivity for lesion detection was 65–76% for AI, 68–91% for physicians, 
and 44–51% for threshold depending on which physician was considered reference.
Conclusion  It was possible to develop an AI-based model for automated assessment of PET/CT skeletal tumor burden. The 
model’s performance was superior to using a threshold and provides fully automated calculation of whole-body skeletal 
tumor burden. It could be further developed to apply to different radiotracers. Objective scan evaluation is a first step toward 
developing a PET/CT imaging biomarker for PCa skeletal metastases.
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Introduction

Accurate and consistent assessment of bone metastases is 
crucial for prognosis, treatment planning, and follow-up 
in patients with primary advanced or recurrent prostate 

cancer (PCa). Whole-body bone scan has been the most 
widely used modality to detect bone metastases. To over-
come reader subjectivity, the automated bone scan index 
(aBSI),which reflects tumor burden as the fraction of the 
total skeleton weight, was developed [1]. A phase III ran-
domized clinical trial showed that aBSI is an independ-
ent prognostic imaging biomarker for overall survival in 
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metastatic castrate-resistant PCa [2]. The concept of aBSI 
demonstrates the strengths of extracting quantifiable infor-
mation from an otherwise subjectively interpreted imaging 
study.

Advances toward developing more sensitive imaging 
techniques for diagnosing metastatic PCa include positron 
emission tomography combined with computed tomography 
(PET/CT) using, for example, prostate-specific membrane 
antigen (PSMA)-targeting radiopharmaceuticals or [18F]flu-
oride. A caveat, however, is that the interpretation depends 
on the individual reader’s training and experience. Definition 
of disease progression is especially problematic. Although 
recent criteria for more consistent reporting and definition of 
treatment response in PSMA PET/CT have been suggested, 
the central issue of reader subjectivity is still not fully elimi-
nated [3–6].

Volumetric quantification of skeletal tumor burden in PET/
CT has shown correlation to survival in patients with PCa 
[7–10], demonstrating its potential as a prognostic imaging 
biomarker similar to aBSI. Several methods have been pro-
posed for quantification of whole-body skeletal tumor bur-
den in [18F]fluoride PET/CT and whole-body tumor burden 
in PSMA PET/CT, most of them being semi-automated and 
often based on fixed standardized uptake value (SUV) thresh-
olds [11–18]. The majority of these methods require drawing 
volumes of interest to encompass regions of suspicious uptake 
and manual exclusion of uptake unrelated to bone metastases, 
making them labor-intensive and subject to individual interpre-
tation despite their semi-automated feature. However, recent 
leaps forward in methodology include fully automated convo-
lutional neural network (CNN)-based quantification of whole-
body tumor burden in PSMA PET/CT [19, 20].

A next step within this field would be to develop a fully 
automated method for assessment of PET/CT in metastatic 
PCa that can be reported consistently and quantitatively 
as an imaging biomarker. This is in line with the Prostate 
Cancer Working Group 3 recommendations that emphasize 
focusing on how biomarkers can be developed to predict 
outcome, guide management, and influence clinical deci-
sion-making [21]. Deep learning has become a dominant 
method in complex imaging analysis tasks. Compared to 
using SUV thresholds, CNNs trained on data from both PET 
and CT scans can handle more difficult uptake patterns and 
more accurately distinguish malignant foci from physiologi-
cal uptake.

The primary aim of this study was to develop a com-
pletely automated CNN-based model for calculation of PET/
CT whole-body skeletal tumor burden in patients with PCa, 
called the PET index, using  [18F]fluoride PET/CT scans 
from three different hospitals. A secondary aim was to 
assess interreader agreement by comparing the PET index 
to manual interpretations by specialists in nuclear medicine 
and to a threshold-based model.

Material and methods

Patients

[18F]fluoride PET/CT scans from 90 patients at Skåne Uni-
versity Hospital, Sweden, 50 patients at Odense University 
Hospital, Denmark, and 34 patients from Uppsala Univer-
sity Hospital, Sweden, were screened retrospectively for 
eligibility. The scans were acquired as part of previous 
studies [22–24].

