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Abstract 

Objective  To investigate whether commercially available deep learning (DL) software improves the Prostate Imag-
ing-Reporting and Data System (PI-RADS) scoring consistency on bi-parametric MRI among radiologists with various 
levels of experience; to assess whether the DL software improves the performance of the radiologists in identifying 
clinically significant prostate cancer (csPCa).

Methods  We retrospectively enrolled consecutive men who underwent bi-parametric prostate MRI at a 3 T scanner 
due to suspicion of PCa. Four radiologists with 2, 3, 5, and > 20 years of experience evaluated the bi-parametric pros-
tate MRI scans with and without the DL software. Whole-mount pathology or MRI/ultrasound fusion-guided biopsy 
was the reference. The area under the receiver operating curve (AUROC) was calculated for each radiologist with and 
without the DL software and compared using De Long’s test. In addition, the inter-rater agreement was investigated 
using kappa statistics.

Results  In all, 153 men with a mean age of 63.59 ± 7.56 years (range 53–80) were enrolled in the study. In the study 
sample, 45 men (29.80%) had clinically significant PCa. During the reading with the DL software, the radiologists 
changed their initial scores in 1/153 (0.65%), 2/153 (1.3%), 0/153 (0%), and 3/153 (1.9%) of the patients, yielding no 
significant increase in the AUROC (p > 0.05). Fleiss’ kappa scores among the radiologists were 0.39 and 0.40 with and 
without the DL software (p = 0.56).

Conclusions  The commercially available DL software does not increase the consistency of the bi-parametric PI-RADS 
scoring or csPCa detection performance of radiologists with varying levels of experience.

Key points 

•	 Radiologists with varying experiences assigned the scores with and without the DL.
•	 The radiologists infrequently changed their initial PI-RADS scores.
•	 The DL software did not improve the PI-RADS scoring consistency.
•	 The DL software did not improve the performance in identifying csPCa.
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Introduction
Magnetic resonance imaging (MRI) is the backbone 
imaging modality for assessing prostate cancer (PCa). 
The role of MRI in evaluating PCa has recently height-
ened as the new evidence suggests the benefits of pre-
biopsy MRI in all men with a suspicion of PCa [1–3]. 
As the importance of MRI in PCa diagnosis increased, 
the Prostate Imaging-Reporting and Data System (PI-
RADS) and its following versions were introduced 
to bring standardization [4]. The PI-RADS provides 
guidelines for acquiring and interpreting prostate MRI, 
and the benefits of the system have been demonstrated 
in large-scale multi-center studies [5]. However, despite 
the PI-RADS, there are still non-negligible intra-reader 
and inter-reader differences in interpreting prostate 
MRI [6]. Furthermore, the inconsistencies appear to 
be more prominent with the less-experienced readers, 
hindering the standardization efforts [6].

Deep learning (DL) has shown remarkable perfor-
mance on prostate MRI in recent years, including PCa 
detection, classification, and segmentation [7–9]. Nev-
ertheless, a few studies have explicitly investigated 
whether DL benefits in standardizing the PI-RADS 
scoring among radiologists [10–12]. Further, prior 
studies have used in-house algorithms or prototype 
DL software; hence, there is a need for evidence for the 
yields of regulatory body-approved commercially avail-
able DL software in standardizing the PI-RADS scores 
and improving the performance of radiologists in iden-
tifying clinically significant PCa (csPCa).

The aims of this study were twofold: First, to inves-
tigate whether the commercially available DL software 
increases the PI-RADS scoring consistency on bi-par-
ametric MRI among radiologists with various experi-
ence levels; Second, to assess whether the DL software 
improves the performance of radiologists in identifying 
csPCa.

Methods
Acibadem University Review board approved this ret-
rospective study (ID: 2022-05/08) and waived the need 
for informed consent for the retrospective analysis of 
anonymized medical data. We reviewed consecutive 
patients who underwent a prostate MRI scan due to 
suspicion of PCa (i.e., increased prostate-specific anti-
gen or suspicious digital rectal examination) or active 
surveillance between January 2019 and December 2020.