The previous inclusion criteria for the study at Skåne 
University Hospital were biopsy-verified high-risk PCa 
considered for curative treatment and a recent whole-body 
bone scan with normal or inconclusive findings [22]. The 
inclusion criteria for the study at Odense University Hos-
pital were biopsy-verified PCa and a whole-body bone 
scan with ≥ 1 bone metastasis [23]. The inclusion criteria 
for the study at Uppsala University Hospital were biopsy-
proven PCa and Gleason score ≥ 8 [24].

Of the 174 patients, three were excluded from the 
current study due to extremely high metastatic skeletal 
burden with confluent uptake, disabling marking of indi-
vidual foci. Additionally, three patients were excluded due 
to inaccurate SUVs as a consequence of incorrect image 
labeling. In total, 168 patients were included in the final 
analysis. The study was approved by the regional ethical 
review board in Lund (2016/443) and Uppsala (2012/347), 
Sweden, and by the Danish Patient Safety Authority 
(3–3013-1692/1).

PET/CT imaging

At Skåne University Hospital, PET/CT scans were 
acquired with Gemini TF (Philips Medical Systems) 
1–1.5  h after i.v. injection of 4  MBq/kg (max dose 
400 MBq) of [18F]fluoride, with 2 min per bed position. 
The PET images were reconstructed using the BLOB-
OS-TOF algorithm, with 3 iterations, 33 subsets, to a 
144 × 144 matrix with a pixel size and slice thickness of 
4 mm. A low-dose CT (Smart mA, 120 kV, 30–160 mA, 
slice thickness 5 mm) was obtained for attenuation cor-
rection and image fusion. A diagnostic CT with i.v. and 
per oral contrast was performed 1–24 days previously as 
part of another PET/CT scan within the previous study 
frame. The scans were acquired from the vertex to the 
mid thigh.

PET/CT scans at Odense University Hospital were 
obtained by Discovery VCT 64 (GE Healthcare)1 h after 
i.v. injection of 3 MBq/kg of [18F]fluoride, with 2.5 min 
per bed position. The PET data was reconstructed with 
a matrix size of 128 × 128, pixel size 5.47 mm, and a 
slice thickness of 3.27 mm using OSEM (2 iterations, 28 
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subsets). A low-dose CT was acquired using tube current 
modulation (SmartmA, 140 kV, 30–150 mA) and was 
reconstructed in a field of view of 50 cm using filtered 
back projection, slice thickness of 3.75 mm, and spacing 
of 3.27 mm. Scans were acquired from the base of the 
skull to the mid thigh.

At Uppsala University Hospital, PET/CT scans were 
acquired with Discovery ST (GE Healthcare) 1 h after i.v. 
injection of 3 MBq/kg body weight of [18F]fluoride, with 
2 min per bed position. Images were reconstructed using 
OSEM (2 iterations, 21 subsets), a matrix size of 128 × 128, 
pixel size 3.9  mm, and slice thickness of 3.27  mm. A 
low-dose CT was performed immediately before the PET 
(140  kV, 10–80  mA, slice thickness 3.75). Scans were 
acquired from the vertex to the proximal 1/3 of the femur.

Training and validation groups

For training, 53 patients from Skåne University Hospital and 29 
patients from Odense University Hospital (constituting approxi-
mately 60% of the entire number of patients from each center) 
were randomly selected. The 34 scans from Uppsala Univer-
sity Hospital did not have any pathological uptake and were 
added to improve the network’s ability to handle non-suspicious 
uptake regions. A total of 116 patients were used for training.

Manual segmentations of suspicious skeletal uptake 
were performed using a cloud-based segmentation tool 
(www.​recom​ia.​org) [25]. A single physician segmented all 
uptakes with malignant or unclear origin based on the origi-
nal clinical written reports. The segmentations were visually 
re-examined by a specialist in nuclear medicine with 7 years 
of PET/CT experience before the final training.

The model was evaluated in a validation group with 26 
annotated PET/CT scans (18 from Skåne University Hospi-
tal and eight from Odense University Hospital), constituting 
approximately 20% of patients from each of the two centers.

Test group

The test group consisted of 26 patients (18 from Skåne Uni-
versity Hospital and eight from Odense University Hospital). 

Three specialists in nuclear medicine from one center (read-
ers A–C) with 7–10 years of experience each performed 
manual segmentations of lesions in the PET/CT scans in 
the test group. A physician from another center who had 
segmented the training material (reader D) also performed 
manual segmentations of suspicious uptake in the test group 
patients in order to investigate any bias for the AI model 
toward this reader. The same tool was used for the train-
ing material [25]. The readers performed the segmentations 
separately and individually. Readers A–C were blinded to all 
patient information. Reader D had access to patient charac-
teristics and original clinical written reports from the PET/
CT scans. The readers were instructed to label all voxels 
judged to correspond to malignant uptake in any of the three 
planes (axial, coronal, or sagittal) in each slice. Uptake of 
unclear origin where metastasis could not be excluded was 
instructed to be labeled as malignant. The manual segmen-
tation of each lesion was based on information from both 
the PET and CT scans. Written guidelines were established 
(Supplementary material 1) and accepted by all the readers 
before the segmentation started.

A threshold of SUV 15 has been used in previous stud-
ies to automatically segment lesions in [18F]fluoride PET/
CT [14, 26]. We employed this threshold to our test group 
in order to compare to the AI model. Segmented connected 
components < 0.1 ml were removed.

AI model

The CNN-based segmentation model consists of two fully 
convolutional networks, the organ CNN and the lesion CNN. 
The organ CNN segments 100 different organs (77 bones 
and 23 soft tissue organs) using a CT image as input [25]. 
The output from the organ CNN is used to create a label 
mask marking bones, joints, kidneys, lungs, brain, skull, 
spleen, heart, aorta, and liver. This mask, as well as the CT 
and PET images, is used as input for the lesion CNN that 
classifies each voxel as either bone metastasis or background 
(Fig. 1). The label mask is added as input to facilitate the dif-
ferentiation between malign and benign high uptake regions. 

Fig. 1   Schematic of the AI 
model. The lesion CNN seg-
ments suspected metastatic 
skeletal uptake in the scan with 
a CT, PET scan, and a label 
mask produced by the organ 
CNN as input
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Hence, the organs marked are either organs where malignant 
uptake or physiological high uptake is common.

Both CNNs have the same structure as 3D U-Net [27]. 
The input of the lesion CNN is a 100 × 100 × 100 volume of 
voxels where each voxel has a size of 3.0 × 1.37 × 1.37 mm. 
The different input modalities (CT, PET, and label mask) 
are resampled using trilinear interpolation and concat-
enated across the feature or channel, dimension. For this 
input size, the CNN outputs an estimated class probability 
for each voxel of a 12 × 12 × 12 volume at the center of the 
input patch. Training was performed with categorical cross-
entropy as loss and training samples were drawn evenly from 
the two classes. In addition, training samples were drawn 
more often from areas with high SUV uptake and voxels 
misclassified by earlier versions of the CNN. This is to 
focus the training on “harder” samples since many areas, 
especially those with low uptake, are easily classified as 
background.

During inference, the lesion CNN was applied to all vox-
els in the image. As a postprocessing step, all connected 
components < 0.1 ml were removed. In addition, all areas 
where high uptake regions were deemed to originate from 
joints were removed. More specifically, each voxel was 
associated with local maxima in the SUV image using a 
watershed transform. Voxels where these local maxima were 
located in a joint were set to background. The joint mask 
was created using bone segmentations output from the organ 
CNN.