The inclusion criteria were the followings: (1) hav-
ing whole-mount pathology or biopsy for patients with 
a PI-RADS ≥ 3 score assigned during routine clinical 
reading; (2) having a prostate MRI scan obtained at 3 T 
without an endorectal coil following PI-RADS version 
2; and (3) ≥ 18  months of follow-up without any clini-
cal, laboratory, or imaging evidence of PCa for patients 
with a PI-RADS score ≤ 2 [13].

The following patients were excluded from the study: 
(1) patients who underwent prostate MRI at 1.5  T; (2) 
patients who underwent prostate MRI with an endorectal 
coil; (3) patients with PI-RADS ≥ 3 examinations without 
any histopathological confirmation; and (4) history of any 
treatment for PCa.

MRI acquisitions
All patients underwent prostate MRI on one of our 3 
Tesla MRI units (Vida or Skyra, Siemens Healthcare) 
using an 18-channel phased-array surface coil. The MRI 
protocol was consistent with PI-RADS version 2, as ver-
sion 2.1 was unavailable during the study period [4]. To 
minimize bowel movements, Butylscopolamine bro-
mide (Buscopan, Bohringer Ingelheim) was given to the 
patients.

The bi-parametric prostate MRI protocol encompassed 
tri-planar T2-weighted imaging and diffusion-weighted 
imaging. The diffusion-weighted imaging was performed 
with echo-planar imaging in axial planes at b-values of 0, 
50, 500, and 1000 s/mm2. We excluded dynamic contrast-
enhanced images since the DL software could not pro-
cess them. The detailed parameters of the MRI protocol 
are given in Table 1.

Table 1  The detailed prostate multiparametric magnetic 
resonance imaging parameters

Parameters Turbo spin-echo T2-weighted 
imaging

Diffusion-
weighted 
imaging

Plane Axial Sagittal Coronal Axial

Time-to-repeat (ms) 5500 5040 3900 4800

Time-to-echo (ms) 104 115 117 63

Time of acquisition 
(min)

3.21 2.33 3.05 4.02

Field-of-view (mm) 200 220 240 200

Slice thickness 
(mm)

3 3 3 3

b-values (s/mm2) – – – 0, 50, 500, 1000

Matrix size 384 × 307 384 × 288 448 × 291 114 × 88
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DL software
The DL software (Prostate AI, Version Syngo.Via VB60, 
Siemens Healthcare) used in this study has three mod-
ules: (i) preprocessing module, (ii) DL-based lesion 
detection module, and (iii) DL-based lesion classifica-
tion module. In this study, we did not perform any model 
training or fine-tuning and only used the model for per-
formance testing.

Preprocessing module
The preprocessing module parses the DICOM files to 
select the axial T2-weighted and DWI with various b-val-
ues (e.g., 0  s/mm2 and 800  s/mm2). Then, the preproc-
essing module computes the ADC maps and synthetic 
DWI with a b-value of 2000 s/mm2 using a linear least-
square fitting with all acquired b-values (i.e., b-values of 
0, 50, 500, and 1000 s/mm2 for this study). Afterward, it 
performs prostate segmentation on T2-weighted images 
using a DL method proposed by Yang et al. [14] and rigid 
registration of T2-weighted and DWI.

DL‑based lesion detection module
Preprocessed images are propagated into the DL-based 
lesion detection module. This module has two subcom-
ponents: (1) DL-based lesion candidate detection model 
and (2) multi-scale false-positive reduction network.

DL-based lesion candidate detection model is a simple 
2D U-Net consisting of descending and ascending path-
ways inter-connected with skip connections at different 
levels and convolutional blocks at the bottom, resembling 
a U shape. This model takes 3D volumes of ADC, DWI 
with a b-value of 2000 s/mm2, and T2-weighted images 
but processes them slice by slice. The model outputs 2D 
heatmaps fused to create 3D connected components (i.e., 
lesion candidates). The detected lesion candidates then 
propagated into the false-positive reduction model.

The false-positive reduction model is a 2.5D multi-scale 
deep network previously trained and validated on radiol-
ogists-annotated 2170 bi-parametric prostate MRI scans 
from 7 institutions. The model takes the patches of ADC, 
DWI, and T2-weighted images of lesion candidates pro-
vided by the DL-based lesion candidate detection model.

A 2D DL model can assess the in-plane information 
within an image (i.e., x and y axes), while it cannot cap-
ture the out-of-plane information (i.e., z-axis). Given that 
the prostate images contain relevant information in the 
x, y, and z axes, it is essential to consider the informa-
tion of all planes in evaluating prostate MRI, particularly 
for eliminating false-positive lesions. Hence, the false-
positive reduction model takes two adjacent slices of a 
2D input slice as additional channels, making it a 2.5D 
network. For instance, a T2-weighted image harboring 

a lesion is fed to the model along with a slice above and 
below it. This design allows the network to capture the 
information z-axis and improves consistency and perfor-
mance. At the same time, it mitigates the need for using 
fully 3D DL networks, which are resource intensive. In 
addition, this model is fed by prostate images with a vary-
ing field of view (i.e., multi-scale) to empower the model 
in capturing additional contextual information.

DL‑based lesion classification module
The final module of the DL software is the lesion classi-
fication module. This module takes the lesion candidates 
offered by the preceding lesion detection module and 
provides the PI-RADS scores of the lesion, if present, 
as PI-RADS 3, 4, or 5, and highlights the lesions on the 
axial T2-weighted images. Supplementary Document S1 
illustrates the components of the DL software. A further 
detailed description of the DL software can be found in 
Yu et al. [15].

Radiologists reading
Four radiologists with varying experience levels inter-
preted the scans with and without the DL software on 
a dedicated workstation (Syngo.Via, Siemens Health-
care) equipped with a 6-megapixel diagnostic color 
monitor (Radiforce RX 660, EIZO). All reviewed images 
were in Digital Imaging and Communications in Medi-
cine (DICOM) format. The first reader was a radiologist 
with > 20  years of experience. The remaining three radi-
ologists had 5, 3, and 2 years of prostate MRI experience 
and were routinely interpreting less than 50 prostate MRI 
scans yearly (hereafter, these radiologists were denoted 
as less-experienced radiologists 1, 2, and 3, respectively). 
All radiologists were briefly instructed about the software 
before the reading.

The radiologists evaluated the scans following PI-
RADS version 2, as the DL software used in this study 
was developed following PI-RADS version 2. With 
multiparametric prostate MRI, PI-RADS 3 lesions of 
the peripheral zone showing focal or early contrast-
enhancement are upgraded to PI-RADS 4 (i.e., PI-RADS 
3 + 1) following PI-RADS version 2 [4]. However, as the 
contrast-enhanced sequences are not available in bi-par-
ametric MRI, lesions of the peripheral gland are scored 
using only the diffusion-weighted sequences. Thus, in 
this study, none of the PI-RADS 3 lesions of the periph-
eral zone were upgraded to a higher score.

In the initial readings, the radiologists were pro-
vided with bi-parametric MRI scans including high 
b-value DWI and asked to identify the index lesion (i.e., 
the lesion with the highest PI-RADS score or the larg-
est lesion if there were ≥ 2 lesions with the same score). 
First, the radiologists marked the index lesion with its 



Page 4 of 10Arslan et al. Insights into Imaging           (2023) 14:48 

PI-RADS score using the standard prostate reading tem-
plate [4]. Then the radiologists were provided with the 
decision of DL software overlaid on a T2-weighted image 
and asked to re-evaluate the scans to assess whether they 
changed their initial PI-RADS score. Likewise, the PI-
RADS scores of the radiologists with the DL software 
were recorded in the same template. Supplementary 
Document S2 shows how radiologists read the cases with 
and without the DL software step by step.

Whole‑mount histopathology and biopsy
All biopsy procedures involved a combination of tran-
srectal 12-core systematic and 3–4-core MRI/ultrasound 
fusion-guided biopsies (Artemis, Eigen) following up-
to-date evidence [16]. Biopsy and whole-mount speci-
mens were prepared and evaluated by a genitourinary 
pathologist with over 20  years of experience following 
international guidelines [16]. The lesion with the highest 
Gleason score was defined as the index lesion. A lesion 
with a Gleason score ≥ 3 + 4 was defined as a clinically 
significant PCa following the 2014 International Society 
of Urological Pathology consensus [17].