PET/CT quantitative analysis

To calculate the PET index, the volume of all tracer uptake 
marked as suspicious by each reader/model is summed and 
divided by the total volume of visualized skeletal parts in 
each patient, generating a measure of skeletal tumor burden 
expressed in percent. The bone volume was calculated using 
a previously described CNN-based method [28].

Statistics

Patient characteristics (age and PSA levels) for the train-
ing, validation, and test groups were compared using 
Kruskal–Wallis H test. A p-value < 0.05 was considered a 
statistically significant difference.

Bland–Altman plots were used to assess interreader reli-
ability in PET index estimation between the readers and the 
AI model. The correlation between PET indices calculated 
by each reader, the AI model, and the threshold model in 
each patient was assessed using Spearman rank correlation. 
Correlation was considered very strong for Spearman’s 
coefficient r absolute values > 0.8, moderately strong for 
r = 0.6–0.79, fair for r = 0.3–0.59, and poor for r < 0.3 [29].

For analysis on both patient and lesion-level, each of the 
four readers was alternately held as reference and pairwise 
compared to another reader, AI, or threshold model [30]. 
The pairwise results were then averaged to obtain results 
for reader vs. reader, AI model vs. reader, and threshold 
model vs. reader.

For patient-level analysis, a true positive (TP) scan pre-
diction was defined as the detection of suspicious uptake 
corresponding to a PET index > 0 in a scan where a reader 
used as reference also segmented suspicious uptake defined 
as a PET index > 0. Otherwise, it was considered false nega-
tive (FN). A false positive (FP) scan prediction for reader 
or model was defined as a PET index > 0 in the same scan 
where a reader used as reference did not identify suspicious 
uptake (PET index = 0). The sensitivity and positive predic-
tive value (PPV) was calculated based on these values for 
reader vs. reader, AI model vs. reader, and threshold model 
vs. reader.

For lesion-level analysis, lesions were defined as TP for 
reader, AI, or threshold model, respectively, in case of either 
full or partial segmentation overlap with a reader held as 
reference, or else, they were defined as FN. FP lesions were 
defined as zero segmentation overlap by reader or model, 
with a reader held as reference. The sensitivity for the detec-
tion of lesions was calculated as the percentage of detected 
lesions by each individual reader, also detected by a reader 
or a model. The PPV was evaluated as the percent of TP 
lesions for a reader or a model when compared to another 
reader used as reference, divided by TP plus FP lesions when 
compared to the same reference reader. Data were analyzed 
using IBM SPSS Statistics 28.

Results

Patient characteristics

Information regarding age, PSA levels, and Gleason scores 
for the patients in the training, validation, and test groups is 
presented in Table 1. There was no statistically significant 
difference between age and PSA levels when comparing the 
training, validation, and test groups (p > 0.05).

PET index

PET indices calculated by readers A–D, the AI model, and 
the threshold model are presented in Table 2.

Patient‑level analysis

On a patient-level, readers A–D were unanimous in 73% 
(19/26) of patients in the test group regarding prevalence 
(n = 12) and absence (n = 7) of suspected metastatic uptake. 
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There was no case in which all readers agreed on the preva-
lence of lesions that the AI model failed to detect. In six 
patients, none of the readers identified any lesions, while 
the AI model found lesions corresponding to PET indices 
up to 0.57% (Fig. 2a). A visual examination showed that 
lesions detected by the AI model but not by the readers 
were most often located in the spine or costovertebral joints. 
When comparing the AI model to reader D from a different 
center who had performed the manual segmentations used 
for training, interpretation regarding prevalence/absence of 
metastatic uptake coincided in 62% (16/26) of the patients 
(Fig. 2b).

The threshold model identified lesions corresponding to 
PET indices up to 0.25% in nine patients, while all readers 
agreed on the absence of lesions (Fig. 2c). In one patient, the 
threshold did not detect any lesions, while all readers and the 
AI model agreed on suspicious uptake in the right ribcage.

Boxplots of the sensitivity and PPV for the detection of 
lesions on a patient-level are shown in Fig. 3. The median 
(range) sensitivity for reader vs. reader, AI model vs. reader, 
and threshold model vs. reader was 83.8% (57.1–100%), 
85.9% (78.6–100%), and 75.6% (70.0–87.5%), respec-
tively, depending on which reader was used as a reference. 
The median (range) PPV for reader vs. reader, AI model 
vs. reader, and threshold model vs. reader was 84.7% 
(60.0–100%), 52.9% (47.1–64.7%), and 38.6% (35.0–55.0%), 
respectively.

Bland–Altman plots illustrating interreader reliability 
between the AI model and each reader for log10(x + 1)-trans-
formed data are displayed in Fig. 4. The back-transformed lim-
its of agreement were 4.3 (upper) and − 2.8 (lower) for AI vs. 
reader A, 2.9 (upper) and − 1.9 (lower) for AI vs. reader B, 4.1 
(upper) and − 2.7 (lower) for AI vs. reader C, and 4.4 (upper) 
and − 2.8 (lower) for AI vs. reader D. With an increasing 
mean PET index, the difference between reader and AI model 

estimation tended to increase for all the four readers. A visual 
examination of the scans with the highest PET index discrep-
ancies revealed that segmentations of the same lesions were 
often performed but with larger individual areas marked by the 
AI model and/or segmentation of fractures or more uncommon 
uptake patterns (such as subject number 26, Fig. 2a).

PET indices calculated by the AI model showed a fair-mod-
erately strong correlation to reader PET indices in the same 
patient (Fig. 5). Pairwise interreader correlation between read-
ers A–D was moderately-very strong. PET indices calculated 
by using a threshold of SUV 15 correlated fairly with all the 
physicians and the AI model.

Lesion‑level analysis

Table 3 shows the number of TP, FP, FN, sensitivity, and PPV 
for readers A–D, the AI model, and the threshold model. The 
detection sensitivity for suspicious lesions when considering 
each reader as reference ranged between 68 and 91% depend-
ing on which reader was used as a reference. The sensitivity 
of the AI model ranged from 65 to 76% when considering 
each reader as ground truth, respectively. The sensitivity of the 
threshold model when considering each reader as ground truth 
was 44–51% and thus outside of the interreader range. When 
comparing the AI model to reader D who had segmented the 
training material, the number of TP was 130 (5.0 per patient), 
FP 38.0 (1.5 per patient), and FN 61.0 (2.3 per patient), with 
a sensitivity of 68% and PPV of 77%.

Discussion

The results show that an AI-based model can be trained to 
automatically identify lesions in PET/CT to give a measure 
of the total skeletal tumor burden. This measure, called the 

Table 1   Patient characteristics. Information regarding age, PSA levels, and Gleason score was unavailable for the 34 patients in the training 
group that were added to increase the model’s ability to handle non-suspicious high uptake regions

Median (IQR) Training group (n = 82) Validation group (n = 26) Test group (n = 26) p-value

Age, years 68 (64–72) 69 (64–73) 66 (64–72) 0.479
PSA, ng/mL 30 (16–77) 29 (19–57) 28 (14–38) 0.626
Gleason score 8 (7–9) 8 (7–9) 8 (7–9)

Table 2   Mean and standard deviation (SD), as well as median and interquartile range (IQR) PET indices for the patients in the test group calcu-
lated by the readers and AI model and by using a threshold of SUV 15 (n = 26)

PET index, %

Reader A Reader B Reader C Reader D AI model Threshold model

Mean (SD) 0.70 (1.68) 0.91 (2.20) 0.73 (1.86) 1.35 (1.51) 1.44 (3.27) 1.35 (3.16)
Median (IQR) 0 (0–0.96) 0 (0–0.04) 0 (0–0.06) 0.01 (0–0.14) 0.02 (0–0.96) 0.03 (0–0.41)

1514 European Journal of Nuclear Medicine and Molecular Imaging  (2023) 50:1510–1520

1 3



PET index, is a fully automated model for calculation of 
whole-body skeletal tumor burden. Objective scan evalu-
ation is a first step toward developing a PET/CT imaging 
biomarker for PCa skeletal metastases.