Statistical analysis
The statistical analyses were performed using the SciPy 
library of the Python programming language. The con-
tinuous variables are presented using the mean and 
standard deviations with the minimum and maximum; 
the categorical and ordinal variables are presented with 
frequencies and percentages. The PI-RADS scores of 
the radiologists were calculated and compared on a scan 
level. The inter-rater agreement among the radiologists 
in PI-RADS scoring with and without the DL software 
was evaluated using Fleiss’ kappa [18]; the pair-wise 
inter-rater agreements were investigated using linearly 
weighted Cohen’s kappa [19]. The kappa scores were 

interpreted as follows: a kappa score of < 20, a poor agree-
ment; 21–40, a fair agreement; 41–60, a moderate agree-
ment; 61–80, a good agreement; and 81–100, an excellent 
agreement. The kappa scores were compared following 
the prior work [20]. We calculated the area under the 
receiver operating curve (AUROC) in assessing csPCa 
and compared the AUROCs using DeLong’s test. A p 
value less than 0.05 was accepted as significant.

Results
In all, 153 men with a mean age of 63.59 ± 7.56  years 
(range 53–80) were enrolled in the study. The mean pros-
tate-specific antigen level of the men was 6.42 ± 3.87 ng/
ml (range 2–24).

Of 153 men, 113 (75.16%) had a histopathology result, 
with 45 (29.41%) having clinically significant PCa identi-
fied by whole-mount pathology superseding the biopsy, 
31 (20.26%) had nonsignificant PCa identified by whole-
mount pathology (n = 5, 3.26%) or biopsy (n = 26, 
16.99%), and 39 (25.49%) had a benign disease as identi-
fied by biopsy. The remaining 38 men (24.83%) had a PI-
RADS score of ≤ 2 on MRI and ≥ 18 months of follow-up 
without any clinical, laboratory, or imaging evidence of 
PCa (Fig. 1).

The inter‑rater agreement among the radiologist 
with and without the DL software
The PI-RADS scores assigned by the radiologists with 
and without DL are given in Fig.  2. Notably, the radi-
ologists changed their initial PI-RADS scores in 1/153 
(0.65%), 2/153 (1.3%), 0/153 (0%), and 3/153 (1.9%) of the 
patients with the DL software.

Fleiss’ kappa Score among the radiologists without 
the DL software was 0.39, equating to a fair agreement. 
Fleiss’ kappa Score among the radiologists increased 
from 0.39 to 0.40 with the DL software, not representing 

Fig. 1  The flowchart of the study
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a significant difference (p = 0.56). The pair-wise kappa 
scores among radiologists with and without the DL soft-
ware are shown in Fig. 3. Figures 4 and 5 show represent-
ative patients with clinically significant PCa.

The performance of the radiologists in identifying csPCa 
with and without DL software
The AUROCs of the experienced radiologist, less-
experienced radiologist 1, less-experienced radiologist 

Fig. 2  Horizontal bar charts show the PI-RADS scores assigned by the radiologists with (a) and without (b) the DL software

Fig. 3  Cohen’s kappa scores between radiologists without (a) and with (b) the software. There was no statistical difference between the pair-wise 
kappa scores with and without the DL software
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2, and less-experienced radiologist 3 without the DL 
software were 0.917 (95% CI 0.878–0.957), 0.847 (95% 
CI 0.785–0.909), 0.81 (95% CI 0.733–0.883), 0.782 
(95% CI 0.702–0.862). The AUROC of the standalone 
DL software was 0.756 (95% CI 0.671–0.842). The 
AUROCs of the experienced radiologist, less-expe-
rienced radiologist 1, less-experienced radiologist 2, 
and less-experienced radiologist 3 with the DL soft-
ware were 0.917 (95% CI 0.878–0.957), 0.864 (95% CI 
0.806–0.921), 0.81 (95% CI 0.733–0.883), and 0.789 
(95% CI 0.710–0.868). Figure 6 shows the ROC curves 
of the radiologists with and without the DL software in 
predicting clinically significant PCa.

The AUROCs of the experienced radiologist and 
less-experienced radiologist 1 were significantly higher 
than that of the DL software (p < 0.0001 and p = 0.04). 
In contrast, the AUROCs of the remaining less-expe-
rienced radiologists 2 and 3 did not significantly differ 
from that of the DL software (p = 0.63 and p = 0.23). 
The AUROCs of radiologists in identifying csPCa with 
and without the DL software did not differ for radiolo-
gists (p > 0.05).

Discussion
This study investigated whether DL improves the consist-
ency and performance of radiologists with various levels 
of experience in assessing bi-parametric prostate MRI. In 
this study, there was a fair agreement between the radi-
ologists in assigning the bi-parametric PI-RADS scores, 
and the inter-rater agreement among radiologists did 
not significantly increase using the DL software. Over-
all, the radiologists changed their initial PI-RADS scores 
in ~ 1% of the scans with the DL software, and radiolo-
gists with ≥ 5 years of experience provided a statistically 
higher performance in identifying csPCa than the DL 
software. Furthermore, the DL software did not improve 
radiologists’ performance in identifying csPCa.

In this study, the DL software used PI-RADS 3 spar-
ingly while mainly allocating scans as negative or highly 
suspicious of cancer (i.e., PI-RADS score of ≥ 4). A simi-
lar trend was also reported by prior research using the 
prototype version of the DL software [10, 21]. In contrast, 
the experienced radiologist assigned a PI-RADS score of 
3 to about a quarter of the patients in the present work. 
Likewise, a recent meta-analysis pooled data across 26 

Fig. 4  Radiologists and the DL software in assigning PI-RADS scores. A 64-year-old man with prostate adenocarcinoma with a Gleason Score of 
4 + 3 in the right posterolateral peripheral gland at the mid-prostatic level. An axial T2-weighted imaging (a), apparent diffusion coefficient map (b), 
diffusion-weighted imaging with a high b-value (c), and deep learning decisions overlaid on T2-weighted imaging with a heatmap (d) are shown. 
The radiologists scored this lesion as PI-RADS 5 with and without the DL software
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centers showed that approximately 30% of the lesions 
were assigned a PI-RADS score of 3 by radiologists [5]. 
We suggest that the potential underlying factors that lead 
the DL software to assign PI-RADS 3 to only a minority 
of the patients and whether this tendency is beneficial 

(e.g., sparing patients from unnecessary biopsy or iden-
tifying clinically insignificant cancers) should be investi-
gated in future work.

The experienced radiologist provided an AUROC of 
0.917 in identifying significant PCa, compatible with 

Fig. 5  Radiologists and the DL software in assigning PI-RADS scores. A 55-year-old man with clinically significant prostate adenocarcinoma with 
a Gleason Score of 4 + 3 in the left posterior peripheral gland at the basal level. An axial T2-weighted imaging (a), apparent diffusion coefficient 
map (b), diffusion-weighted imaging with a high b-value (c), and deep learning decisions overlaid on T2-weighted imaging with a heatmap (d) are 
shown. All radiologists scored PI-RADS 5 for the index lesion. However, the deep learning software failed to identify the index lesion

Fig. 6  The area under the receiver operating curves. The area under the receiver operating curves of the radiologists without (a) and with (b) the 
deep learning software in identifying clinically significant prostate cancer
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the literature [5, 21]. On the other hand, standalone DL 
software had a worse performance, with an AUROC of 
0.756 in the same task. Furthermore, the radiologists 
with 5 years of experience also performed better than the 
DL software, while the radiologist with 3 and 2 years of 
experience provided a similar performance. These find-
ings might imply that the DL software used in this study 
might be at the same level as a radiologist with ≤ 3 years 
of experience, while it fails to match the performance of 
radiologists with more experience.

At first glance, the low performance of DL software 
appears to contradict the results from the earlier stud-
ies using the prototype version of the same DL software 
[11, 21]. However, prior studies tested the DL software 
on in-distribution or ProstateX data containing rela-
tively straightforward cases. Though our MRI scans were 
obtained with the same manufacturer’s scanner, it might 
represent out-of-distribution data for the DL software, 
eventually impairing its performance. Furthermore, our 
findings, to some extent, align with those from the study 
by Youn et al., where the authors found that the prototype 
version of the DL software had a performance between 
an expert radiologist and radiology residents [21].

Many recent studies have claimed that DL could sur-
pass human radiologists in identifying clinically signifi-
cant PCa [22–26]. Nevertheless, in a recent large-scale 
multi-center study, Hosseinzadeh criticized earlier stud-
ies and suggested that small test sizes and the compari-
son with local radiologists’ performance might lead to 
overestimating the performance of DL [27]. The authors 
stated that those prostate DL models trained less than 1 k 
scans and pointed out that a DL model with an expert-
level performance could only be achieved by training 
over ≥ 35  k scans for lung cancer detection on CT and 
90 ≥ scans for breast cancer detection on mammography 
[28, 29]. However, the commercial DL software used in 
this study trained slightly over 2 k scans [10].