To qualify as decision support, it is important for an 
automated method not to dismiss a potentially metastatic 
uptake. This is important from a patient perspective as it will 
misjudge prognosis and lead to incorrect treatment. At the 
same time, identification of a large number of false positive 
lesions makes the interpretation time consuming, defeating 
its purpose. The AI model did not rule out metastatic uptake 
in any patient where the readers agreed on prevalence. The 
relative low number of false negatives came at the expense 
of higher false positive rate. At a patient-level, the sensitiv-
ity of the AI model was comparable to the readers, but the 
median PPV for the AI model was only 52.9%. In the clinical 
setting, these false positives scans can be readily disregarded 
by a reader as they often show a single uptake in the spine 
or a joint due to degenerative disease. At a lesion-level, the 
average number of false positives per patient was higher for 
the AI model (2.6) compared to the readers (1.5) but still 
low compared to another recent study in which the average 
number of false positive bone lesions in PSMA PET/CT 
was 8.3 per patient for an AI-based software [31]. These 
results are encouraging and with a larger training material, 
the performance of the model would most likely increase. 
Additionally, it remains important to have a nuclear medi-
cine physician read the PET/CT scans to assess where the 
lesions are located to help guide management and to rule out 
uptake of non-malignant origin.

As the PET index represents the sum of all voxels 
marked as suspicious, segmentation of the same lesions 
may result in different PET indices depending on inter-
reader differences in border assessment. PET index cal-
culated by the AI model was generally higher compared 
to the readers, which is probably a reflection of the AI 
model’s propensity to segment individual lesions as larger 
volumes and/or due to the higher number of false posi-
tives. In patients with a high number of metastases, this 
effect is larger, as reflected in the increasing variability of 
the differences with the PET index magnitude. As PET 
index also depends on bone volume, it would be beneficial 
to standardize PET/CT scanning to consistently include 

Fig. 2   a Left: the AI model detects suspected a metastatic uptake 
in the lumbar spine and a small lesion in the cervical spine (arrow), 
marked in red. PET index 0.57%. Right: none of the physicians iden-
tify any lesions in the same patient. Of note, the patient had previ-
ously undergone lumbar spinal fusion. b Left: the AI model identi-
fies several foci in the right ribcage, pelvis, and right hip. PET index 
1.34%. Right: reader D identifies additional lesions in the skull, spine, 
and pelvis (arrows). PET index 1.42%. c Left: the AI model and the 
readers do not detect any lesions. Right: the threshold marks several 
lesions in the cervical (arrows) and thoracic spine. PET index 0.16%

▸
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the same parts of the humeri, femura, and skull in the 
field of view, which was not always the case in the scans 
included in this study. Similar to aBSI, inclusion of the 
skeletal volume in an indexed measure of tumor burden 
enables interpatient comparison.

At a patient-level, the readers agreed on occurrence 
of suspect metastatic uptake in < 3/4 of the patients. This 
shows that even among experienced specialists with the 
majority working at the same center, interpretation of PET/
CT is subjective. One can speculate that agreement would 

Fig. 3   Boxplots of the sensitiv-
ity and positive predictive value 
for the detection of suspicious 
uptake at a patient-level for 
reader vs. reader, AI model vs. 
reader, and threshold model vs. 
reader. One of readers A–D was 
alternately held as reference and 
pairwise compared to another 
reader or model

Fig. 4   Bland–Altman plots illustrating the interreader reliability 
between the AI model and each physician regarding PET index esti-
mation after log10(x + 1) transformation (n = 26). The solid line repre-
sents mean differences between the two log10(x + 1)-transformed PET 
indices. The dotted lines indicate the upper and lower 95% limits of 

agreement (mean difference ± 1.96 multiplied by the standard devia-
tion of the mean difference). The same plots with subject labeling 
are provided in Supplementary material 2. The seven data points out-
side the most-leftward main cluster in all four plots correspond to the 
same subjects
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most likely have been even lower had the study included 
readers from more centers and/or with greater discrepan-
cies in experience. The visual inspection following the final 
analysis showed a misalignment between PET and CT scans 
in several patients, which is also very likely a contribut-
ing factor to the relatively low interreader agreement. The 
results suggest that there is an unmet need for objective and 
reproducible analysis of PET/CT. AI presents an interesting 
opportunity to meet this need.

A threshold of SUV 15 has been used in previous stud-
ies for segmentation of metastatic uptake in [18F]fluoride 
PET/CT [14, 26]. When applying this threshold to our test 
group, agreement regarding prevalence/absence of suspi-
cious uptake at a patient-level and correlation between PET 
indices was considerably lower compared to the AI model 
using each physician as a reference. The threshold identi-
fied suspicious uptake in the majority of patients that the 
readers agreed did not have metastatic disease, and failed to 
identify suspicious uptake in one patient where all readers 
agreed on prevalence. The use of a fixed SUV threshold 
for segmentation of suspected metastatic uptake is prob-
lematic since [18F]fluoride activity in benign processes 
and malignant disease is known to overlap. Normal [18F]
fluoride uptake also varies between different bone regions 
[32]. Our results support the application of AI to more 
accurately calculate skeletal tumor burden compared to 
applying a global SUV threshold.

In the clinical setting, one potential role for PET index 
is as an objective, quantitative measure of progression and 
response in bone during systemic treatment of metastatic 
PCa. Especially for [177Lu]Lu-PSMA-617 and analogues 
therapy, longitudinal assessment of changes in the tumor 
volume in PSMA PET/CT may be clinically useful [33, 
34]. Quantitative assessment of tumor burden in patients 
scheduled for PSMA-directed radioligand therapies could 
also be used for personalized dosimetry. Further, prog-
nostic information may be obtained through the assess-
ment of tumor burden in patients with advanced PCa [10, 
20, 34]. An AI-based model for quantification of tumor 
burden in PET/CT has a potential to risk-stratify patients 
with metastatic PCa, and to provide potentially prognostic 
and predictive information in the clinic. As exemplified by 
the development of aBSI, extensive analytical and clinical 
validation would be required. Ultimately, the correlation 
of an AI-based measure of tumor burden in PET/CT to 
patient outcome would have to be assessed in prospective, 
multicenter trials. In order to achieve general applicabil-
ity, the model would profit from being further trained on 
a larger material containing patients from several centers 
with annotations performed by more than one reader, and 
to be evaluated in different patient cohorts. A future pro-
spective is also to incorporate this model into an expanded 
one for detection and quantification of lymph node metas-
tases as well as primary tumors.

Reader A 1

gnortsyreV109.0BredaeR

gnortsyletaredoM167.058.0CredaeR

riaF198.048.019.0DredaeR

AI model 0.75 0.76 0.58 0.65 1

Threshold model 0.58 0.63 0.32 0.41 0.62 1

Reader A Reader B Reader C Reader D AI model Threshold model

Fig. 5   Spearman correlation coefficients (r) between PET index cal-
culated by the readers, AI model, and SUV 15 threshold model for 
the patients in the test group (n = 26). Correlation is considered very 

strong for r > 0.8, moderately strong for r = 0.6–0.79, fair for r = 0.3–
0.59, and poor for r < 0.3

Table 3   Mean (range) true 
positive, false positive, and 
false negative values, as well 
as sensitivity and positive 
predictive value (PPV), when 
using one of readers A–D 
alternately as a reference for 
pairwise comparison with 
another reader or the AI or 
threshold model, respectively. 
The results are than averaged 
over the choices of reference. 
The results are presented for the 
entire test group and per patient 
(n = 26)