Considering the current DL models that were trained 
on relatively small data, expecting an expert-level per-
formance might be too optimistic at this moment. Fur-
ther, despite its drawbacks regarding consistency, the 
benefits of the PI-RADS scores assigned by human radi-
ologists are much more rigorously documented than DL 
in PCa diagnostics [5]. Thus, we suggest that creating a 
DL software that can replace human radiologists might 
be a longer-term goal, while designing DL models that 
improve and standardize the PI-RADS scores among 
radiologists seems to be a more reachable target [30].

Apart from the present work, few other studies spe-
cifically investigated the benefits of DL in the con-
text of PI-RADS scoring consistency. For example, 
in their large-scale study, Sanford et  al. evaluated the 

inter-rater agreement between their in-house deep 
learning model, U-net, and human experts [12]. The 
authors documented a moderate level of agreement 
between the software and experts. However, unlike the 
present work, the authors did not investigate whether 
prostate MRI reading with the DL model improves the 
inter-rater agreement.

Winkel et al. investigated the prototype version of the 
DL software used in the present work in two consecu-
tive studies [10, 11]. Their preliminary study was small-
scale and only examined the inter-rater agreement 
between radiology reports and DL software, yielding 
a kappa score of 0.42. Their subsequent study used a 
similar methodology to the present work, and radiolo-
gists with various levels of experience performed pros-
tate MRI readings with and without the DL software. In 
contrast to the present work, the DL software improved 
the inter-rater agreement in their research. However, 
the authors binarized the PI-RADS scores using the 
cut-off values of PI-RADS 3 and 4. Using PI-RADS ≥ 3 
cut-off threshold, the inter-rater agreement increased 
from kappa of 0.33 to 0.41 with the DL software, while 
it was increased from kappa of 0.22 to 0.36 using a PI-
RADS ≥ 4 cut-off threshold.

This study had several drawbacks that should be 
acknowledged. First and foremost, the sample size was 
relatively small, covering prostate MRI scans obtained 
with the same manufacturer’s 3 T scanner from a single 
tertiary center.

Second, we used bi-parametric MRI since the DL 
software used in this study does not use dynamic 
contrast-enhanced images. Though the performance 
of bi-parametric MRI is on par with multiparametric 
MRI [31], various guidelines [32–34], including the PI-
RADS [4], still recommend multiparametric MRI over 
bi-parametric prostate MRI. Thus, the results of the 
study might not be applicable to routine practice where 
the multiparametric MRI is routinely implemented for 
patient care. Likewise, we put PI-RADS scores 1 and 
2 in the same category (i.e., negative scans) as the DL 
software does not discriminate between them.

Third, some patients with PI-RADS scores 1 and 2 did 
not have histopathology in our sample. Nevertheless, 
these patients had at least 18 months of follow-up data, 
and the same approach was also followed in the recent 
large-scale prostate cancer detection challenge [13].

Fourth, we only evaluated whether the DL software 
improves the diagnostic accuracy in detecting csPCa 
and the consistency of radiologists with varying experi-
ence. We admit that this might downplay the role of DL 
in prostate diagnostics. For instance, DL may help to 
reduce prostate MRI reading time, lessening the daily 
workload of radiologists [11, 30].
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Conclusions
In contrast to most earlier studies, the commercially 
available DL software did not improve the PI-RADS 
scoring or csPCa detection performance of radiolo-
gists with varying levels of experience on external 
single-center data, potentially suggesting a drop in the 
performance due to a domain shift. Though we sug-
gest that prostate MRI practitioners should consider a 
potential drop in the performance using the version of 
the DL software in clinical practice, the potential ben-
efits of the DL, such as improving efficiency, should 
not be overlooked. In subsequent studies, we plan to 
investigate the benefits of the DL software in read-
ing efficiency and confidence, along with the accuracy 
and consistency of a larger pool of radiologists from 
different centers on large-scale multi-center data. Fur-
thermore, advancements in the DL technology, accom-
panied by larger and more representative training data, 
will likely improve the performance of the DL soft-
ware in future versions, which we plan to investigate in 
future studies.
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