Reader vs. reader AI model vs. reader Threshold model vs. reader

True positives
  Total 133.8 (116.0–154.0) 122.5 (112.0–130.0) 81.8 (76.0–87.0)
  Per patient 5.1 (4.5–5.9) 4.7 (4.3–5.0) 3.1 (2.9–3.3)

False positives
  Total 40.0 (14.0–62.0) 68.0 (38.0–123.0) 61.8 (57.0–65.0)
  Per patient 1.5 (0.5–2.4) 2.6 (1.5–4.7) 2.4 (2.2–2.5)

False negatives
  Total 40.0 (14.0–62.0) 51.3 (37.0–67.0) 92.0 (73.0–107.0)
  Per patient 1.5 (0.5–2.4) 2.0 (1.4–2.6) 3.5 (2.8–4.1)

Sensitivity (%) 77.5 (67.7–90.6) 71.0 (65.1–75.5) 47.3 (44.0–51.0)
PPV (%) 77.5 (67.4–90.8) 65.9 (50.0–77.4) 57.0 (53.9–59.6)
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A limitation of this study was the relatively small sample 
size used for training and testing. Because metastatic bor-
der ground truth is theoretically given by histopathology 
but is practically and ethically impossible to obtain, manual 
segmentations were used as the reference standard, which 
is also a limitation. However, the PET/CT scans used for 
training came from three different centers in two different 
countries, acquired using different cameras and imaging pro-
tocols. The combination of three centers in this development 
enhances the potential of the model to be applied to more 
than one setting and to facilitate its clinical translation. This, 
combined with using PET/CT scans from patients without 
metastatic bone disease but with the same characteristics as 
the test group, may have helped the training and potentially 
reduced the number of false positives.

Another limitation is that the study is based on a tracer which 
only measures skeletal and not all tumor burden. Although [18F]
fluoride is recommended for bone imaging by several guidelines 
and is more sensitive in diagnosing skeletal metastases com-
pared to conventional imaging [21, 35, 36], PSMA-targeting 
radiopharmaceuticals are the most promising tracers in PCa PET 
imaging. Compared to [18F]fluoride, they have the additional 
beneficial ability to diagnose extra-skeletal disease. In a recent 
study, the performance of a CNN-based model for identifica-
tion and location classification of suspicious uptake in [68Ga]Ga-
PSMA-11 PET/CT improved when 2-deoxy-2-[18F]fluoro-D-
glucose PET/CT training data was added, so called ‘dual tracer 
learning’ [37]. The authors suggest that combining information 
from multiple tracers in network training is a promising method, 
considering the limited availability of expert-annotated PET/
CT data. The work presented in this study therefore extends 
beyond [18F]fluoride PET/CT application and lies the founda-
tion to developing a PSMA PET/CT imaging biomarker, for 
example, by pre-training a model on [18F]fluoride data with 
fine-tuning on PSMA scans. A next step would be to extend the 
PCa lesion detection and segmentation to encompass primary 
tumor, local spread, and distant disease to give a comprehensive 
measure of the tumor load. Automated identification and quan-
tification of whole-body PSMA uptake could help establish its 
role in therapy response monitoring in metastatic PCa, which is 
currently a challenging and relatively underexplored scenario.

Conclusions

We have introduced a fully automated AI tool for completely 
automated calculation of skeletal tumor burden in PET/CT. 
Diagnosing and tracking metastatic progression in an objective 
manner provided by AI support could be used in clinical tri-
als for eligibility, risk stratification and evaluation of treatment 
effect. In a clinical setting, it can be used as decision support to 
expedite and standardize scan evaluation, and to evaluate bone 
response during systemic treatment. However, its full clinical 

value needs to be investigated in future studies evaluating patient 
outcome.
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